
1 © 2019 IOP Publishing Ltd  Printed in the UK

Po T Wang1,9 , Everardo Camacho1, Ming Wang1, Yongcheng Li2, 
Susan J Shaw3,4, Michelle Armacost3,4, Hui Gong3,4, Daniel Kramer5,6, 
Brian Lee5,6, Richard A Andersen7, Charles Y Liu5,6, Payam Heydari8, 
Zoran Nenadic1,8,9 and An H Do2,9

1  Department of Biomedical Engineering, University of California, Irvine, CA 92697,  
United States of America
2  Department of Neurology, University of California, Irvine, CA 92697, United States of America
3  Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, 
United States of America
4  Department of Neurology, University of Southern California, CA 90089, United States of America
5  Department of Neurosurgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, 
United States of America
6  Department of Neurological Surgery, University of Southern California, Los Angeles, CA 90089, 
United States of America
7  Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 
91125, United States of America
8  Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 
92697, United States of America

E-mail: ptwang@uci.edu, znenadic@uci.edu and and@uci.edu

Received 19 June 2019, revised 23 September 2019
Accepted for publication 4 October 2019
Published 12 November 2019

Abstract
Objective. State-of-the-art invasive brain-machine interfaces (BMIs) have shown significant 
promise, but rely on external electronics and wired connections between the brain and 
these external components. This configuration presents health risks and limits practical use. 
These limitations can be addressed by designing a fully implantable BMI similar to existing 
FDA-approved implantable devices. Here, a prototype BMI system whose size and power 
consumption are comparable to those of fully implantable medical devices was designed 
and implemented, and its performance was tested at the benchtop and bedside. Approach. A 
prototype of a fully implantable BMI system was designed and implemented as a miniaturized 
embedded system. This benchtop analogue was tested in its ability to acquire signals, 
train a decoder, perform online decoding, wirelessly control external devices, and operate 
independently on battery. Furthermore, performance metrics such as power consumption 
were benchmarked. Main results. An analogue of a fully implantable BMI was fabricated 
with a miniaturized form factor. A patient undergoing epilepsy surgery evaluation with an 
electrocorticogram (ECoG) grid implanted over the primary motor cortex was recruited to 
operate the system. Seven online runs were performed with an average binary state decoding 
accuracy of 87.0% (lag optimized, or 85.0% at fixed latency). The system was powered by 
a wirelessly rechargeable battery, consumed  ∼150 mW, and operated for  >60 h on a single 
battery cycle. Significance. The BMI analogue achieved immediate and accurate decoding 
of ECoG signals underlying hand movements. A wirelessly rechargeable battery and other 
supporting functions allowed the system to function independently. In addition to the 
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small footprint and acceptable power and heat dissipation, these results suggest that fully 
implantable BMI systems are feasible.

Keywords: brain-machine interface, implantable, invasive, electrocorticogram

S Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1.  Introduction

Invasive brain-machine interfaces (BMIs) that are based 
on intracortical microelectrode arrays (MEAs) or subdural 
electrocortigram (ECoG) have shown significant promise in 
restoring motor function in those with severe paralysis due to 
neurological injuries. For example, such invasive BMIs have 
enabled accurate brain-control of multi-degree-of-freedom 
(DOF) robotic arms [1–6] or functional electrical stimula-
tion (FES) devices [7, 8] after stroke or spinal cord injury. 
However, these systems typically require externally pow-
ered amplifier systems and full-size computers to acquire 
and analyze the signals. As a result, the current generation of 
implantable BMI systems are typically limited to stationary 
applications within an indoor or lab setting. Furthermore, 
the intracortical microelectrode arrays have skull protruding 
components which can potentially act as a conduit for infec-
tion, and may not be viewed by most people and potential 
users as aesthetically pleasing or socially acceptable. These 
factors may make it difficult for such systems to find safe and 
practical clinical application outside of the lab and may lead 
to poor adoption within the community.

Some researchers proposed to address these problems by 
wirelessly transmitting the brain signals to a computer for 
analysis and processing [9–13]. However, such a solution has 
several drawbacks. For example, the continuous wireless trans-
mission of high-bandwidth neural data will most likely incur 
high power consumption, leading to faster battery depletion 
and increased thermal injury risk. In addition, chronic expo-
sure of the brain and skull to wireless signals has unknown 
effects and may potentially carry unwanted long term risks 
[14, 15]. In an attempt to avoid this issue, some researchers 
proposed to shift the site of wireless transmission away from 
the head to other areas of the body [16–18]. However, both of 
these approaches still rely on an external computer to decode 
brain signals, which in turn limits system operation within the 
wireless range of the base station.

The authors propose that a fully independent and implant-
able BMI, whereby brain signal acquisition and analysis are all 
performed within an invasively implanted system, may be one 
way to overcome the aforementioned problems and achieve 
clinical practicality (see figure 1). Such a system would avoid 
the need to have skull protruding components or reliance on 
external computing platforms. Consequently, such a system 
would be conspicuous and therefore aesthetically and socially 
acceptable to potential users, family, and other onlookers. 
Furthermore, a fully implantable BMI carries the convenience 
of being highly mobile and always available to the user. Such 

a system is required to be implemented in a manner where the 
hardware power and heat dissipation are low and its footprint 
is small enough to be safely implanted in a person. In addition, 
the system must be able to accurately perform real-time brain 
signal decoding. Finally, support mechanisms necessary for 
operation while isolated inside the human body would also 
need to be included, such as battery-based power manage-
ment, and wireless communication to external base station 
and end-effectors. To the best of the author’s knowledge, such 
a fully implantable BMI system has not been achieved.

