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Gaze Coding in the Posterior Parietal Cortex :

Pietro Mazzoni and Richard A. Andersen

Introduction

An issue of active debate in the area of biological motor con-
trol is what coordinate frames the nervous system uses to repre-
sent sensory stimuli and planned movements. Much evidence
suggests that a portion of the posterior parietal cortex (PPC) of
the primate brain participates in sensory to motor coordinate
transformations. Specific areas within the PPC appear to com-
pute such transformations to program the direction of gaze.
We review a set of neural network models developed in our lab-
oratory to study how such coordinate transformations might
be achieved by neurons in the PPC.

Neuronal Properties and Presumed Function of the Primate’s
Posterior Parietal Cortex

Because an animal’s sensory and motor organs can move rela-
tive to one another, a requirement of sensorimotor integration
is the transformation of spatial locations across coordinate
frames. Early studies of the monkey’s PPC suggested that this
area plays a role in the integration of visual perception and
motor behavior because neurons were found that responded
to visual stimuli and to changes in eye position (reviewed in
Andersen, 1987). The portions of the visual field in which
luminous stimuli elicited responses—i.e., their receptive fields
—corresponded to particular retinal locations. As the monkey
looked in different directions, the receptive fields maintained
their retinal location but were modulated by eye position.
These were called spatial gain fields because eye position acted
as a gain on the visual response. For most neurons, the modu-
lation had a planar component—i.e., proportional to the hori-
zontal and/or vertical eye position.

The Zipser-Andersen Model

The properties of PPC neurons suggested that individual neu-
rons were unlikely to subserve spatial computations. Being
sensitive to both retinal location over a large area and to eye
position, a single neuron’s activity is an ambiguous signal of
stimulus location. This location could in principle be retrieved,
however, from the pooled activity of a group of such neurons.
Zipser and Andersen developed a neural network to study how
an ensemble of neuron-like model units might solve the coordi-
nate transformation problem (Zipser and Andersen, 1988). The
aim was to examine the properties of individual units that were
trained to solve the problem as a group. If the brain was indeed
encoding spatial locations in the distributed pattern of activity
of many parietal neurons, then some features of the brain’s
algorithm might emerge in the model network too.

The Zipser-Andersen network model (Figure 1) is a three-
layer feedforward network whose input units carry signals
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Figure 1. The Zipser-Andersen network model. The input layer consists
of 64 units encoding retinal position topographically and 32 units en-
coding eye position linearly. Each hidden unit has a logistic activation
function and projects to all output units. These are 32 logistic units
trained to encode the vector sum of the retinal and eye position loca-
tions (see Zipser and Andersen, 1988, for details).

known to be available to the PPC. The output layer was
trained to encode the head-centered location of the visual stim-
ulus. The task was to perform vector addition of the stimulus’s
retinal position and the eye position. After the network was
trained using backpropagation, its hidden units were found to
respond to visual stimuli and to eye position very much like
PPC neurons. They had retinotopic visual receptive fields
whose activity profiles were modulated by eye position—i.e.,
spatial gain fields—and the modulation was largely planar.
The receptive fields also had shapes similar to those of PPC
neurons.

It was thus shown that a layered network can learn to trans-
form retinal coordinates into head-centered ones using the in-
put signals available to the PPC. This result is consistent with
the adaptability of spatial behavior. Moreover, the hidden
units’ representation of spatial information was very similar to
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that found in PPC neurons. These neurons can thus play a
similar role in the organism—i.e., build up an intermediate
representation between input and output stages that is part
of the coordinate transformation computation. The network
demonstrated explicitly that units with PPC neurons’ proper-
ties contain a distributed representation of space that is
sufficient for accurate localization. Finally, the similarity of
response properties suggested that the network and the brain
may employ a common strategy in solving the coordinate
transformations problem.

Body-Centered Coordinates

Having the problem’s solution programmed in a network
model made it possible to further investigate what algorithms
the PPC may indeed be using through analysis and manipula-
tions of the model. An immediate question was how locations
could be encoded in other coordinate frames. The transforma-
tion from retinal to head-centered coordinates has a natural
application in the programming of eye movements, the eyes
having to move to particular positions relative to the head.
Large gaze shifts, however, are achieved by coupled move-
ments of the eyes and head; in this case, the target’s position
must be calculated in body-centered coordinates. Evidence
from lesion studies suggests that the PPC is necessary for the
proper execution of not only eye movements but other forms of
spatial behavior as well. Could the Zipser-Andersen network
be modified to compute body-centered coordinates; and if so,
what predictions would it make about the PPC?

