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Humans shape their hands to grasp, manipulate objects, and to communicate. From nonhuman primate studies, we know that visual and
motor properties for grasps can be derived from cells in the posterior parietal cortex (PPC). Are non-grasp-related hand shapes in
humans represented similarly? Here we show for the first time how single neurons in the PPC of humans are selective for particular
imagined hand shapes independent of graspable objects. We find that motor imagery to shape the hand can be successfully decoded from
the PPC by implementing a version of the popular Rock-Paper-Scissors game and its extension Rock-Paper-Scissors-Lizard-Spock. By
simultaneous presentation of visual and auditory cues, we can discriminate motor imagery from visual information and show differences
in auditory and visual information processing in the PPC. These results also demonstrate that neural signals from human PPC can be used
to drive a dexterous cortical neuroprosthesis.
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Introduction
The cognitive processes which result in grasping and hand shap-
ing can be investigated on many levels. On the level of single
neurons, we can ask how spiking activity is correlated with spe-
cific features of a hand shape. It has been shown that specific
grasp shapes can be decoded from motor signals of motor cortex
neurons in monkeys and humans (Vargas-Irwin et al., 2010;

Wodlinger et al., 2015). Before the details of muscle activation are
defined in the motor cortex, an intention to shape the hand has to
be formed in high-level areas of the brain. Grasp intentions have
been decoded from neurons in the premotor cortex of monkeys
(Carpaneto et al., 2011). In the posterior parietal cortex (PPC),
such intentional signals can be derived as well (Andersen and
Buneo, 2002; Culham et al., 2006). Several monkey studies have
identified the anterior intraparietal (AIP) area to be one such
high-level area involved in grasp actions (Sakata et al., 1995, 1997;
Baumann et al., 2009; Townsend et al., 2011). Interestingly
neurons in this area have also been reported to be tuned to visual
properties of graspable objects (Murata et al., 1997, 2000;
Schaffelhofer et al., 2015). In all mentioned monkey studies, hand
shaping was studied in the context of grasping or interacting with
a physical or sometimes virtual object. However, it remains un-
clear whether these results translate to humans who have an even
larger repertoire of grasps and who also use hand shapes unre-
lated to grasping and independent of objects (eg, in sign lan-
guage). Can we use high-level signals from PPC for decoding
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Significance Statement

This study shows for the first time hand-shape decoding from human PPC. Unlike nonhuman primate studies in which the visual
stimuli are the objects to be grasped, the visually cued hand shapes that we use are independent of the stimuli. Furthermore, we can
show that distinct neuronal populations are activated for the visual cue and the imagined hand shape. Additionally we found that
auditory and visual stimuli that cue the same hand shape are processed differently in PPC. Early on in a trial, only the visual stimuli
and not the auditory stimuli can be decoded. During the later stages of a trial, the motor imagery for a particular hand shape can
be decoded for both modalities.
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complex human hand shapes similarly and can these signals still
be extracted in paralyzed subjects who have not used their hands
in many years? In the field of neuroprosthetics, motor cortex
decoding of simple grasp actions has been demonstrated using
various robotic limbs (Hochberg et al., 2012; Collinger et al.,
2013) but the human hand with its 20 degrees of freedom (DOF)
allows for far more complex operations. Improving neuropros-
theses and allowing tetraplegic patients—who rate hand and arm
function to be of highest importance (Anderson, 2004; Snoek
et al., 2004)—to have better control over their environment
could be achieved using control signals from the PPC. For decod-
ing reaches, we have shown that PPC provides a strong represen-
tation of the 3D goal of an imagined reach (Aflalo et al., 2015). In
this study, we now examine the representation of imagined hand
shapes.

A tetraplegic subject, E.G.S., was implanted with two micro-
electrode arrays in the left hemisphere of the PPC. One array was
placed in a reach-related area on the surface of the superior pari-
etal lobule (putative human Brodmann’s area 5; BA5). The other
one was placed in a grasp-related area at the junction of the in-
traparietal sulcus and postcentral sulcus (putative human AIP).
We used the neuronal activity from recorded units to control the
physical robotic limb as well as a virtual reality version of the
limb. For training purposes and to investigate how these areas
represent hand shapes we implemented a task based on the pop-
ular Rock-Paper-Scissors game and its extension Rock-Paper-
Scissors-Lizard-Spock. We used variations of this task to further
analyze how visual information and motor imagery signals inter-
act in the posterior parietal cortex. Our results show that complex
hand shapes can be decoded from human PPC and area AIP in
particular. We also find visual information of objects to be en-
coded by neurons of this area. In contrast, we do not find early
information of objects cued by auditory stimuli. Furthermore, we
can show that visual object information and motor-imagery in-
formation are encoded in largely separate populations of cells.
This finding of two populations is important for separating
attentional-visual components of neuronal response from
motor-related components, which can be used to drive neuro-
prostheses in an intuitive manner.

Materials and Methods
Approvals. This study was approved by the institutional review boards at
the California Institute of Technology, Rancho Los Amigos, and the
University of Southern California (USC), Los Angeles. We obtained in-
formed consent from the patient before participation in the study. We
also obtained an investigative device exemption from the FDA (IDE no.
G120096) to use the implanted devices throughout the study period. This
study is registered with (NCT01849822).

