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Abstract
Objective. To date, the majority of Brain–Machine Interfaces have been used to perform simple
tasks with sequences of individual targets in otherwise blank environments. In this study we
developed a more practical and clinically relevant task that approximated modern computers and
graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of
areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional
control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of
neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel
electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a
GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like,
face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We
assessed whether the crowd affected decodes of intended cursor movements by comparing it to a
‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also
examined if training a neural decoder with the Crowd On rather than Off had any effect on
subsequent decode quality. Main results. Despite the additional demands of working with the
Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of
the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to
Off had no negative influence on subsequent decoding performance. Additionally, the subject was
able to gaze around freely without influencing cursor position. Significance. Our results
demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free
gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing
devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.
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Introduction

Neural prosthetics hold great promise for allowing disabled
individuals to regain agency over their environment by

directly manipulating robotic limbs or computer interfaces.
When tested in the laboratory, computer or motor-based
interfaces tend to only involve series of individual targets
(Velliste et al 2008, Collinger et al 2012, Gilja et al 2012,
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Hauschild et al 2012). When multiple targets have been used,
the effects of the greater task complexity themselves were not
evaluated (O’Doherty et al 2011, Ifft et al 2013) or the
cognitive component of the tasks have been minor (Hochberg
et al 2006, Shanechi et al 2012), limiting clinical usefulness.
These studies do not replicate the function of a modern GUI
interface, i.e. selecting a remembered or desired target from a
group of alternatives. Such function would be clinically
relevant and useful to patients with motor deficits.

To this end, we designed a task for NHPs that incorpo-
rated these behavioral elements and assessed its effect on an
interface driven by neural activity in the posterior parietal
cortex (PPC). The ‘Face in a Crowd’ task required selecting a
single, icon-like stimulus, the ‘face’, from a group, the
‘crowd’. The correct target was indicated by an initial sample
face stimulus. The targets were refined so as to naturally
require a visual search of several saccades to locate the
matching stimulus without imposing any artificial constraints
on eye movements, i.e. during free gaze. After visually
locating the matching target, it was selected by manipulating a
manually or neurally controlled computer cursor. This task
created a NHP analog to human use of a GUI. In the ‘Crowd
Off’ task condition, No Crowd appeared, reducing behavior
to a traditional center-out task.

Increasing task complexity from one to many possible
targets may seem like a simple change, but the associated
cognitive and behavioral requirements are not: more eye
movements to and between visual stimuli, more complex
decision making, and greater demands on working memory
and attention. Prosthetics driven by neural activity in motor
cortex may be influenced by these variables, as motor (Rao
and Donoghue 2014) and premotor areas (Pesaran et al 2008)
exhibit strong transients to the onset of visual stimuli. PPC,
which has also been used to drive cortical prosthetics
(Musallam et al 2004, Mulliken et al 2008, Hauschild
et al 2012, Ifft et al 2013) in NHPs, is well known to be
sensitive to many of the these behavioral variables (Colby and
Goldberg 1999, Buneo and Andersen 2006, Pesaran
et al 2010, Louie et al 2011). It is therefore relevant to
determine if these added task demands and their neural cor-
relates interfere with the signals upon which a useful neural
prosthetic would depend.

Area 5d, a subregion of PPC, was chosen as the substrate
for Brain Control due to its selectivity for arm kinematics
(Crammond and Kalaska 1989; Graziano et al 2000, Bremner
and Andersen 2012, Cui and Andersen 2012). Neural deco-
ders were repeatedly trained to transform neural activity from
this region into cursor commands during both the Crowd On
and Crowd Off task conditions to determine whether the
crowd’s presence during training or thereafter adversely
affected decoding performance.

Some of the behavioral variables mentioned above, e.g.
attention and working memory, are difficult to measure
directly. Eye movements are closely related to them (Soto
et al 2005) and much more readily recorded. Therefore, we
examined eye movements during the various phases of the
Face in a Crowd task as well as during a saccade-only task to
(a) assess the degree of eye tuning in the recorded population

of neurons, (b) ensure the Face in a Crowd task required a
visual search, and (c) examine whether task performance
under Brain Control was impaired as a result. Furthermore,
we sought to determine if cursor movement under Brain
Control could be dissociated from eye movements as during
natural hand eye coordination.