1.1.  Concept design of a fully implantable BMI

A fully implantable BMI system is envisioned to indepen-
dently perform signal acquisition, offline and online data 
analysis, and control end-effectors. The authors envision such 
a fully implantable BMI to be ECoG-based due to ECoG’s 
proven long-term stability and safety [19, 20]. Such a BMI 
would consist of two major subsystems: a skull unit (SU) and 
a chest-wall unit (CWU) (see figure 1). First, The SU houses 
the amplifier array and multiplexor (MUX), is envisioned to 
be embedded in the user’s skull while connected to ECoG 
electrodes, and will be responsible for acquiring, amplifying, 
serializing and digitizing the ECoG signals. The multiplexed 
and digitized signals will be sent through a subcutaneous 
tunneling cable to the chest wall unit (CWU), similar the 
approach used in deep brain stimulators. Note that signal mul-
tiplexing minimizes the number of wires within this cable. 
The CWU houses all of the computing components and will 
be responsible for storing and analyzing ECoG signals in real 
time as well as controlling end-effector systems and commu-
nicating with an external base station or end-effectors. The 
external base station system is used to wirelessly configure the 
entire system as needed. Note that constraining the SU to only 
perform signal acquisition reduces its overall size and power 
consumption, thereby minimizing the risk of thermal injury to 
the brain as well as the potential invasiveness of the prospec-
tive implant in the head. Also note that placing the wireless 
transceiver (TRX) within the CWU spares the brain and skull 
from potential long term exposure to radio frequency signals.

This paper describes the design of a prototype based on 
this envisioned BMI system that is capable of decoding brain 
signals without sacrificing performance and while occupying 
a footprint sufficiently small to allow for safe implantation. 
The BMI functions were validated at the bedside by testing its 
ability to accurately decode human ECoG signals underlying 
hand movement in real time while the support functions were 
benchmarked with a variety of benchtop tests.
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2.  Methods

2.1.  Overview

To test the feasibility of the concept of a fully implantable 
BMI, a benchtop prototype of the system envisioned in 
figure 1 was designed and fabricated (see figure 2). Similar 
to the envisioned system above, this prototype comprises an 
analogue of the SU and CWU. A development board was also 
designed and fabricated to dock and connect these two sub-
systems as well as facilitate programming and testing of the 
integrated system. The system was programmed to perform 
the necessary BMI and supporting functions (described in sec-
tion 2.3). Finally, the entire system was tested at the bedside in 
its ability to perform online decoding of ECoG signals and its 
supporting functions were benchmarked.

2.2.  Hardware design

2.2.1.  Skull unit analogue.  The SU analogue comprises a 
32-channel commercial bioamplifier integrated circuit (IC) 
with integrated MUX and 16-bit analog-to-digital converter 
(ADC) (Intan Technology, Santa Monica, CA). The ampli-
fier IC was mounted on a custom printed circuit board (PCB) 
which connected the amplifier IC’s serial peripheral inter-
face (SPI) to the CWU analogue and its input channels to 
ECoG electrodes via an interface on the development board.

2.2.2.  Chest wall unit analogue.  To facilitate on-board pro-
cessing, the CWU analogue was designed as a special purpose 
miniaturized computer on a custom PCB. The CWU comprises 
low-power central processing units (two 48 MHz ARM Cor-
tex-M0+  microcontrollers; Microchip, Chandler, AZ), storage 
modules (512-MiB NAND flash memory; Micron, Boise, ID), 
and memory (two 512-KiB FRAM; Cypress Semiconductor, 
San Jose, CA). The rationale for having two separate micro-
controller cores was to divide the computing burden necessary 
for real-time BMI operation, as well as to provide a means for 
future self-programming of new software update deployments. 
Due to the isolated nature of a future fully implantable BMI, 
wireless communication between the CWU analogue and base 
station or end-effectors must be established and implemented 
in a manner that is compliant with the Federal Communica-
tions Commission designated Medical Device Radiocom-
munications Service (FCC MedRadio [21]) for implantable 
medical devices. This was facilitated by a LoRA radio TRX 
(HOPE Microelectronics, Xili, Shenzhen, China), set to oper-
ate at 406 MHz using on-off-keying (OOK) modulation. Also, 
since all implantable medical devices must be independently 
powered upon implantation, the system’s power was provided 
by a 2500 mAh rechargeable 3.7 V lithium-polymer battery. 
A linear voltage regulator was used to maintain the system 
voltage at 3.3 V. Battery level status was measured by a bat-
tery monitor IC (Texas Instruments, Dallas, TX). A wireless 

Figure 1.  Envisioned fully implantable BMI system. This illustrates a hypothetical scenario where the system is implanted in a patient with 
cervical spinal cord injury. ECoG electrodes are implanted over the area of interest and signals are amplified, multiplexed, and digitized 
by the skull unit (SU) and passed to the chest wall unit (CWU) for processing. The CWU will decode the ECoG signals and send wireless 
commands to the end-effector. A base station can be used for wireless set up and configuration of the system, including processes such as 
training data acquisition, offline training and calibration of the BMI decoder.
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charging IC (Texas Instruments, Dallas, TX; compliant with Qi 
wireless power transfer standards v1.2) with accompanying 47 
µH induction coil (Wurth Electronik, Waldenburg, Germany) 
enabled battery recharging by induction.