Implantation. The subject in this study, E.G.S., is a male tetraplegic
patient who was 32 years old at the time of implantation. His spinal
cord lesion was complete at cervical level C3-4 with a paralysis of all
limbs. At the time of implantation, he was 10 years postlesion. We
implanted two 96 channel microelectrode arrays (Blackrock Micro-
systems) arranged in a 10 � 10 grid in two areas of the posterior
parietal cortex (Fig. 1a). One was implanted on the surface of the
superior parietal lobule (putative human BA5) and one at the junc-
tion of the intraparietal sulcus with the postcentral sulcus (putative
human AIP). The electrodes were 1.5 mm long and putatively record
from cortical layer 5. The array electrodes had platinum-coated tips
and were spaced 400 �m apart. The exact placement of the arrays was
based on an fMRI task, which E.G.S. performed before implantation.
Recordings for this study were made over 12 months during which
other experiments also took place. More information about the im-
plantation method can be found in a previous study in which the same
patient participated (Aflalo et al., 2015).

fMRI task and array locations. To determine the placement for the two
implanted arrays, we had the patient perform an imagined hand reaching
and grasping task during an fMRI scan.

A GE 3T scanner at the USC Keck Medical Center was used for scan-
ning. Parameters for the functional scan were as follows: T2*-weighted
single-shot echoplanar acquisition sequence (TR � 2000 ms; slice thick-
ness � 3 mm; in-plane resolution � 3 � 3 mm; TE � 30 ms; flip angle �
80; FOV � 192 � 192 mm; matrix size � 64 � 64; 33 slices (no-gap)
oriented 20° relative to anterior and posterior commissure line). Param-
eters for the anatomical scan were as follows: GE T1 Bravo sequence
(TR � 1590 ms; TE � 2.7 ms; FOV � 176 � 256 � 256 mm; 1 mm
isotropic voxels). Surface reconstruction of the cortex was done using
Freesurfer software (http://surfer.nmr.mgh.harvard.edu/).

The imagined reach and grasp task started with a 3 s fixation period in
which E.G.S. had to fixate a dot in the center of the screen. In the follow-
ing cue phase, he was cued to the type of imagined action to perform,
which could be a precision grip, power grip, or a reach without hand
shaping. Next, a cylindrical object was presented in the stimulus phase. If
the object was “whole” (“go” condition) E.G.S. had to imagine perform-
ing the previously cued action on the object and report back the color of
the part of the object which was closest to his thumb. The object could be
presented in one of six possible orientations and E.G.S. could freely
choose how to align his imagined hand with regard to the object. The
reported color allowed us to determine whether the imagined action was
performed with an overhand or underhand posture. Analysis of the ori-
entation of the object and the reported color suggested that E.G.S. was
imagining biomechanically plausible, naturalistic arm movements. If the
object presented in the stimulus phase was “broken” (“no go” condition)
E.G.S. had to withhold the cued action. This was used as a control
condition.

The BOLD response from this task was then used to determine
possible implantation sites for surgery (Fig. 1a). Based on the highest
activation for grasping and reaching, and intraoperative constraints
(blood vessel locations, cable and pedestal placement, etc), two im-
plantation sites were picked. Statistical analysis was restricted to the
superior parietal lobule to increase statistical power. More details
about the fMRI task and its implementation were previously de-
scribed (Aflalo et al., 2015).

Behavioral setup. During all tasks of this study, E.G.S. was sitting in his
wheelchair 2 m in front of a LCD screen (1190 mm screen diagonal).
Stimulus presentation was controlled using a combination of Unity
(Unity Technologies) and MATLAB (MathWorks). For the grasp train-
ing (GT) task (see “Online control and grasp training task,” below) a 17
DOF anthropomorphic robotic arm (modular prosthetic limb; MPL)
was used. The MPL was designed by the Johns Hopkins University Ap-
plied Physics Laboratory and approximates the functions of a complete
human limb. For on-line control, the GT task only relied on the function
of the robotic hand to replicate the different hand shapes we were using.
A virtual version of the MPL (vMPL) was also available in conjunction
with the Unity environment and was used in on-line control as well. The
vMPL was designed so that it resembles the MPL in form and function
within the Unity 3d environment.

Data collection. The data for the current work was collected over a
period of 12 months (including pauses) in 2-4 study sessions per week.
No device-related adverse events occurred throughout the study. Two
neural signal processors (Blackrock Microsystems) were used to record
neuronal signals. The raw data were amplified, and then digitized using a
30 kHz sampling rate. The threshold for waveform detection was set to
�4.5 times the root-mean-square of the high-pass filtered full-
bandwidth signal. Off-line spike sorting was done semi automatically
using a Gaussian mixture model based on the first two principal compo-
nents of the detected waveforms. Cluster centroids were selected manu-
ally by the researchers and the results of the clustering algorithm were
visually inspected and adjusted if necessary. In on-line experiments, only
unsorted action potential threshold crossings were used (using �4.5
times the root-mean-square as threshold). Overall, the unit yield on the
BA5 array was substantially lower than on the AIP array. On average, we
could record only �1⁄4 the number of units on the BA5 array compared
with the AIP array. In this study, we therefore focus mainly on data
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recorded from the AIP array. Only for a neuron dropping comparison
did we compare the two arrays.