Methods

A male rhesus monkey participated in this study. All proce-
dures were approved by the California Institute of Technol-
ogy Institutional Animal Care and Use Committee and were
performed in accordance with NIH guidelines.

Behavioral setup

The monkey was seated in a chair and viewed all visual sti-
muli on a vertical LCD monitor placed about 40 cm from the
eyes. The NHP’s head was held in place by a surgically
implanted headpost. When Brain Control was performed,
both arms were gently restrained to prevent large arm
movements. Eye position was recorded using the ISCAN
system (ISCAN, Woburn, MA). Hand position was tracked at
120 Hz with a magnetic six DOF trakStar sensor (Ascension
Technology Corporation, Milton, VT) affixed to the hand.
View of the hand was blocked by an opaque plate placed at
neck height. Stimulus presentation was performed with the
PsychoPy psychophysics library for Python (Peirce 2007).
Task control and recordings were performed with the Simu-
link real-time system (The MathWorks, Boston, MA).

Neural recordings

The monkey was implanted with two 96-channel electrode
Cereport arrays (Blackrock Microsystems, Salt Lake City,
UT) on the convexity of the superior parietal lobule near the
posterior half of the IPS, i.e. the approximate location of
neurons functionally ascribed to area 5d in previous studies
(Cui and Andersen 2012, Bremner and Andersen 2012). The
Cereport (formerly known as the ‘Utah’ array) has been
commonly used in human neuroprosthetic studies and was
thus used in the present study to more closely mimic clinical
techniques for recording extracellular potentials (Roths-
child 2010). Neural activity was amplified, digitized, and
recorded with the Cerebus neural signal processor. In the
Central software suite (Blackrock Microsystems), thresholds
for action potential detection for each channel were set at
− 4.5 times the root-mean-square of the raw signal sampled
over a 1 s window on a daily basis. In real-time, the time of
threshold crossings were transmitted to Matlab software (The
Mathworks, Boston, MA) and counted in non-overlapping,
50 ms time bins. No spike sorting was used, as spike sorting
itself presents a significant difficulty to maintain from day to
day in human trials (Franke et al 2012), and has been reported
to confer little benefit upon BMI performance (Fraser
et al 2009). From the two arrays combined, approximately
105 active channels were reliably recorded with spiking
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activity of some kind as judged by the experimenter. Active
channels that met the simple criterion of firing at an average
rate of 1 crossing per second during the Training Block were
used in online decoding. This resulted in 85 ± 2 channels
being used for decoding each day.

Behavioral task

A green cursor of radius 0.7 cm was continuously presented
on the screen. The cursor was controlled either by the mon-
key’s hand moving in the horizontal plane above a flat, table-
top surface immediately in front of his body (Manual Control
mode), or by the output of a neural decoder (Brain Control
mode) with hands gently restrained on the table surface in a
relaxed position with elbows bent at approximately 90°.

The purpose of the task was to create an animal paradigm
that mimics human use of a GUI. The Crowd task naturally
required a period of visual search for a cued stimulus via
repeated saccades followed by a cursor movement to, and
selection of, the chosen target. We chose visual stimuli/targets
consisting of images of various human faces taken from the
Psychological Image Collection at Stirling (PICS) database
(http://pics.stir.ac.uk). Face targets consisted of a photo-
graphic head-on image of one of three facial expressions of 12
individuals. One individual was chosen for use as the ‘goal’
face or individual for the current study. All faces were nor-
malized for size with a red surrounding mask that obscured
the overall shape of the head and hair. The faces were also
normalized for total brightness. These manipulations made
the stimuli subtle enough in their differences that they

required fixation for correct identification of the goal indivi-
dual. The goal individual’s expression varied from trial to trial
but not within a trial. The outer diameter of all the face sti-
muli, red mask included, was 3 cm. Acceptance windows for
all targets and the cursor were identical in size to their
respective visual representations.