Goodman and Andersen (1990) added a group of units en-
coding head position to the input layer of the Zipser-Andersen
network and trained this new network to produce body-centered
locations at the output layer. The hidden units were found to
be sensitive to all three input types. They had retinotopic visual
receptive fields modulated by both eye and head position, each
in a planar fashion. In other words, they developed planar
‘“gaze fields,” that is, linear modulation of visual responses
along a particular direction of gaze, which is the sum of eye and
head positions. Moreover, the “‘eye” gain field of a given hid-
den unit was always aligned (with the same direction and slope)
with the same unit’s “head” gain field. This was a natural solu-
tion for the network given the constraints of its architecture
(the eye and head position inputs produced signals in very simi-
lar formats) and of the problem (eye and head position are
indeed coupled for a given spatial position). The result sug-
gested, however, that if the PPC subserves coordinate transfor-
mations beyond the head-centered reference frame and does so
with an algorithm analogous to the neural network’s strategy,
then it should contain units with gaze fields similar to those of
the network just described. Such units have recently been iden-
tified in the PPC (Brotchie and Andersen, 1991). Brotchie and
Andersen trained monkeys to look in various directions by
moving their eyes alone or by moving both their eyes and their
head. A population of PPC neurons had visual responses mod-
ulated equivalently by eye or head position. These gaze fields
were largely planar and the direction of eye and head position
modulation was the same.

How the Neural Network Transforms Coordinates

Goodman and Andersen (1990) outlined a simple explanation
of how the network performs coordinate transformations.
Over the course of learning, each hidden unit develops a “pre-
ferred direction,” that is, a direction in its input space along
which to maximally modulate its activity. By maximal modula-
tion, we mean that an input vector parallel to the preferred

direction produces the unit’s largest activation, and a vector
in the opposite direction produces the smallest activation (or
largest inhibition from the resting activity level). The hidden
units of the Zipser-Andersen network align their sensitivity in
retinal space and in eye position space, and develop an eye
position response field that approximates a plane oriented
along what becomes the unit’s preferred direction (direction a;
for the ith hidden unit in the network). A hidden unit effec-
tively collapses the multidimensional signal of the retinal and
eye position units into two two-dimensional vectors, one for
retinal and one for eye position (r and e, respectively). The goal
is to add these two vectors to obtain the head-centered position
vector, h:

r+e=h

A hidden unit’s activation is proportional to the dot product
of its input vectors and its preferred direction (i.e., its input
weight vector):

o Xr-a; +e-a;

Each hidden unit thus extracts the components of the retinal
and eye position vectors along its preferred direction and adds
them. Because these vectors’ components are added at the hid-
den unit’s input, the output of each hidden unit effectively con-
sists of the component of the head-centered vector along the
unit’s preferred direction. Formally, because

r-a,+e-a=h-a
then

o; ~h-a;

"The preferred directions of the hidden units span the two-

dimensional input space so that the retinal and eye position
vectors are decomposed without losing information. These
components are combined again at the output layer to give the
vector that is the sum of the retinal and eye position vectors. A
single hidden unit’s operation can thus be described as a sum of
dot products, and is an elegant way of adding two vectors that
are encoded in the activity of many input units.

A notable feature of the distributed representation of the
Zipser-Andersen network is the absence of topography in the
hidden layer. Maintenance of topographic relationships across
processing stages can be an effective mechanism for processing
spatial information. Several models of saccade generation, for
example, use representations with well-defined spatial relation-
ships in order to generate an appropriate saccadic command to
look at a sensory stimulus (e.g., Droulez and Berthoz, 1991;
Dominey and Arbib, 1992). In these models, the saccade vector
is determined by which units are active within a given stage.
Units in the hidden layer of the Zipser-Andersen network, on
the other hand, are connected to every input and every output
unit, and encode the head-centered position vector without
regard to any input or output topography. The output vector
is determined not by which units are active but by the ac-
tivity level of every unit in the hidden layer. It is not clear
whether PPC areas are topographically organized. The Zipser-
Andersen model demonstrates that PPC neurons can transmit
to other cortical areas the head-centered position of a stimulus,
encoded in their collective firing rate, without any topographic
organization.

Perturbing the Model

Stimulation of the Lateral Intra-Parietal (LIP) area in the PPC
—a region that directly projects to eye movement centers and
that is active during the programming of saccadic eye move-
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ments—elicits saccadic eye movements (Shibutani, Sakata, and
Hyvirinen, 1984). Goodman and Andersen (1989) simulated
the effect of electrically stimulating the PPC by setting the out-
put of a hidden unit to its maximum possible value and inter-
preting the new position encoded by the output layer as the
endpoint of the simulated gaze shift. This process was repeated
for many initial eye positions. Because PPC neurons encode
spatial locations in neither a retinotopic nor a head-centered
reference frame, the effect of varying eye position on the elic-
ited eye movement is not intuitively predictable. Knowing how
the network computes coordinate transformations, however,
allows us to predict what the effect should be.