2.2.3.  Development board.  In order to facilitate testing and 
programming of the SU and CWU analogues, a development 
board was designed and fabricated to provide the necessary 
connections and interfaces for the two subsystems. More spe-
cifically, the development board utilized a stackable board-
to-board connector interface that provided breakouts for 
critical connections for the SU and the CWU analogues. This 
included 32 industry standard touch-proof jacks that were 
used to plug in ECoG connectors and route ECoG signals to 
the SU analogue. Also, USB interfaces facilitated program-
ming and debugging the microcontrollers from a desktop 
computer. Note that this development board is not necessary 
in the future implantable system (figure 1).

2.2.4.  Base station.  During the testing of the system, a 
desktop computer with a MedRadio band radio TRX played 
the role of a base station in order to wirelessly control the 
implantable BMI analogue. The base station’s MedRadio 
TRX was realized by interfacing a LoRA radio TRX with an 
ARM-based microcontroller. This wireless module was con-
nected to the desktop computer by a USB cable.

2.3.  Software design

2.3.1.  BMI software overview.  The overarching goal of the 
implantable BMI analogue’s software is to perform basic 

online decoding of brain signals. More specifically, the system 
was designed to classify ECoG data into either move or idle 
states in real time, similar to the state decoding scheme in exist-
ing BMI systems [22, 23]. To this end, the BMI system’s main 
functions are to perform BMI training data collection proce-
dures, generate an ECoG decoding model, and subsequently 
utilize the ECoG decoding model in online BMI operations. 
Outside of these main functions, the BMI software also has a 
number of supporting functions necessary for proper opera-
tion, such as power management and wireless communication 
with external devices. This BMI software was implemented 
as a custom C++ program, compiled on a desktop computer 
using Visual Studio (Microsoft Corp, Redmond WA), and 
deployed onto the two microcontrollers of the CWU analogue 
(referred to as Core 1 and Core 2) via USB connections on 
the development board (note that the desktop computer plays 
the role of the programmer in figure 2). Cores 1 and 2 were 
programmed to divide the computing burden in a manner nec-
essary to perform all of these functions in real time. Once the 
BMI software was deployed, the BMI analogue was detached 
from the desktop computer and subsequently controlled wire-
lessly through the base station computer. To this end, the base 
station software (running on the base station computer) was 
designed to run in conjunction with the CWU software. The 
base station software enabled all of the functions and settings 
of the BMI analogue to be controlled wirelessly.

2.3.2.  Base station software.  The base station software was 
designed to provide the experimenter with wireless access to 
all the settings and functions of the BMI. It was written in 
Visual C# and implemented with a Windows Forms graphical 

Figure 2.  Block diagram of the implantable BMI analogue. Dashed lines indicate wireless connections. Similar to the envisioned fully 
implantable BMI system, the SU analogue acquires ECoG signals and passes them to the CWU analogue. The CWU, composed of 2 
microcontroller (MCU) cores and supporting components, performs all necessary processing of the ECoG signals. Decoded states are 
wirelessly sent to an end-effector. The base station is used to wirelessly configure the implantable BMI analogue. The BMI system is 
powered by a wirelessly rechargeable battery. The development board connects all components together and enables initial programming of 
the BMI via a USB port. A programmer (which can either be a desktop computer or a dedicated programming device), is used to deploy the 
initial image of the BMI program onto the MCU cores.
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user interface to facilitate ease of use. The base station soft-
ware also provided a means to download and visualize ECoG 
signals, upload data and settings, present training cues to sub-
jects during training data collection, and set the BMI to run in 
online mode. Ultimately, the base station and this its software 
are not required to operate the CWU analogue after the system 
settings are appropriately configured and the BMI decoder is 
trained (described further below).

2.3.3.  Signal acquisition and data management.  ECoG sig-
nals from 32 electrodes were acquired at 500 Hz sample rate 
per channel after going through a configurable 7.5–200 Hz 
analog band-pass filter. This rate was deemed adequate to 
acquire the ECoG high-γ  band (80–160 Hz), which is known 
to be most informative of the execution of motor tasks [24]. 
The ECoG data was temporarily stored inside the FRAM 
modules during acquisition. During training data collection, 
the data was transferred to NAND flash for permanent stor-
age. On the other hand, the data was decoded in real time dur-
ing online BMI operation. A file system was implemented to 
facilitate the organization and future retrieval of all data stored 
on the NAND flash.

2.4.  Assessment

2.4.1.  BMI decoder training.  The BMI decoder utilized a 
supervised learning approach to distinguish between idle and 
move states based on ECoG signals. This required ECoG data 
underlying idle and move states to be collected. To this end, 
upon command from the base station software, the BMI initi-
ated training data collection. It then wirelessly sent cues to 
the base station directing the base station software to display 
alternating idle and move cues to the subject. Nominally, each 
idle or move epoch was 5 s long, and the process was repeated 
for a total of 60 s. The BMI acquired ECoG data underlying 
each state and stored the data in the NAND flash.