A trial began when a sample face cue (Target 1) of the
goal individual appeared at the center of the screen (figure 1).
The subject moved the cursor to overlap the cue for a con-
tiguous Hold Period of 400 ms. If overlap was broken during
the Hold Period before 400 ms elapsed, an entire new 400 ms
Hold Period would need to be performed. This rule was
applied for all Hold Periods in the task. For the Crowd On
condition, after the Hold Period, Target 1 disappeared, and a
‘crowd’ of face stimuli of eight individuals appeared. One of
the eight faces in the crowd (Target 2) was an identical match
to the initial cue face, Target 1. Each face in the crowd was
situated on a circle of radius 9 cm centered on the middle of
the screen and separated by 45° on the circle (figure 1). The
monkey then had 20 s to locate the matching face and move
the cursor to overlap it for another Hold Period of 400 ms.
After this second Hold Period, a juice reward was delivered
via a tube placed in front of the monkey’s mouth. Simulta-
neously, all targets disappeared and a reward beep was
sounded. A new trial began after an intertrial interval (ITI) of
0.5 s. Failure to locate, select, and Hold Target 2 within the
20 s period resulted in termination of the trial: the dis-
appearance of all targets, an auditory cue signifying trial
failure, and a penalty ITI of 5–10 s. Overlap with an incorrect
target for 400 ms or more also resulted in termination of the

Figure 1. Face in the Crowd task trial structure: the timeline pictured schematizes the phases of the task and associated events. The start of
each phase of the task is marked with a tick, labeled, and pictured above with a screenshot of the task display. The behavioral measures used
and their corresponding temporal extents are also indicated below the timeline. Target 1 is the Cue Face, and Target 2 is the Match Face. In
the Crowd On condition, Target 2 is accompanied by seven other faces of different individuals. In Crowd Off, it appears alone. The green dot
represents the cursor.
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trial. An overlap of less than 400 ms with an incorrect Target
in the crowd was permitted. The cursor was continuously
controlled during the trials and ITI. In the ‘No Crowd’ task
condition, Target 2 appeared somewhere on the same circle
described above, but with no other face stimuli present
(figure 1).

Performance measures

Task performance was assessed by the fraction of trials suc-
cessfully completed and by measuring the time required to
perform the various stages of the task (figure 1). Time to
Acquire, or TTA, spanned the time between Target 2 onset
(with or without the crowd) and initial contact with Target 2.
This period included the time required to visually locate the
matching face whether the crowd was present or not. The time
from initial acquisition of Target 2 to Reward, or Time to
Hold (TTH), measured how long the subject took to ‘settle’
the cursor down on the Target. Time to Hold could be no
shorter than 400 ms, but could be longer if overlap of the
cursor and Target 2 was broken and reestablished before
completing the trial. Time to Reward, or TTR, captured the
time from Target 2 onset to Reward and so would be the sum
of TTA and TTH for a given trial.

In order to assess the effect of Brain Control on cursor
control without the influence of task difficulty, we calculated
the change in Time to Acquire, or ΔTTA, by subtracting
average daily TTA in Manual Control from each subsequent
Brain Control trial TTA, i.e.

Δ = −TTA TTA TTA , (1)k k
BC BC MC

where superscripts MC or BC indicate Manual Control or
Brain Control and k indicates Brain Control trial k. The
average TTA in Manual Control, TTAMC, was computed per
day and per task condition (Crowd On or Off) and was only
subtracted from Brain Control trials with the corresponding
task condition on the same day. This calculation isolated the
difference in TTA that was attributable solely to the use of
Brain Control rather than Manual Control by eliminating time
consumed by other aspects of the task, e.g. searching for and
reacting to the presence of the correct target. This calculation
thereby gave a direct indication of the effectiveness of Brain
Control of the cursor independent of the influence of other,
task-related factors. This measure was then examined as a
function of assessment condition and training condition
(described below) in subsequent analyses.

P values reported are the result of a non-parametric, two-
sample Kolmogorov–Smirnov test for differences in dis-
tributions. Where reported, interquartile range (IQR) was
computed by taking the difference between the third quartile
(Q3) and the first quartile (Q1) of the data. Reported R-
squared values were computed by taking the square of the
Pearson’s correlation coefficient (R) between the variables
specified.