Because a hidden unit’s activity encodes the component of
the head-centered vector along the unit’s preferred direction,
maximal activation of that unit will shift the network’s output
along the unit’s preferred direction. This direction is encoded in
the unit’s weights and so should not be affected by the values
of the inputs; i.e., the direction of the eye movement will be
independent of the starting eye position. The movement’s am-
plitude, on the other hand, depends on how far the unit’s initial
activation level is from the unit’s maximum possible activation.
The initial activation level is determined by the unit’s input,
and thus by the initial eye position. Thus, we expect the ampli-
tude of the simulated saccades to depend on the initial eye
position. In particular, as the initial eye position changes along
directions orthogonal to the unit’s preferred direction, the elic-
ited saccade should be affected very little, because the unit’s
initial activation will remain the same. As the initial eye posi-
tion changes along the same direction as the unit’s preferred
one, on the other hand, the unit’s initial activation will vary,
and therefore so will the change in the position encoded at
the network’s output layer when stimulation brings the hidden
unit’s activation to maximum.

The pattern of eye movements just described was indeed ob-
tained by stimulation of most hidden units in a trained network
(Goodman and Andersen, 1989). The elicited saccades had
very similar directions from all starting eye positions, but their
amplitude decreased as the eye position was shifted along one
direction. The direction of this amplitude decrease was very
similar to the direction of the elicited eye movement, indicating
that the saccades were getting smaller as the eye moved along
the unit’s preferred direction, as predicted.

Thier and Andersen (1991) found that stimulation of area
LIP elicited a pattern of saccades similar to that obtained from
the neural network. The saccades evoked from various initial
eye positions were all in the same direction. Their amplitude
decreased as the starting eye position was moved in one direc-
tion, and remained the same as the initial position varied along
the orthogonal direction.

Encoding the head-centered location of a stimulus is not
the only way in which a saccade to that stimulus can be
programmed. Another commonly proposed scheme maps the
sensory vector falling on the retina (from the fovea to
the stimulus’s image) directly into a motor command encoding
the required saccade vector, without ever computing the head-
centered location of the stimulus. This method still requires
some mechanism for keeping track of eye position, so that
an appropriate saccade can be made to targets that appeared
before one or more intervening eye movements. One such
mechanism updates the planned saccade vector base on the last
eye movement made. This method has been postulated as a
cortical mechanism for saccade planning (Goldberg, Colby,
and Duhamel, 1990) and has been used in saccade-generation
models. In these models, the future saccade vector is remapped
(see DYNAMIC REMAPPING) based either on the integrated eye
velocity signal from the intervening saccade (Droulez and

Berthoz, 1991) or on a damped copy of the intervening sac-
cade’s eye position signal (Dominey and Arbib, 1992). The
Zipser-Andersen model does not address the issue of multiple
saccade plans. Extending the model to handle sequences of
saccades, however, would not require a remapping scheme that
kept track of intervening saccades. All saccade targets would
be directly encoded in head-centered coordinates as they ap-
pear, and a saccade to each could be planned based only on the
current eye position, independently of past eye movements.

Biological Plausibility of the Learning Algorithm

The biological plausibility of the Zipser-Andersen model was an
issue of concern because the backpropagation algorithm is an
unlikely candidate as a biological learning mechanism. To ad-
dress this issue, Mazzoni, Andersen, and Jordan (1991) trained
a neural network to perform the retinal-to-head-centered coor-
dinate transformation using a reinforcement learning rule de-
veloped by Barto and Jordan (1987). This algorithm adjusts the
network’s connections based on a single error signal computed
from the network’s overall performance and on the local
presynaptic and postsynaptic activation for each connection.
Because it combines a reinforcement signal with Hebbian up-
dating of connection strength, it is biologically more plausible
than backpropagation (see REINFORCEMENT LEARNING). The
hidden units of this network developed gain fields and receptive
fields virtually identical to those of the backpropagation-
trained networks. The networks’ algorithm for computing co-
ordinate transformations, therefore, did not depend on the spe-
cific learning mechanism used. The fact that this model learned
the computed coordinate transformations based on a simple
reinforcement signal also supported the idea that PPC neurons
can learn to solve this task from simple feedback signals di-
rectly available to the nervous system. Moreover, because the
properties of the hidden units are not specific to backpropaga-
tion training, the use of backpropagation in the original model
does not invalidate its role as a model of PPC function.