The BMI software then used the collected ECoG data to 
train the decoder. The average band-specific powers were cal-
culated in the α-to-β band (8–35 Hz) as well as in the high-
γ  band (80–160 Hz), as follows. This band combination was 
chosen as it was shown to yield the highest state decoding 
accuracy for elementary upper extremity movements [24]. The 
first 500 ms out of the 5 s data were discarded to accommodate 
human reaction delay after a cue change. The subsequent 4.5 
s ECoG time series were divided into 750 ms non-overlapping 
segments, re-referenced to the common average reference 
(CAR), and passed through a bank of software biquadratic 
filters in the αβ  and high-γ  bands (filter design details and 
characteristics are provided in the supplementary material 
(stacks.iop.org/JNE/16/066043/mmedia)). The filtered signals 
were squared and averaged in time to calculate a scalar value 
representing the band power in each channel and segment, i.e. 
Eαβ

c,s  and Eγ
c,s for channel c and segment s. These band power 

averages were downloaded for visualization. The channels 
with high-contrast between idle and move states were empiri-
cally chosen for subsequent analysis. The rationale for this 
channel selection is that: (1) not all ECoG electrodes placed 

over brain areas are relevant and demonstrate robust modula-
tion during movement; (2) training with all 32 channels would 
have required much longer training time to acquire adequate 
number of samples for the increased dimension size; (3) a 
longer training also increases analysis time, which may be 
impractical in a hospital testing environment.

The band powers Eαβ
c,s  and Eγ

c,s were concatenated and pro-
cessed by classwise principal component analysis (CPCA) 
[25] to reduce the dimension of input data. Specifically, the 
algorithm was set to retain principal components accounting 
for at least 92% of variance in each class. The class separability 
was further enhanced by running linear discriminant analysis 
(LDA) on the CPCA-transformed data. Mathematically, 
f = TLDAΦCPCA(d), where d ∈ R2 c are the band powers, 
ΦCPCA is the piecewise linear CPCA transformation, TLDA 
is the LDA transformation matrix, and f ∈ R are 1D spatio-
spectral features. Subsequently, Bayes rule was used to calcu-
late the posterior probabilities of each state given the observed 
feature. Due to the piecewise nature of the feature extraction 
transformation, the following four posteriors were calculated: 
PI(I|f �), PI(M|f �), PM(I|f �), and PM(M|f �), where f � is the 
observation, and PI(·|·) and PM(·|·) are the posterior probabil-
ities calculated in the idle and move state subspaces, respec-
tively. The subspace with the most convincing evidence (the 
highest posterior probability) was then selected as the winning 
subspace and its posteriors P(I|f �) and P(M|f �) were logged. 
Note that P(I|f �) = 1 − P(M|f �). This decoding method-
ology has been successfully tested and validated in many real-
time BMI operations [22, 23, 26, 27], and was utilized in this 
study so that focus can be placed on design and validation of 
the device prototype.

The decoder training function was benchmarked to deter-
mine how the time necessary to train the decoder scales with 
the number of channels. To test the worst-case scenario, the 
decoder was trained on indistinguishable sets of training data. 
Specifically, the BMI analogue recorded 60 s of environ
mental noise (all channels unplugged) and treated the data as 
if they were alternating idle and move epochs. Note that this 
60 s length matched the duration of training data. The time 
required to complete the decoder training process was meas-
ured for 4, 8, 16, 24, and 32 selected channels.

2.4.2.  Online BMI operation.  During online operation Eαβ
c,s  

and Eγ
c,s were calculated for non-overlapping 750 ms ECoG 

signal windows across all the selected channels. They were sub-
sequently processed as described in section 2.4.1 to determine 
the winning posterior probability P(M|f �). To avoid uncertain 
state transitions and minimize the subject’s mental workload, 
a binary state machine approach was used. Specifically, if 
TI < P(M|f �) < TM , the system remained in the current state, 
where TI and TM (TM > TI) are appropriately chosen state 
transition thresholds. If P(M|f �) � TM , the system remained 
in the move state or transitioned from the idle to move state, as 
the case may be. On the other hand, if P(M|f �) � TI, the sys-
tem either remained in the idle state or transitioned from the 
move to idle state. Note that this approach has been success-
fully used in prior high-performance BMIs [22, 23, 26–28]. 
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The BMI analogue system utilized a short dedicated time 
window (nominally  ∼50 ms long) to wirelessly transmit the 
decoded state and the corresponding P(M|f �) for the most 
recent 750 ms window to the base station software and end-
effector. Note that the base station acted as the end-effector 
in this study, since the feedback was provided as an on-screen 
icon that indicated the decoded state.

Prior to online operation and performance assessment, a 
calibration procedure was used to determine the values of TI 
and TM. The BMI system was set to run in the online mode but 
with no control of end-effectors. More specifically, the BMI 
system sent cues to the base station directing the base station 
software to display alternating idle and move instructions to 
the subject. Each idle and move epoch was 10 s long, and 
the calibration ran for 1–2 min. The resulting P(M|f �) were 
logged by the base station software. Subsequently, P(M|f �) 
during idle and move cues were plotted on a histogram, and 
the experimenter empirically determined suitable values for 
TI and TM.