Rock-Paper-Scissors task. Selectivity for hand shapes was evaluated us-
ing a task based on the popular Rock-Paper-Scissors (RPS) game (Fig.
1b). In the RPS task, E.G.S. was shown a symbolic representation of rock,
paper, or scissors (Fig. 1c) on a display screen for 200 ms. The symbols on
the screen occupied a space of 200 � 150 mm (2.9° � 2.2° of visual angle).
The cue phase was followed by a delay phase in which a blank screen was
shown for 1000 ms. At the end of the task, E.G.S. was instructed to
imagine making the corresponding hand shape with his right hand and to
verbally report the cued symbol (response phase). The onset of a text
saying, “report same” would indicate the start of the response phase. The
verbal reports were used to keep E.G.S. engaged in the task and check
whether the correct cue was remembered. The symbol reported by E.G.S.
was recorded by the experimenter. Trials in which he would not answer
within 4 s were marked as “no answer” trials.

All symbols were interleaved and at least 10 repetitions were recorded
for each condition. For data analysis, all trials in which E.G.S. reported an
incorrect cue during the response phase and “no answer” trials (see
above) were excluded. The analyses from this task are based on 20 re-
cording sessions.

Rock-Paper-Scissors-Lizard-Spock task. This task was an extension of
the RPS task, which included two additional hand shapes to increase the
repertoire of possible hand shapes available to E.G.S. The general task
flow corresponds to that of the RPS task. Two additional symbols, lizard

and Spock, and their associated hand shapes, a pinch grasp and a spher-
ical grasp, respectively, were added (Fig. 1c). The symbol for lizard re-
sembled a cartoon lizard and the symbol for Spock was a photo of the face
of Leonard Nimoy dressed as Mr. Spock from the TV series (Fig. 1c).
Importantly, unlike the symbols in the RPS task, which E.G.S. could
arguably imagine to grasp, these symbols were chosen not to be intui-
tively graspable. The corresponding grasps, a pinch and a spherical grasp
(Fig. 1c), do not correspond to those of the original Rock-Paper-Scissors-
Lizard-Spock (RPSLS) game but instead were chosen to widen the rep-
ertoire of usable grasps.

The dataset for this task is composed of 12 recording sessions which
were taken mostly after the completion of the RPS recordings (only 3
recording days at the end of the RPS recording period overlap).

Cue conflict task. Task progression and timing of this task correspond
to the RPS task in every aspect except that two cues were presented to
E.G.S. during the cue phase instead of one. One of the cues was the visual
representation of the object (as in the RPS task) and the other cue con-
sisted of a corresponding auditory representation (a synthetic voice say-
ing “rock,” “paper,” and “scissors”). All permutations of the visual and
auditory cue were used, which means that in one-third of the trials the
cues were congruent and in two-thirds of the trials the cues were incon-
gruent. Fifteen repetitions were recorded for each symbol (5 congruent
trials and 10 incongruent trials). In each block of this task, the experi-
menter would instruct E.G.S. in the beginning to either respond to the
visual (“attend object” condition) or the auditory cue (“attend auditory”

Figure 1. Implantation site and schematic overview of tasks. a, MRI of the implantation site for the BA5 and the AIP array. Some characteristic sulci are overlaid in red for better orientation. The
most active regions from the fMRI task (see “fMRI task and array locations”) are outlined for reaching (purple) and grasping (light blue). b, Sketch of task progression showing the three distinct phases
of cue presentation, delay, and response with their respective lengths. c, Table listing the names of the hand shapes (which also correspond to the auditory cues given in the CC task), their symbolic
representations on the screen, corresponding hand shapes (as performed by the robotic arm), and the color code used for cue-based analyses. d, Schematic sketch of the GT task. The robotic hand
would alternate between the two hand shapes rock (closed hand) and paper (open hand) for 60 trials total, and after that 30 relaxation trials would follow (see “Online control and grasp training
task”).
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condition). One block of “attend object” and “attend audio” was re-
corded right after each other on a recording day and the order of block
presentation was changed randomly. Except for the instruction at the
beginning of a block, the blocks were identical in all other aspects. As in
the previous tasks, E.G.S. had to imagine and verbalize what he was
imagining and we only used trials in which he responded correctly for
analysis.

The cue conflict (CC) task dataset consists of eight recordings for the
“attend object” condition and eight recordings for the “attend audio”
condition. One block of each was recorded on the same recording day. All
CC recordings were made after the RPS and RPSLS sessions.