Decoder training

Each day began with the monkey performing 160 trials of
both the Crowd and No Crowd task conditions alternating
every 20 trials under Manual Control. This allowed assess-
ment of daily variation in basic task performance without the
influence of Brain Control quality. Next, the monkey’s hands
were gently restrained.

A previously computed neural decoder, a Training
Decoder, was used by the NHP to manipulate the cursor
during an initial 250 s Training Block in either the Crowd On
or Crowd Off condition. The Training Decoder and computer
assistance functioned like a set of ‘training wheels’ on a
bicycle, allowing the NHP to use neural activity to drive the
cursor, though not fully independently.

The Training Decoder was computed in a previous
behavioral session using the same methods described here.
The task used during training of the Training Decoder was the
Crowd Off task condition of the Face in a Crowd task. We
attempted to use the same Training Decoder for every
Training Block in the current study in order to keep initial
conditions for each Training Block as similar as possible;
however, after one to four days, Training Decoders stopped
generating useful output even with substantial assistance
during the Training. When that occurred, the most recently
computed decoder (trained with the Crowd Off) was sub-
stituted in as a Training Decoder. The dataset for the current
study spanned seven days and 23 decoders. The decoders
trained in the first four days all used the same Training
Decoder during training. The next Training Decoder was used
for two days, and the third for one day. All analyses described
below were repeated on a restricted data set using only
decoders trained with the first Training Decoder (days 1–4).
The results of those analyses did not differ substantially from
the results described below.

Furthermore, using a Training Decoder (itself trained on
the Crowd Off task condition) to compute a new decoder with
the Crowd On task condition could be considered a sort of
worst-cast scenario in which the task type changes from one
Training Block to the next. We reasoned that if we find no
impairment of decoding function caused by the ‘switch’ to the
Crowd On condition, there is no reason to expect an
impairment would arise if the two tasks were fully segregated
with respect to training and assessment. It would be feasible
that it might provide an advantage, but our main goal in the
study was to examine whether or not these task contexts
reduced decode performance.

During the Training Block, output of the Training
Decoder was assisted by removing some fraction of the error
in cursor movement in each time bin. Error was defined as the
component of the instantaneous movement vector that did not
point directly at the Target. When no target was present on the
screen, any movement of the cursor was considered error.
Typically, the assistance level was adjusted such that 30% of
the error was removed in each time bin. During Training, the
ITI was set to 0 s. The neural activity and cursor kinematics
during the Training Block were subsequently used as input to
compute a new decoder.
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When computing the new decoder after performing the
Training Block, the noisy velocities of the cursor during the
Training Block were reoriented to point towards the instan-
taneous goal to more accurately capture the assumed inten-
tions of the subject (Gilja et al 2012). For each time bin, the
intention of the NHP was assumed to be either move the
cursor towards the current correct face target or hold the
cursor steady if the cursor already overlapped the correct
target. Reaction times were accounted for by assuming an
intention to hold the cursor steady until 200 ms after Target 2
onset in the No Crowd condition and after initial cue onset
and 400 ms after onset of Target 2 and the other targets in the
Crowd condition. These values were chosen based on average
reaction times during Manual Control.

Once the new decoder was computed, it was then used
for Brain Control by the NHP without assistance to perform
the task in both Crowd On and Off conditions in ten alter-
nating blocks of 20 trials, yielding a total of 200 assessment
trials per decoder. This process of training and assessment of
performance was repeated so that the effect on performance of
the crowd (during Training and/or Decoding) could be mea-
sured. Twenty-three decoders were trained and assessed
across seven days. The task condition of the first Training
Block on a given day was alternated to remove any order
effects.

Decoder calculation

For transforming neural activity into cursor position and
velocity, we used a linear decoding model coupled with a
linear state space model of the cursor dynamics. The final
decoder form closely resembled that described by Gilja and
colleagues (Gilja et al 2012).