2.4.3.  Online BMI performance assessment.  Ethical 
approval for testing of the implantable BMI analogue was 
obtained from the Institutional Review Boards (IRB) of the 
University of California, Irvine and the Rancho Los Amigos 
National Rehabilitation Center (RLANRC). Subjects under-
going epilepsy surgery evaluation with ECOG electrodes 
implanted over the hand primary motor cortex (M1) were 
recruited. Subjects were asked to perform alternating epochs 
of repetitive hand grasp/release on the side contralateral to the 
ECoG electrodes as directed by the computerized cues dis-
played on screen by the base station software. The decoding 
model was generated and calibrated using methods described 
in sections 2.4.1 and 2.4.2. Once the values of TI and TM were 
found, the subject operated the BMI in the online mode. Sub-
jects were asked to follow visual cues to alternate between 
idling and repetitive hand grasp/release while the BMI decoded 
their ECoG signals in real time (section 2.4.2). The decoded 
state was also displayed to the subjects as a form of feedback. 
This was repeated for  ∼five 8.5 s-long alternations of idle/
move (nominally 85 s for each online run). Multiple runs 
were performed as tolerated by the subjects or as time per-
mitted. Since analgesic medications with significant sedating 
effects are often given to this patient population, experimental 
compliance may be suboptimal. Therefore, a video camera 
recorded subjects’ physical movements as the ground truth 
(acquired at 30 Hz, and synchronized with the development 
board). The BMI performance was assessed by comparing the 
decoded states to the ground truth and calculating the rate of 
correctly decoded states. In instances when the subject’s hand 
was occluded at that time instance, the online accuracy calcul
ation was not performed since the ground truth could not be 
established for that time point. In addition, due the causal 
nature of the decoder, the online BMI accuracy were also lag 
optimized. Namely, the above decoding accuracy calculations 
were repeated by delaying the ground truth state by up to 2 s, 
and the set with the highest overall accuracy was reported for 
each run. This lag optimization helps to account for various 
factors such as delay between ECoG signal modulation and 

actual movements, uncertainties in determining exact start 
and stop times of movement, as well as any potential process-
ing delays. On the other hand, since the system nominally 
updates every 800 ms, the above performance measures were 
also calculated at a fixed latency of 800 ms.

2.4.4.  Power management and other benchmarks.  The BMI 
analogue was benchmarked to determine the power consump-
tion during its various functions, including standby (running 
no operations other than periodically transmitting its status 
to the base station), training data collection, decoder train-
ing, online decoding, and wireless data transfer (continuous 
wireless data transmission to base station). Power consump-
tion was derived from the average current measurements on an 
ammeter connected in series with the battery while the BMI 
analogue performed each of the above functions over a 2 min 
period (nominal battery voltage was assumed to be 3.7 V for 
this calculation). All 32 channels were active during these 
benchmark tests.

For any implantable medical device, it is critical for bat-
tery state to be monitored so as to know when it is necessary 
to recharge the system or when the battery is nearing failure. 
The CWU software was designed to monitor the battery status 
for voltage and remaining capacity. The microcontroller cores 
obtained this data from the battery monitor IC on the CWU 
analogue, and then wirelessly transmitted the data to the base 
station. To characterize the system’s typical battery life, the 
battery was first charged to full capacity (defined as when 
no current entered the battery) by means of a wireless power 
emitter (IDT Technologies, using Qi protocol). Then, the 
system was set to run continuously in the online BMI mode 
as the battery voltage was self-monitored by the CWU, until 
the system shut down due to battery depletion. The same pro-
cedure was repeated when the system was in standby mode. 
Then, to characterize the typical recharge profile, the wireless 
emitter was used to recharge the depleted battery until full 
while the CWU self-monitored the battery voltage.

The wireless file transfer function was benchmarked for 
speed. The wireless transfer speed was determined by meas-
uring the time required to successfully send a training data 
file (which consisted of ECoG data underlying a single idle 
or move epoch) to the base station (includes time required for 
any error correction). This was performed for all data files 
from the training run above (n  =  12 files) and the entire pro-
cess was repeated for a total of three times (total of 36 file 
transfers).

3.  Results

3.1.  Hardware and software

The SU and CWU analogues were designed and fabricated as 
multilayer PCBs. Figure 3 shows them mounted on a 100 mm 
× 100 mm development board. The SU and CWU analogue 
PCBs occupy a 17 mm × 19 mm and 33 mm × 33 mm foot-
print areas, respectively. The BMI software was successfully 
deployed onto the CWU analogue MCU cores via USB pro-
gramming ports. Once the BMI software was uploaded, the 
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system was detached from the computer and operated inde-
pendently with power from a rechargeable lithium-polymer 
battery. The base station software was successfully compiled 
as a standalone Windows executable program with a graph-
ical user interface. The base station software subsequently 
performed all communication with the BMI analogue via the 
USB-controlled LoRA dongle over a 406 MHz band wireless 
link.