Online control and grasp training task. In various on-line decode exper-
iments E.G.S. directly brain-controlled either the MPL or the vMPL to
open, close, and hold objects or play Rock-Paper-Scissors with the exper-
imenters. The on-line experiments did not follow a strict task structure,
and other than E.G.S.’s subjective verbal feedback, no recorded perfor-
mance data are available for them. To train the decoder for on-line con-
trol we implemented a grasp training (GT) task (Fig. 1d). During the GT
task, E.G.S. was not controlling the robot arm but had to imagine hand
shapes, which were cued. The data from this training was then used as
input for a decoder for on-line control. Off-line analyses of this training
data are shown in the current work. To make the analysis as similar as
possible to the on-line decoding we use only threshold crossing and no
additional spike sorting for this off-line decoding analysis.

In the GT task, E.G.S. had to imagine making hand shapes that corre-
sponded to the ones the MPL was performing in front of him. An open
hand (“paper” gesture) and a power grasp (“rock” gesture) were used as
the two grasp types in addition to a relaxation state. Opening and closing
of the robotic hand was accompanied by verbal instructions, which cor-
responded to the hand movements (ie, paper for open hand, rock for
power grasp). The relaxation state was verbally instructed (“release”).
The robot hand in front of E.G.S. was still visible during the relaxation
state, like in the open hand or power grasp state and remained in the last
position presented to E.G.S.; ie, either in the open hand or power-grasp
state. In the relaxation state, there was no explicit behavioral instruction
for E.G.S. other than to relax. Typically, he would look at the screen
during this state but his gaze was neither restricted nor controlled. Unlike
the previous tasks, there was no verbal confirmation or control of the
E.G.S.’s attention in this task.

Data for the GT task consists of 41 recordings which were taken over a
period of 3 months during which the data for the CC task was also
recorded.

Off-line discrete decoding. To measure decoding performance we used
the same off-line decoding procedure for the RPS, RPSLS, and GT tasks.
In the RPS and RPSLS tasks, only correct trials (see above) were used for
decoding. In the GT task, there was no verbal feedback and therefore
no trial exclusion. Units with a low mean firing rate (�1.5 Hz) during the
task were excluded. The time window for decoding started 600 ms before
the response phase and lasted 1500 ms. The time window was chosen to
include the buildup of activity just before the response phase onset,
which we attribute to anticipation by the patient and a large fraction of
the response phase itself during which we assumed the highest specificity
for hand shapes. We used a linear discriminant classifier with a uniform
prior for classification. The decoder was trained and performance was
evaluated using leave-one-out cross-validation. One trial is used for val-
idation and all other trials are used as the training set for a given record-
ing session. Then another trial is used for validation and the remainder as
the training set. This is repeated until every trial has been validated. The
average performance of all validations is then used as the performance for
that recording session.

CC continuous decoding. For the CC continuous decoding analysis we
used a k-nearest neighbor (KNN) classifier (k � 4). All units recorded in
the CC task that had a mean firing rate of 1.5 Hz and higher were in-
cluded. Recorded units in the attend object and attend audio conditions
were treated separately. For both groups we used the KNN classifier to
decode the visual cue and the audio cue independently for each 50 ms
time step. To ensure that all units of a dataset would have identical
number of trials for each condition, we only used the lowest number of
trials per condition that occurred in the entire dataset (12 trials per

condition in this case). The features for the decoder were binned and
smoothed firing rates (spike timestamps binned in non-overlapping 50
ms windows smoothed using a 500 ms Gaussian filter) of all included
units. We then performed a principal component analysis for dimen-
sionality reduction and used the first five components for decoding. The
decoder was trained and performance was evaluated using a 10-fold
cross-validation.

Neuron-dropping analysis. Neuron-dropping analysis provides a way
to assess the decoding potential of the implantation site even when units
are not stable over time. Instead of analyzing each recording session
separately, the total recorded population of units is used as though it was
recorded in one session. For this analysis, an artificial feature set was
created using firing rates from all sorted units in the dataset of a task,
which had a minimum firing rate of 1.5 Hz. All units, which were re-
corded on different days (sessions), were treated as independent units.
Analysis of waveform features (trough-to-peak width and half-point
width) and other features (mean firing rate and interspike interval) of
successive days indicated that most units did not remain the same be-
tween sessions (data not shown). Performance is then calculated with
subpopulations of the entire feature set by systematically removing single
units. We used the same time window as the discrete decoding analysis
(see above) starting at 600 ms before response phase onset and ending
900 ms after response phase onset. Units for the subpopulations were
randomly drawn from the total population. Two additional analyses for
the RPS task were performed using a window for the cue and a window
for the response phase. Both time windows were 400 ms long and started
100 ms after start of the respective phase. This was done to compare
decoding differences of BA5 and AIP depending on the task phase. For
each data point, 100 subpopulations were created. Two-thirds of trials
were used for training and one-third for testing. Trial assignment was
done randomly with 10 repetitions for each subpopulation. After feature
selection, we used principal component analysis for dimensionality re-
duction. The first five principal components were used for classification
with the linear discriminant method (see Off-line discrete decoding).