Saccade task

To assess the correlation between eye kinematics and neural
activity, the monkey was trained to perform a task in which a
trial consisted of repeated fixation on a series of four yellow
circular targets placed on a 2 × 2 equally spaced grid mea-
suring 14 cm square. After fixating a target for the required
period of 500 ms, the target would turn from yellow to gray.
After successfully fixating on all four targets in any sequence,
the targets would all disappear and juice reward would be
delivered. An ITI of 0.5 s followed. The position of the hand
(which was not required to perform the task) was recorded
along with neural signals during this task, though the hand
rarely moved.

Two days, each consisting of approximately 1500 trials,
were recorded. R-squared values between (a) linear predic-
tions of eye kinematics based on neuronal firing with (b)
actual eye kinematics were computed and validated using
Leave One Out Cross-Validation (LOOCV) on 20 equally
sized segments of the data.

Additionally, segments of neural data were used to
decode the spatial locations of the endpoints of saccades
during this task. Saccades that began on one of the four tar-
gets and ended on any of the other three targets were

preselected from the data. Each saccade was labeled by the
target at which the saccade ended. Observations were com-
prised of total number of spikes summed for each neural
channel across a window beginning 0.150 s before a saccade
onset and 0.300 s after. Linear discriminant analysis was used
to classify the neural data into one of four possible targets/
categories. LOOCV was used to obtain a measure of the
performance of neural classification of saccade targets,
whereby all observations save one were used as training data.
The class of the ‘left out’ trial was then predicted using the
classifier. This was repeated using each available trial as the
excluded trial. Performance was computed as the percentage
of ‘left out’ trials that were correctly classified. A permutation
test, whereby target labels were randomly shuffled and
LOOCV repeated, was used to generate a null distribution of
performance in order to assess whether classification of the
actual data exceeded chance levels (n= 103 permutations).

Results

Saccade task

Ideally, the neurons recorded would not at all be sensitive to
eye movements. However, area 5d neurons show some eye
position tuning (Bremner and Andersen 2012). To quantify
the degree of eye position tuning in the population recorded
for the current study, we recorded neural activity while the
NHP performed a task involving saccades only. Cross-vali-
dated R-squared values between neural activity and eye
movements were computed. Though highly significant for x
and y position (px= 1.5e

−4 and py = 6.4e
−3), R-squared values

of 0.05 and 0.02, respectively, were obtained, indicating a
measurable but small relationship with eye position. P values
were not significant (≫0.05) for eye velocity.

When trying to decode the goal of individual saccades
from amongst the four possible targets in the saccade task
based only on neural data, 41.54% correctness was achieved
for n = 674 saccades. Though modest, this performance
significantly exceeded chance level of 25% (p < 10−5, per-
mutation test). Thus, the neural activity correlated with
saccades could not account for the 98% success rate
achieved with the neural cursor during the Face in the
Crowd task.

Behavioral task—Manual Control

During the Manual Control block of each day, the monkey
was able to successfully complete >99% of the trials cor-
rectly, i.e. selecting the correct face before time ran out. This
performance indicated that the animal had no difficulty in
reliably finding the matching Face in the Crowd. Basic task
performance statistics under Manual Control for all days
(Crowd On n= 567 trials, Crowd Off n = 560 trials) revealed
the desired effect (figure 2). As expected, the presence of the
Crowd significantly increased TTA (Crowd On Median =
0.82, IQR= 0.32, Crowd Off Median = 0.48, IQR= 0.11,
p< 10e−16) and TTR (Crowd On Median = 1.23, IQR= 0.34,
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Crowd Off Median = 0.89, IQR= 0.12, p <10e−16), but not
TTH (Crowd On Median = 0.40, IQR= 1.4e−14, Crowd Off
Median = 0.40, IQR= 2.8e−14, p = 0.08). This is because the
Crowd causes a visual search which delays acquisition time,
but not the time required to hold the target once it has been
initially contacted. The delay in acquisition time of course
results in slower overall task performance as measured
by TTR.

To verify that TTA was increased because the crowd
required the animal to search and identify the target face, we
examined eye behavior prior to movement onset and
between movement onset and target acquisition for each
day. Eye positions for each trial were rotated to place Target
2 at the 3 o’clock position. Two-dimensional histograms of
eye position for each task condition clearly reveal the
monkey’s tendency to visually search though the faces in
the Crowd On task condition before initiating his hand
movement (figure 3). Histograms for the period between
movement onset and Target 2 acquisition looked similar,
indicating that the monkey continued scanning the faces
even during and after movement to select the correct target
(figure 4, left panel).