3.2.  Online BMI performance

A patient (40 year old, male) undergoing epilepsy surgery 
evaluation with ECoG electrode implantation over the left M1 
area (see figure 4) was recruited and provided his informed 
consent to participate in this study. The study was performed 
after all seizures necessary to identify the seizure foci for epi-
lepsy surgery were captured and all anti-epileptic medications 
were restarted. During this time, the subject was disconnected 
from the hospital monitoring system while awaiting explanta-
tion of ECoG electrodes. The subject remained seizure free 
during the entire study time. The grid locations were identi-
fied by MRI-CT image fusion and electrode clustering using 
methods described in [29]. Figure 4 shows the axial top view 
of the electrodes connected to the CWU analogue. Note that 
electrode placement was dictated by clinical needs.

During the training phase, the subject performed a repeti-
tive right hand grasp/release task as per section  2.4.1. An 
example of the ECoG signals acquired can be seen in figure 5. 
The signals were visually inspected by the experimenter. A 
total of seven salient channels were empirically selected as 
they were deemed to have the highest feature contrast between 
idle and move states (circled in red on figure 4). Subsequently, 
these channels were used for decoding model generation and 

calibration. Due to the subject’s fatigue and somnolence from 
medications, the calibration and online testing was done 2 d 
after the training data acquisition and decoding database gen-
eration. Since P(M|f *) during idle and move from the calibra-
tion run were highly separated, TI and TM were set to 5% and 
95%, respectively. The subject was able to perform a total 
of 8 online runs. The video files were reviewed to determine 
the ground truth. The percentage of correctly decoded states 
(PCorrect) across seven runs averaged 87.0% in the lag optim
ized approach, and 85.0% in the fixed latency approach. The 
performance metrics for all runs are shown in table 1. A repre-
sentative example of the decoding timeline from an online run 
is shown in figure 6. Run #2 was discarded from analysis due 
to camera obstruction, preventing the recovery of the ground 
truth. For Runs #1 and #6, the camera’s view of the sub-
ject’s hand was obstructed temporarily, leading to three and 
one time decoded states being excluded from the online per-
formance calculation, respectively. Since the BMI was manu-
ally terminated at the end of each online run, run durations 
were not exactly identical. In Run #1, the BMI experiment 
was discontinued earlier than expected while in Runs #5 and 
#6, the BMI system was allowed to operate for longer than 
the typical run duration.

3.3.  Computing and power management benchmarks

A number of a computing benchmarks were measured during 
the process of testing the BMI system. The time that it took 
for the CWU analogue to calculate P(M|f *) for any 750 ms 
window was  ∼300 ms. A more detailed breakdown of the 
online benchmark by processes and Cores is provided in the 
supplementary data. For the decoder training benchmark, it 
was found that the time to complete the decoder training was 

Figure 3.  SU and CWU analogues mounted on the development board. CWU analogue comprises the CWU board, antenna, charging coil, 
and battery. SU analogue comprises the amplifier/ADC chip. ECoG electrodes are plugged into standard touchproof jacks and the USB port 
enables initial programming. Note that a foot print for a micro-SD card adapter was included in the lower left hand corner, but the adapter 
was not used in this study.
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directly proportional to number of channels (R2  =  0.964, see 
figure A1). The wireless transfer speed averaged 975.5 ± 31.0 
bytes s−1 across 36 file transfers. Anecdotally, it was observed 
that interference to line-of-sight between the BMI and the 
base station could lead to reduction in the transfer speed.

Power consumption of the BMI analogue as it was per-
forming various functions is shown in table 2. When set to run 
in the online decoding mode, the BMI could operate continu-
ously for over 60 h on a single battery charge (figure 7). The 
system was able to reliably operate over 3.2–4.2 V supply-
voltage range. It required  ∼18 h to recharge the battery from 
depletion to full capacity (see figure A2).

4.  Discussion

4.1.  Primary findings

In this study, an benchtop analogue of a fully independent 
and implantable BMI system was successfully implemented, 
tested on the benchtop and at bedside, and achieved a high 
level of online performance. This represents an important 
step in demonstrating that fully implantable BMI systems are 
feasible and may overcome the issues that prevent clinical 
translation of current-generation invasive BMI systems. The 
author’s prior work in [30] demonstrated that BMIs could be 

reduced into hand held size (13 × 9 ×3 cm3), but the system 
only had the capability of operating on 4 EEG channels and 
was not designed for implantability due to excessive size and 
power consumption. The current work advances this signifi-
cantly further by achieving a miniaturized form factor with 
a size comparable to existing implantable medical devices, 
e.g. deep brain stimulators or responsive neural stimulators, 
while also being mindful of power and heat dissipation. This 
implies that a future implantable BMI can include all neces-
sary components of a miniaturized form factor, thereby elimi-
nating the need for any skull-protruding electronics, bulky 
external amplifiers, or computers. The ability to execute all 
data analysis steps and online decoding eliminates the need 
for fully implantable BMIs that rely on power-hungry wire-
less tethering to an external system for signal processing.