Results
Representations of hand shapes
To study the relationship between imagined hand shapes and
neuronal activity we implemented a task which was modeled after
the popular RPS game and its extension RPSLS. The task consists
of three phases (Fig. 1b). In the cue phase an object which corre-
sponds to one of the hand shapes (Fig. 1c) was shown to E.G.S. on
a screen. In the following delay phase, the screen turned blank.
Finally, text would appear instructing E.G.S. to imagine the cued
grasp shape and verbalize which shape he imagined.

We found single units which had a preferred tuning for each of
the different hand shapes that we used in our task. Figure 2 shows
example neurons tuned to each of the five hand shapes used in the
RPS (top row) and RPSLS (bottom row) tasks. The depicted units
were especially active during the delay and response phase which
indicates that they did not (or only slightly as in case of the paper
example unit shown in Fig. 2b) respond to the visual cue. In
addition to units that were preferentially active during the delay
or response phases we also found units that were more active
during or shortly after stimulus presentation and not in the re-
sponse phase (Fig. 3). Those units were not significantly tuned in
the response phase and are assumed to reflect the visual cue.

From a total of 803 sorted units recorded from AIP in the RPS
task a total of 237 units (30%) were tuned (Fig. 4). Based on these
findings we separated the tuned units into those tuned during
the cue phase (“visual units”) and those tuned during the response
phase (“motor-imagery units”). To be considered in one of the two
groups a unit had to be significantly tuned (one-way ANOVA; sig-
nificance level 0.05) in a 400 ms window that started 100 ms after the
occurrence of either the cue or response event (Figs. 2, 3, orange and
gray bars). The time window was chosen to take into account pro-
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cessing latencies and the length of the time window so as to keep the
overlap between cue and delay phase at a minimum. Our analysis
shows that approximately one-half of the tuned cells belong to either
of the two categories (Fig. 4, left column of pie diagrams). This was
true for the RPS and the RPSLS task even though the RPSLS task
showed slightly more motor-imagery units. In both of these tasks we
also found that approximately one-half of the units were tuned for
the scissors symbol which makes this symbol largely overrepresented
(cue phase: p � 2.6 � 10�6; response phase: p � 7.5 � 10�3; �2 test)
in the recorded population assuming an equal representation of the
three symbol types (Fig. 4a, middle and right pie diagrams). E.G.S.
also said that the scissors grasp shape was the most difficult to
imagine.

In the RPSLS task 147 (37%) of 397 total recorded units re-
corded from AIP were tuned. Only �1⁄4 of the units were tuned
for the two new symbols introduced by the RPSLS task (Fig. 4b,
middle and right pie diagrams). Furthermore we found that vi-
sual and motor-imagery units were almost entirely exclusive pop-
ulations of neurons with only �11%-13% of overlap in both RPS
and RPSLS tasks (Fig. 4 left column of pie diagrams). Visuomotor
units (Fig. 4, labeled “v”) were units that were tuned during both
the cue and the response phase of the task and had the same
preferred tuning in both phases. Switching units (Fig. 4, labeled
“s”) were also tuned during both the cue and the response phase
but did not have the same preferred tuning in both phases. The
spatial distribution of tuned units on the AIP array is shown in

Figure 2. Example motor-imagery neurons. a–c, Top row, Example neurons from the RPS and the bottom row (d, e) neurons from the RPSLS task. Each plot shows the average firing rates (solid
line; shaded area � SD) for 10 trials of each cued symbol during the task. Vertical lines indicate the onset of the cue (yellow shading � time period during which the cue symbol was visible) and
response phase. Selection criterion for neurons was significant tuning for one of the cue symbols during the response time window (gray bar; see Materials and Methods). The orange bar shows the
cue time window, in which only the paper neuron is also tuned.

Figure 3. Example visual neurons from the RPS task. Plots have been prepared in the same way as described for Figure 2. Selection criterion for neurons was significant tuning for one of the cue
symbols during the cue time window (orange bar). From left to right neurons are selective for rock (a), paper (b), and scissors (c).
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Figure 5 for the cue and response phases of the RPS (top row) and
RPSLS (bottom row) tasks. Although there are some hot spots
where most of the units recorded on a channel are only tuned
during the cue or response phase as can be seen from the contrast
plots (Fig. 5c,f), on most channels a mix of cue- or response-
tuned cells could be found. When comparing the distribution of
units for the RPS and the RPSLS tasks some changes can be ob-
served, but the general areas where tuned units could be found
stayed approximately the same.

Context dependency
To further investigate visual and intention properties of neurons,
we implemented the CC task which uses two cues, a visual and an
auditory cue, which are presented simultaneously (see Materials
and Methods). The task progression is identical to the RPS task
with the exception that during the cue phase one visual object is
presented and simultaneously an auditory cue is played. Impor-
tantly, only in one-third of trials both cues were congruent. The
auditory cue is a verbal representation of one of the shapes; ie,
rock, paper, and scissors. At the beginning of each session the
experimenter would instruct E.G.S. to either attend to the object
(attend object condition) or the auditory cue (attend audio con-
dition). A total of 184 sorted units (47%) which met the 1.5 Hz
minimum firing rate criterion of 395 total units, were used in the
attend object condition. In the attend audio condition, 191 units