Behavioral task—Brain Control

During the Brain Control sessions, the monkey was able to
successfully complete > 98% of the trials correctly, i.e.
selecting the correct face before time ran out (video 1). The
fraction of trails that were completed successfully did not
significantly differ between Manual and Brain Control
blocks (p = 0.75).

Each decoder was trained during a Training Block either
with the Crowd On or Crowd Off and then assessed for
performance with the Crowd On or Off. This comprised a
2 × 2 factorial design with the ‘main effects’ being training
condition and assessment condition.

The task condition in which the decoders were trained,
the training condition, did not significantly influence the TTA
achieved (Crowd On Median = 1.65, IQR= 1.00, n= 1508
trials, Crowd Off Median = 1.69, IQR= 1.05, p= 0.22,
n= 1871 trials, figure 5, left panel). We also examined whe-
ther or not the task condition used during Training of a
decoder had any systematic effect on the β weights for any
channel or dimension (x or y velocity). After using the Bon-
feronni method to correct for multiple comparisons, there
were no significant differences in the decoder weights among
all channel/dimension combinations as a function of task
condition. Thus, the task condition used during training did
not seem to affect subsequent performance or the decoders
themselves.

But, as in Manual Control and as expected, the presence
of the crowd during assessment blocks slowed task perfor-
mance (Crowd On Median = 1.75, IQR= 1.05, n= 1656 trials;
Crowd Off Median = 1.55, IQR= 1.00, n= 1723 trials;
p< 10e−16, figure 5, left panel). While this effect on perfor-
mance was almost certainly due in part to the visual search
required when the crowd was present, it was also possible that
the presence of the crowd impaired Brain Control of the
cursor by interfering with the neural signals used to determine
cursor position. To test this possibility, we devised a second
measure, ΔTTA, to directly assess the quality of Brain Con-
trol under the various training and assessment conditions.

The ΔTTA was computed for all trials to quantify how
Brain Control affected the acquisition of Target 2 relative to
Manual Control in isolation from other factors. We then used
the same statistical comparisons that were computed for the
unadjusted TTA values to determine whether or not the
Crowd’s presence during training or assessment influenced
the ΔTTA. While the comparison revealed a significant effect
of training condition (Crowd On Median = 0.99, IQR= 1.00,
n= 1508 trials; Crowd Off Median = 1.04, IQR= 1.03,
n= 1871 trials; p= 0.03, figure 5, right panel), and the trend
favored the Crowd On condition, the small difference in the
medians suggested only a negligible advantage. We found a
significant influence of assessment condition on ΔTTA
(Crowd On Median = 0.95, IQR= 1.04, n= 1656 trials; Crowd
Off Median = 1.08, IQR= 0.97, n= 1723 trials; p = 1.3e−6,
figure 5, right panel), indicating that decoding with the Crowd
On yielded slightly better Brain Control quality. Again,
however, the magnitude of this difference was only 45 ms, so
we considered this difference small enough to be negligible.

Figure 2. Manual Control performance: boxplots of performance
measures during Manual Control in Crowd On (n = 567 trials) and
Crowd Off (n = 560 trials) task conditions. Wide, middle band
represents the middle two quartiles. Thinner bands on top and
bottom represent the top and bottom quartiles, respectively. Circles
with dots indicate medians. Outliers are small circles jittered in the
horizontal axis for visibility. Filled (Crowd On) or empty (Crowd
Off) bands and circles indicate the Crowd On or Crowd Off task
condition. Values exceeding ( + × −Q Q Q3 1.5 ( 3 1)) are consid-
ered outliers, where Q1 and Q3 are the 25th and 75th percentiles,
respectively. The Crowd On condition resulted in an increase in
acquisition and reward time relative to the Crowd Off condition.
Time to Hold was not significantly affected, as the vast majority of
the hold times in both conditions were the minimum possible value
of 400 ms.
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Taken together, these results indicated that the additional
eye movements and various behavioral demands of the
Crowd On task condition did not interfere directly with
decoding of a neurally controlled cursor. The more complex
task condition might have conferred a small albeit negligible
advantage to performance of neural decoding.