Conclusion

The Zipser-Andersen network has been a valuable tool in the
study of the PPC. It helped put into an explicit theoretical
context many experimental results, and predicted a few addi-
tional ones. The original data was not easily summarized by an
intuitive coding scheme, partly because the experiments ad-
dressed how neurons encode more than one variable. The neu-
ral network paradigm provided a framework for developing an
intuition about the distributed representation of several vari-
ables. As more experiments address the encoding and interac-
tions of several parameters in the nervous system, we expect
neural networks to continue to fruitfully assist our investiga-
tions of nervous system functions.

Road Map: Primate Motor Control
Background: Perceptrons, Adalines, and Backpropagation
Related Reading: Grasping Movements: Visuomotor Transformations
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Generalization and Regularization

in Nonlinear Learning Systems
Grace Wahba

Introduction

In this article we will describe generalization and regularization
from the point of view of multivariate function estimation in
a statistical context. Multivariate function estimation is not,
in principle, distinguishable from supervised machine learning.
However, until fairly recently supervised machine learning and
multivariate function estimation had fairly distinct groups of
practitioners and little overlap in language, literature, and the
kinds of practical problems under study.

In any case, we are given a training set, consisting of pairs of
input (feature) vectors and associated outputs {t(i),y;}, for n
training or example subjects, i = 1,...n. From these data, it is
desired to construct a map which generalizes well, that is, given
a new value of t, the map will provide a reasonable prediction
for the unobserved output associated with this t.

Most applications fall into one of two broad categories,
which might be called nonparametric regression and classifica-
tion. In nonparametric regression, y may be (any) real number
or a vector of r real numbers. In classification, y is usually
represented as a g-dimensional vector of zeros and ones, with
a single 1 in the kth position if the example (subject) came
from category k. In some classification applications, the desired
algorithm will, given t, return a vector of zeros and ones indi-
cating a category assignment (“‘hard” classification). In other
applications, it may be desired to return a g-vector of probabil-
ities (that is, non-negative numbers summing to 1) which repre-
sent a forecast of the probabilities of an object with predictor
vector t being in each of the g categories (“‘soft” classification).

In some problems the feature vector t of dimension d con-
tains zeros and ones (as in a bitmap of handwriting); in other
problems, it may contain real numbers representing physical
quantities. In this article we will be generally concerned with
the latter case, since the ideas of generalization and regulariza-
tion are easiest to discuss when there is a convenient topology
(for example, that determined by distance in Euclidean d-space)
so that ““closeness” and ‘“‘smoothness” can be easily defined.
Regularization, loosely speaking, means that some constraints
are applied to the construction of the map with the goal of
reducing the generalization error (see also REGULARIZATION
THEORY AND LOW-LEVEL VIsiON). Ideally, these constraints em-

body a priori information concerning the true relationship
between input and output; alternatively, various ad hoc con-
straints have sometimes been shown to work well in practice.

Generalization and Regularization
in Nonparametric Regression

Single-Input Spline Smoothing

We will use Figure 1 to illustrate the ideas of generalization and
regularization in the simplest possible nonparametric regres-
sion setup, that is, d = 1, r = 1, with t = ¢ any real number in
some interval of the real line. The boxed points (which are
identical in each of the three panels of Figure 1) represent n =
100 (synthetically generated) input-output pairs {z(i), y;}, gen-
erated according to the model

i = frrue(t(@)) + € i=1yumest Q)]

where frrus(f) = 4.26(¢™" — 4e” %' + 3¢73"), and the ¢; came
from a pseudo-random number generator for normally distrib-
uted random variables with mean 0 and standard deviation 0.2.
These figures are from Wahba and Wold (1975). Given these
training data {¢(i),y;,i = 1,...,n}, the learning problem is to
create a map which, if given a new value of ¢, will predict the
response y(?). In this case, the data are noisy, so that even if the
new ¢ coincides with some predictor variable #(i) in the training
set, merely predicting y as the response y; is not likely to be
satisfactory. Also, this does not yet provide any ability to make
predictions when 7 does not exactly match any predictor values
in the training set. It is desired to generate some sort of curve,
which will allow a reasonable prediction of the response for
any ¢ within a reasonable vicinity of the set of training pre-
dictors {¢(i)}. The dashed line in each panel of Figure 1 is
Jfrrue(?); the three solid black lines in the three panels of Figure
1 are three solutions to the variational problem: Find fin the
(Hilbert) space W, of functions with continuous first deriva-
tives and square integrable second derivatives which minimizes

V3 O 1)y + 2 f () du @)

for three different values of 1. The parameter 4 is known as the