This miniaturization was achieved without sacrificing per-
formance as the system’s online decoding accuracy is com-
parable to or surpasses that of conventional desktop-based 
binary classifiers [22, 30, 31]. Notably, the acquired signals 
demonstrate the expected ECoG features underlying motor 
behavior, including α and β band desynchronization [32], and 
high-γ  synchronization [33–36]. Furthermore, accurate online 
decoding was achieved with only a short duration of training 
data and without any significant user practice. Although some 
brief false transitions were observed (see figure 6), such noisy 

Figure 4.  Subject’s ECoG grid placements. The left central convexity grid was connected to the CWU analogue. Electrodes containing 
salient features of the hand grasp movement are circled in red. In addition, two electrodes on the right interhemispheric (IH) grid were used 
as signal reference and circuit ground.
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state transitions may be minimized in the future by averaging 
P(M|f *) across multiple decoding windows, albeit with slower 
response. The subject’s performance also increased with each 
successive online run, indicating that if time permitted, addi-
tional user training would have likely resulted in even higher 
online performance. Finally, the fully implantable BMI ana-
logue’s ability to operate independently on battery power, be 
recharged wirelessly, and wirelessly communicate with the 
base station and end-effectors indicates that a future BMI 

device can be successfully implanted and isolated inside of a 
human body where no direct access is possible. The features 
that make the BMI analogue system potentially translatable 
into a practical fully implantable device will be discussed in 
further detail.

The current BMI analogue system can act as a basis for 
future implantable BMI systems. More specifically, the cur
rent system can readily undergo additional translational steps 
to make it into a fully implantable form that complies with 

Figure 5.  Representative signals from electrode #50 on the left central grid (figure 4) during training data collection. The training run 
began with a 5 s idle epoch and alternated with 5 s move epochs where the subject performed repetitive hand grasp/release throughout the 
epoch. White/green shades denote idle/move epochs, as defined by system generated cues during the training data collection process.

Table 1.  Online performance from all runs. PCorrect  is the overall decoding accuracy. P(I|I) is defined as the percentage of correctly 
decoded idle states and P(M|M) is defined as the percentage of correctly decoded move states. Time indicates how long each experimental 
run lasted. Performances are reported at optimized latencies (lags) and at the 800 ms nominal update rate.

Lag optimized Lag fixed to 800 ms

Run Time (s) PCorrect  (%) P(I|I) (%) P(M|M) (%) Lag (ms) PCorrect  (%) P(I|I) (%) P(M|M) (%)

1 75.7 85.5 92.6 72.1 869 83.9 92.0 78.4
3 86.1 81.7 87.1 74.4 636 80.0 83.9 76.9
4 88.0 84.7 93.8 66.7 896 83.3 93.5 74.3
5 104.3 82.6 100.0 64.7 430 77.9 94.7 64.6
6 124.2 89.6 91.2 87.2 825 91.4 91.2 91.5
7 86.6 90.5 90.9 88.1 451 84.7 80.0 89.2
8 87.4 93.1 100.0 84.1 397 89.9 90.6 89.2
Average 93.2 87.0% 93.6% 77.6% 655 85.0% 89.5% 81.3%
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regulatory requirements. First, the SU analogue can be inte-
grated with ECoG electrodes, and both analogues can be 
placed within hermetically-sealed titanium enclosures. Given 
that they have a size comparable to modern-day implants and 
given the known biocompatibility of titanium, these subsys-
tems can be readily implanted in humans. The tunneling cable 
that connects the SU and CWU involves a surgical process 
similar to what is employed in deep-brain stimulator implant
ation and hence should not pose any additional problems. The 
foot print of these subsystems can potentially be reduced even 
further by utilizing smaller versions of each discrete comp
onent, e.g. bare dies (as in [37]) or even integrating them into 
an ASIC form. Second, although the base station is a desktop 
computer in the current study, this can eventually be replaced 
by a handheld device to facilitate better mobility and ease-of-
use for future users and clinicians. It should also be noted that 
the base station does not need to be constantly present once 
all the BMI settings are configured. Third, while the analogue 
system’s 406 MHz band radio already complies with the FCC 
MedRadio standard, additional protocols for co-existance 
with other implantable wireless devices (as in [38, 39]) and 
cybersecurity (e.g. encryption/authentication and device spe-
cific addressing) can be implemented in the future to satisfy 
FDA requirements. Finally, upon integration into titanium 
enclosures, it can be estimated that the system’s power con-
sumption of  ∼150 mW will fall within an acceptable and safe 
range of heat dissipation within the human body [40].

The BMI analogue system’s battery can provide over 2 d 
of constant online BMI use before requiring a recharge via 
wireless induction. Although it nominally requires up to 18 
hrs to completely recharge the battery (figure A2), it is reason-
able to charge the battery for  ∼6–8 hrs every 48 hrs to main-
tain continuous operation. More specifically, it can be seen 

in figure 7 that 48 hrs of operation will discharge the battery 
to between 3.7–3.8 V. Subsequently, 8 hrs of charging from 
this voltage level will bring the battery back up to  >4.15 V 
(figure A2). A future scenario can be envisioned where the 
BMI user undergoes wireless charging as they sleep (typically 
6–8 hrs for average adult). With typical batteries having as 
many as 1000 recharge cycles, the current design could last 
up to 6–7 years before requiring replacement. The implemen-
tation of additional power saving features in software can 
minimize power consumption. Namely, this includes shutting 
down components or placing them into sleep mode when not 
in use to further reduce power consumption. A custom ASIC 
implementation can also help reduce power consumption by 
minimizing the number of redundant or unnecessary subcomp
onents from the ICs currently used in the system. Finally, other 
process improvements such as implementing direct memory 
access (DMA) or even simplifying the decoding algorithm 
can also help optimize power consumption. Such measures 
are important to minimize the need for battery replacement 
surgeries and their associated costs and complication risk. 
Power consumption optimization can also help to ultimately 
reduce the battery and implant size.