(49%) which met the minimum firing rate criterion of 393 total
units were used. In addition to the 1.5 Hz minimum firing rate
criterion, no further selection criteria were applied for this anal-
ysis. The decoding analysis shows that in the case of the attend
object condition the visual cue can be decoded soon after it is
presented and decoding accuracy stays high during the response
period (Fig. 5a). It starts declining �1000 ms after the start of the
response phase and reaches chance level at �3200 ms after cue
onset. The audio cue on the other hand cannot be decoded
throughout the trial. In the attend audio condition the decod-
ing curve looks very different (Fig. 5b). The visual cue can be
decoded shortly after it has been presented but decoding accuracy
reaches chance level quickly thereafter, �300 ms before start of
response phase, and stays at chance for the remainder of the trial.
The audio cue cannot be decoded during cue presentation. How-
ever, �100 ms before the start of the response phase, decoding
accuracy for the audio cue starts to rise, reaches a peak 1000 ms
after response phase onset, and then slowly declines reaching
chance level �3200 ms after cue presentation. These results are
consistent with the finding of two different populations of which
one is selective during the (visual) cue phase and the other during
the response phase (see above). By using two different modalities,
we can now further differentiate the functional properties of
these populations. The cue phase-tuned units are selectively ac-
tive for the visual modality. On the other hand, the response

Figure 4. Statistics of tuned units. Units were recorded during the RPS (a) and RPSLS (b) tasks. Percentage of units tuned in either the cue or response time window (left). Units were tuned either
exclusively in the cue (orange) or response (light gray) time window or in both (the two dark gray sectors). If a unit was tuned in both time windows it could either be tuned for the same symbol (“v”
for visuomotor; dark gray) or for different symbols in each time window (“s” for switching; darkest gray). Percentage of all tuned units that were tuned during the cue (middle) and response (right)
time window sorted by their preferred symbol. Note that the total for the cue and response phase pie charts (middle and right) does not add up to the total from the unit tuning pie chart (left) because
visuomotor and switching units are included in both charts.
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phase tuned neurons encode the required hand shape indepen-
dent of the sensory modality.

Off-line discrete decoding in RPS and RPSLS tasks
To assess the potential of the recorded population to be used in a
neuroprosthetic scenario, we calculated the decoding perfor-
mance for each recording session of the RPS and RPSLS tasks
(Fig. 7). The decoder used 19.6 � 7.3 units (mean � SD) per
session in the RPS task and 18.3 � 4.7 units (mean � SD) per
session in the RPSLS task. In both tasks, the decoding perfor-
mance was above chance level throughout the whole recording
period. Performance quickly reached a stable plateau and stayed
constant with day-to-day variability. The example confusion ma-
trices (Fig. 7b,d) show that all hand shapes can be decoded, al-
though the probabilities for each of the shapes can vary in the
RPSLS task.

GT task and on-line brain control
The GT task was used to train a decoder for on-line brain control
as described in Materials and Methods (Fig. 1d). Training was
done using the physical robotic limb that would perform one of
two states, a power grasp or an open hand, in front of E.G.S. A
third relaxation state in which the robotic limb did not move was
used as an intermediary state. The decoder used 37 � 14 units
(mean � SD; units were defined only by threshold crossings, see
Materials and Methods) per session in the GT task. The decoding
analysis (Fig. 7e,f) shows performance above chance level for all
sessions. This corresponds well with E.G.S.’s ability to control

the robotic limb on-line. It was difficult initially for him to main-
tain a grasp shape. With subsequent training and using a relax-
ation state (see Materials and Methods), E.G.S. was able to
maintain grasp for longer periods. The off-line decoding perfor-
mance for all recording sessions in the GT task is shown in Figure
7e. After an initial phase of relatively low performance, a plateau
is reached and mean performance stays stable over the whole
recording period. Throughout the recording period, perfor-
mance varied considerably but was always above chance level
(33%; Fig. 7, red line). The example confusion matrices in Figure
7f illustrate that all states in the GT task could be decoded with
approximately equal probability.

Neuron-dropping analysis
For this analysis, a total pool of 321 sorted units in the RPS task
(222 sorted units in RPSLS) were available from the AIP array and
61 sorted units (45 sorted units in RPSLS) were available from the
BA5 array. Only units with a minimum mean firing rate of 1.5 Hz
were used for this analysis. The maximum number of pooled
units shown for the AIP array was cutoff at 150 units and the
maximum number of pooled units shown for the BA5 array was
cutoff at 50 units (no cutoff for RPSLS) to make comparison of
the curves easier. Note that to create the neural dropping curves,
the units used and the trials assigned for training and cross-
validation were randomly chosen (see Materials and Methods).
The neuron-dropping curves show that the correct hand shape in
the RPS (Fig. 8a) and RPSLS (Fig. 8b) tasks can be decoded with
high accuracy if a sufficient number of units are available. Inter-