These results suggest the NHP was able to simulta-
neously gaze freely around the screen while independently
controlling cursor position. However, an alternative hypoth-
esis that saccades did negatively impact cursor control would
also account for this result if the NHP simply learned to

minimize extraneous saccades when the Crowd was present,
To rule out this possibility, we once again examined 2D
histograms of eye position during a phase in the trials when
the cursor was actively being transported to the target
(figure 4, right panel). These histograms include eye positions
across a one second window ending on acquisition of Target
2. This window was chosen to capture the time when the
cursor is still in motion in both Manual (left panel) as well as
Brain Control (right panel). For Brain Control, the trials with
straightest cursor trajectories were preselected for this ana-
lysis by choosing the fastest 15% of trials. For this

Figure 3. Effect of the crowd on gaze during Manual Control: heat maps of eye position during Manual Control averaged across n= 80 trials
in each panel. Data was taken between onset of Target 2 and movement onset of the hand. Data for each trial was rotated such that the
location of Target 2 falls on the 3 o’clock position. (During task performance, Target 2 appeared in any one of the eight possible positions).
The data demonstrated the NHP’s tendency to gaze around the screen before moving the cursor when the Crowd was On. When the Crowd
was Off, the NHP was able to initiate his hand movement to the target even before making a saccade to it. This explains why the left panel
does not capture the position of the target at the 3 o’clock position.

Figure 4. Gaze with Crowd On during Manual versus Brain Control. Heat maps of eye position as in figure 3 averaged across n= 160 trials
and n = 100 in left and right panels, respectively. Data was again rotated for each trial to place the correct target at the 3 o’clock position.
Here, data was taken during a 1 s window ending on target acquisition, guaranteeing that the cursor was in motion. We compared this epoch
between Manual and Brain Control to confirm that the NHP was able to freely gaze at the targets even while maintaining straight cursor
motion. For Brain Control, the trials with the straightest cursor trajectories were preselected by only analyzing the fastest 15% of trials.
Average cursor trajectory during the same period for each control type is superimposed on the images in cyan. Video 2 also demonstrates
dissociation of neural cursor movement from eye movements.
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representative set, it is clear that, on average, even during
active cursor movement in both Manual and Brain Control,
the animal made many saccades to the faces around the
screen. Additionally, ample saccades during cursor movement
are evident in videos of task performance under Brain Control
wherein playback speed was slowed and the animal’s gaze
position was added post-hoc (video 2).

Though the NHP was able to gaze around the screen with
the Crowd On during Brain Control as well as in Manual
Control, it should be noted that the overall number of sac-
cades was reduced in Brain Control. We compared the
number of saccades landing on a peripheral target (and not the
correct target or the cursor) in a one second window ending
on initial acquisition of Target 2 for each trial. We then

compared the occurrence of these saccades in Manual
(mean = 2.04 saccades, s.d. = 1.54) versus Brain Control
(mean = 0.82 saccades, s.d. = 1.18) trials, revealing that there
were significantly more in Manual Control (p< 10−16). One
possible explanation for this outcome is the increased diffi-
culty and imperfect accuracy of Brain Control, i.e. on trails
where cursor control is worse, the subject would need to gaze
at the cursor longer to maintain closed-loop control. An
alternative explanation is extraneous saccades reduced decode
accuracy, and the subject learned to make fewer saccades to
maintain cursor control. To distinguise these possibilities, we
computed the correlation between numbers of saccades to
peripheral targets (as above) in each trail to the TTA across all
n = 1718 trails. A correlation of r = −0.12 (p < 10e−7, T test)

Figure 5. Performance measures across training and assessment conditions (Brain Control): boxplots as in figure 2 of performance measures.
Outliers have been excluded for clarity. Assessment condition, indicated by the label on the abscissa, denotes the task used during full Brain
Control with no assistance. Training condition, indicated by filled (Crowd On) or empty (Crowd Off) bands, denotes task used during training
of decoders. For Time to Acquire (left panel), only assessment condition reached significance (p< 10−16). For ΔTime to Acquire, both the
training condition (p = 0.03) and assessment condition (p = 1.3e−6) were significantly better in the Crowd On conditions, though only by small
margins. No pairwise comparisons, indicated by lines joining adjacent medians, reached statistical significance. All group statistics are listed
in table 1.