4.2.  Limitations

The process of generating a decoding model lengthens 
by  ∼0.7 min with an each additional channels involved, and 
can take excessively long if a large number of channels are 
required in the future. This may lead to faster battery deple-
tion, especially if more training data is collected. However, 
the decoding model may not need to be generated frequently. 
More specifically, it is notable that the training data was col-
lected on a separate day from when the online runs were per-
formed, yet it was still able to yield a high accuracy online 
performance. Although not explicitly tested here, this suggests 
that ECoG signals may be stable enough such that a decoding 
model can be used over extended periods of time.

The fully implantable BMI analogue system has only been 
programmed to perform binary-state classification. Although 
this is just a single decoding scheme, it can be readily applied 
to high-impact clinical applications. This includes BMIs to 
control gait prostheses in paraplegic SCI patients [26], or for 
virtual keyboard control in patients with locked-in syndrome 

Figure 6.  Timeline of online Run #8. The BMI decoded the ECoG signals into idle or move state. Black trace: posterior probabilities 
P(M|f *). Dashed lines: state machine transition thresholds, TI and TM. Decoded: BMI states from the decoder. Red  =  Idle. Green  =  Move. 
Actual: ground truth states based on video analysis. Gaps between red and green lines represent uncertainties due to the subject 
momentarily placing his arm outside of the camera’s field of view. Note that since these gaps did not coincide with the time point of any 
BMI analysis window, no decoded windows were excluded from the decoding accuracy analysis. Cue: instructional visual cue shown to the 
subject.

Table 2.  Average current and power consumption of the BMI 
analogue during various BMI functions. Power consumption is 
derived using 3.7 V as the nominal battery voltage.

Task Current (mA) Power (mW)

Standby 37.5 138.8
Training data collection 42.1 155.8
Decoder training 41.4 153.2
Online decoding operation 40.6 150.2
Wireless file transfer 43.8 162.1
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[41], or for control of prostheses for hand grasp and release for 
stroke patients with chronic distal upper extremity weakness 
[6]. Furthermore, the BMI software can be altered to decode 
more classes or perform other decoding schemes, such as esti-
mating upper or lower extremity movement trajectories from 
ECoG signals [33, 42–44]. As an implant, any such change 
or update to the BMI software would require the ability to 
perform wireless reprogramming. Although this feature was 
not explicitly demonstrated here, the fully implantable BMI 
analogue hardware has the capacity to accommodate this 
feature. Specifically, both microcontroller cores can be pro-
grammed with a function that would allow them to act as an 
in-system programmer (ISP) for each other. Subsequently, 
any new compiled image for the microcontroller cores can be 
wirelessly transmitted to the CWU and stored in the NAND 
flash storage. The cores would take turns deploying the new 
image onto one another to complete the update. It should be 
noted that adding more classes may require more training data 
collection and involve longer decoder training. Although not 
explicitly benchmarked, it is expected that faster processors 
may be required to maintain real time processing beyond a 
certain number of classes. Similarly, the addition of another 
memory module can help enable the implementation of a 
sliding window during decoding for faster response time.

Although an extended stability test was not explicitly per-
formed in this study, it can be seen that the system and its 
software did not ‘crash’ for the entire duration of the battery 
depletion test (figure 7).

4.3.  Future directions

Future work will involve the translation into a fully implant-
able form. In addition to integration of all electronic comp
onents into hermetically sealed enclosures and software 
improvements discussed above, the system will be properly 
sterilized and packaged followed by industrial standard 

testing (i.e. helium leak testing, sterility validation, animal 
model testing, etc) to demonstrate safety and satisfy regula-
tory requirements prior to human implantation. Also, given 
that sensation is critical for all motor functions, electrical 
stimulators will be added in future iterations to deliver 
direct cortical stimulation to the sensory cortex for artificial 
sensory feedback. Artificial sensation can potentially help 
further improve the user’s performance at operating the 
system and make the system more compelling to potential 
users and clinicians.

5.  Conclusion

An analogue of a fully implantable BMI system with a small 
form factor was successfully designed, fabricated and tested 
both at the benchtop and at the bedside. This system is capable 
of performing all BMI functions without reliance on an external 
computer. The system can operate independently within an 
isolated environment given a wirelessly rechargeable battery 
and wireless communication capability with a base station and 
end-effectors. Despite these design constraints, decoding per-
formance was not sacrificed and the system’s power and heat 
dissipation were within safe and acceptable ranges. These 
findings suggest that the fully implantable and independent 
BMI systems are feasible. Future work will include trans-
lation of the analogue device into an implantable form and 
adding features such as electrical stimulation capability for 
artificial sensation.
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Figure 7.  Battery discharge plots during standby and online decoding operation. The ADC ceased functioning below 3.2 V, therefore 
stopping the online decoding. Files can still be wirelessly transferred until the NAND cutoff voltage. The battery circuit cut off all power 
around 2.5 V.
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