Figure 5. Spatial distribution of tuned units on the AIP array. Total number of tuned units per channel (electrode) on the array (top down view onto the pad) in the RPS (a, b) and the RPSLS (d, e)
tasks. Tuned units are shown for the cue (a, d) and response (b, e) phases. The electrodes in the four corners of the array were used as references. Orientation of the array on the cortex is indicated
by the letters A (anterior) and L (lateral). The contrast plots show how many units were tuned for the cue phase relative to the response phase for the RPS (c) and RPSLS (f ) tasks. A contrast ratio of
1 means that all units found on the channel were only tuned for the cue phase and a value of �1 means that all units were only tuned in the response phase. Striped channels in the contrast plots

mean that no tuned units were recorded on the channel. Contrast was calculated as c �
tc � tr

tc � tr
, where tc is the number of tuned cells during the cue phase and tr is the number of tuned cells during

the response phase.
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polating from the neuron-dropping curve an average perfor-
mance of 90% could be achieved with �52 randomly selected
units in the RPS task and 63 in the RPSLS task.

Comparing the neuron-dropping curves from AIP and BA5
using the 1500 ms time window that overlaps the delay and re-
sponse phases shows a generally worse performance for the BA5
array (Fig. 8a,b). However, when we compare the curves for par-
ticular phases of the task it becomes apparent that this difference
is for the phase and not because of the differences in the sampled
neuron populations, which were of lower yield for the BA5 array
(see Materials and Methods). When comparing neuron dropping
curves for the cue phase (Fig. 8c) and the response phase (Figure
8d) this can easily be seen. In the case of AIP, decoding is good in
both phases, whereas the BA5 array performed well only for the
cue phase and decoding was not possible during the response
phase. This result shows a specialization of AIP for intended hand
shaping.

Discussion
Our results show for the first time encoding of visual and motor-
imagery aspects of hand shaping by single neurons recorded from
human PPC. These neurons are selectively active for specific
complex hand shapes during a Rock-Paper-Scissors inspired
task. We found two mostly separate populations of neurons that
either show visual or motor-imagery-related activity during a
task, which requires identifying a cue and imagining performing
a corresponding hand shape. In addition, simultaneous presen-
tation of visual and auditory cues distinguished visual processing
from motor-imagery and showed differences in encoding of the
two sensory modalities.

Finding two mostly different populations of neurons, which
are either tuned during the cue presentation or the motor imag-
ery, could have different interpretations. It is possible, but not
very likely, that the AIP array recorded from different layers of
cortex, which had different functional properties. In the spatial
distribution plots (Fig. 5), we could not find a clear gradual shift
from visual to motor imagery which would support this theory

either because the array was not evenly inserted or because it
followed a bend in the cortex. Another explanation could be that
the different populations were indeed functionally separated and
distributed in small patches. From monkey experiments we know
that “visuomotor” cells, which would be active during cue pre-
sentation and execution of a movement, are rather rare in PPC
and only comprise �7% of recorded units (Gail and Andersen,
2006), which corresponds to our findings.

Cells that are selectively active for specific grasps have been
reported in area AIP of nonhuman primates (Vargas-Irwin et al.,
2010; Carpaneto et al., 2011; Schaffelhofer et al., 2015). In these
studies, healthy animals would grasp objects that were visually
presented either throughout the trial or at the beginning of a trial.
The neuronal responses of motor intent could therefore be mixed
with visual responses and/or (anticipated) proprioceptive feed-
back. In our case, the hand shapes were purely imagined and, in
the CC condition, the relevant hand shape was audibly cued. For
these reasons, we assume that imagined proprioceptive feedback
and visual memory are unlikely to be responsible for the tuned
activity of the motor-imagery units. Additionally, in the RPSLS
task the two new visual cues, lizard and Spock, were chosen to
resemble icons rather than graspable objects.

The dynamics of the continuous decoding analysis in the CC
task show further interesting properties. Even though the task is
identical except for the initial instruction, the continuous decod-
ing curves show a very different result (Fig. 6). The visual cue can
be decoded early in the attend visual and the attend audio condi-
tion, whereas the auditory cue can only be decoded later and only
in the condition in which it is relevant for task performance.
These observations clearly show the importance of visual stimuli
within this cortical area and the absence of tuning for auditory
stimuli. At the same time, this task reveals that many cells in this
area are selectively active for the imagined action.

As mentioned above, the CC task results argue against a sus-
tained visual or attentional interpretation of the data. Interest-
ingly the decoding performance after the visual cue response is

Figure 6. Continuous decoding performance during the CC task. E.G.S. was either instructed to attend and respond to the visual cue (a) or the auditory cue (b). Feature n is the number of units
recorded over eight sessions that were used by the decoder. Solid black lines show the decoder mean performance when decoding the visual cue and dark gray lines show the decoder mean
performance when decoding the audio cue. Shaded areas show SE for decoding. Red circles indicate significant ( p � 0.01) deviation of decoding performance compared with chance level (red line).
Vertical lines indicate the onset of cue and response phases.
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lower in the attend audio condition for the delay and response
phases (Fig. 6, compare a and b) and there seems to be a “decod-
ing gap” between the peak for the visual cue decoding and
the onset of audio decoding (Fig. 6b, solid vs dashed curve). The
dynamic changes in decoding (Fig. 6) are compatible with the
idea of a “default plan” (Rosenbaum et al., 2001), which would be
activated by visual but not auditory cues. Competing motor plans
which are modulated by a top-down contextual signal from the

dorsolateral prefrontal cortex have been shown (Cisek and
Kalaska, 2005; Klaes et al., 2011) and several computational stud-
ies use models that are based on this mechanism (Erlhagen and
Schöner, 2002; Cisek, 2006; Klaes et al., 2012, p.212; Christopou-
los et al., 2015). The graded responses for each hand shape which
we observed (Fig. 2) rather than a categorical response for one
specific shape (and no response for any other) is also compatible
with this idea. If this theory were true, dissimilar plans would

Figure 7. Off-line decoding analysis of the RPS, RPSLS, and GT tasks. Decoding performance for each recording for the RPS (a), RPSLS (c), and GT (e) tasks. Red line indicates chance level for each
task. Example confusion matrices for recordings from the RPS (b), RPSLS (d), and GT (f ) tasks. Examples are marked as red dots in the performance plots.
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be actively suppressing each other, whereas more similar plans
would suppress each other less. As a result, tuned neurons would
have a graded response, which would depend on the similarity
between competing hand shapes and the preferred hand shape of
the neuron.

Tuning representations
It is interesting to note that the scissors symbol is highly overrep-
resented in the recorded neuronal population. This could be a
sampling artifact or related to the additional effort that E.G.S. had
to make to imagine the grasp shape, which he reported to be the
most difficult on several occasions. If effort was involved the
question would remain why the overrepresentation can already
be observed in the cue phase. Another possibility is that the scis-
sors symbol represents a tool that requires complicated hand
motions to interact with it. If a default plan was formed to interact
with the scissors object rather than to perform the scissors gesture
this could explain a difficulty based overrepresentation. When
the new symbols lizard and Spock were introduced with the
RPSLS task, they were represented by a relatively low number of
neurons. There are several possible explanations for this: first, the
other three symbols had already been trained for a long time
before the new symbols had been introduced. Second, the new

symbols were represented by icons rather than graspable objects,
which might have made a difference for neurons in this area.
Third, for the neurons that were tuned during the response phase
it might be that their actual preferred hand gesture lies in between
those gestures which we used during those tasks. Therefore, it
could have happened that the new gestures did not fit well into
the hand shape space represented by the recorded neuron pool.
The spherical and pinch grasps might have been too similar to be
well distinguished or E.G.S. might have had difficulties of imag-
ining the two separately. A similar argument could be made for
visual object categories, which might have been more similar
between the two non-graspable images than the previously
trained objects. More data with different hand shapes and/or
more subjects are needed to confirm either of these hypotheses.

AIP and BA5 differences
As mentioned previously, we focus mainly on the data that we
collected from the AIP array because the array implanted in BA5
had a much lower neural yield. Nevertheless, comparing decod-
ing from both areas showed interesting results (Fig. 8). The
neuron-dropping analysis shows that tuning during the cue
phase seems to be present but not present during the response
phase in BA5. On the other hand, AIP shows tuning in both

Figure 8. Neuron-dropping analysis. Neuron-dropping curves are shown for the RPS (a) and RPSLS (b) tasks using the 1500 ms time window (see Materials and Methods). Neuron-dropping
curves are shown for the AIP (solid line) and BA5 (dashed line) arrays separately. Red line shows chance level for the task. Shaded areas show SD. Each data point was created using a 1000-fold
cross-validation (see text). Separate neuron-dropping analyses for the cue (c) and response (d) phases used 400 ms time windows aligned to the corresponding phase (see “Neuron-dropping
analysis”).
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the cue and response phases. An explanation for this difference
could be that AIP is specialized for intending grasp movements
whereas BA5 is not. Such a specialization of PPC areas has been
shown in nonhuman primates for the lateral intraparietal area for
saccades (Andersen et al., 1990; Snyder et al., 1997), AIP for
grasping (Murata et al., 2000; Baumann et al., 2009), and the
parietal reach region and area 5 d for reaches (Snyder et al., 1997;
Cui and Andersen, 2011; Chang and Snyder, 2012). According to
this idea of a map of intentions, human BA5 would not be spe-
cialized for intending grasping, whereas AIP would be.

Neuroprosthetics
The grasp-decoding results indicate that human PPC is well
suited for neuroprosthetic applications, which require grasping
and hand shaping, using an anthropomorphic robot hand. Using
motor imagery signals from higher cortical areas, such as AIP, in
which single-neuron tuning reflects complex effector configura-
tions, could be advantageous in real time applications. A strategy
could be to decode complete hand configurations from well-
tuned single cells instead of decoding individual joint angles. This
information could be used complementary to motor cortex sig-
nals, which in addition can provide information about individual
joint angles. It is remarkable that after �10 years E.G.S. was still
able to imagine performing complex hand shapes. The neuron-
dropping analysis shows that a stable daily population of 50 –75
units from AIP would be sufficient to achieve 90% performance
in grasping tasks that involve 3–5 distinct hand shapes.
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