Figure 6.Hand and cursor position during decoding. Heat maps of hand and cursor positions during Manual and Brain Control. Hotter colors
indicate greater fraction of time spent in that location. Left panel: hand and cursor (which are causally linked and thus represented with one
image) during Manual Control averaged across n = 161 trials. Hand position (middle panel) and cursor position (right panel) averaged across
the same set of n = 465 Brain Control trials. For the Brain Control session shown, the signal measured by the hand sensor was very close to its
static measurement noise.
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supports the former account and rules out the latter. Trails
with many saccades to locations not occupied by the cursor
were amongst the shortest, while the longest trails involved
prolonged periods of gazing at the cursor, presumably to
accommodate feedback control.

In a separate session, the Brain Control task was run with
long (1 s) ITIs to determine if the animal was able to move the
cursor back to the middle of the screen, the location where
Target 1 appears at the start of each trial, before there is any
overt visual cue to do so. The animal’s performance clearly
demonstrated his ability to move the cursor back to the
middle of the screen before Target 1 appeared in anticipation
of the upcoming trial (video 3). Additionally, in separate
sessions, we confirmed that the decoders trained in this cen-
ter-out style task could generalize to a 3 × 3 grid of the same
face targets spaced evenly on an 18 cm× 18 cm square. While
performance in terms of trial length was inherently slower
than the circular, center-out task (p < 10−16) due to the longer
cursor movements required (TTA: Median = 2.405 s, IQR=
1.433, TTR: Median = 3.226 s IQR= 1.540), control of the
cursor itself was qualitatively no different (video 4).

While the subject’s arms were prevented from making
large movements during Brain Control, he was still able to
make small wrist and finger movements, though these
movements as measured by the tracking sensor did not
directly influence cursor position. On most days both hands
were observably and measurably still (figure 6), however on
other days small, residual movements were made during
performance of the task under Brain Control. We used the
measured hand kinematics (in the horizontal plane that would
typically be used to control the cursor in Manual Control) to
predict the kinematics of the neural cursor. Cross-validated R-
squared values never exceeded 0.03 for either dimension for
any day, indicating little influence of residual hand move-
ments on the decoded cursor.

Discussion

Despite the known sensitivity of motor control areas to
numerous cognitive and motor variables (Colby and Gold-
berg 1999, Buneo and Andersen 2006, Pesaran et al 2010,
Louie et al 2011, Rao and Donoghue 2014), we showed
robust use of a neurally controlled cursor driven by signals

from the parietal cortex in a context cognitively and visually
richer than those created to date for use by primates. The task
created a primate model of human use of GUI interfaces, e.g.
tablet computers or smartphones. The performance measures
indicated that training and decoding with the Crowd On did
not impair neural cursor control, but may have actually con-
ferred a small (albeit negligible) advantage. These small dif-
ferences may simply have arisen as a result of motivational
factors, i.e. more ‘interesting’ stimuli being present on the
screen with the Crowd On.

By targeting area 5d for implant, we were able to obtain
neural signals that reflected intended movements of the limb.
Though residual eye-related signals were measurable in a
control task, it was clear that they did not interfere with the
functioning of the interface, whether during use of an existing
decoder or during training. To our knowledge, this study is
the first confirmation that unconstrained gaze does not inter-
fere with prosthetic control, even in a visually complex task
environment. Furthermore, we demonstrated the ability of the
subject to decouple gaze position, i.e. sensing, from control of
the cursor, i.e. the motor intention. This is a crucial capability
for providing natural, intuitive control.

This capability was further emphasized given the ability
of the subject to manipulate the cursor even in the absence of
overt visual targets during the trials with extended ITIs. This
result suggests that neural activity in parietal cortex can
capture motor intentions without the need for overt visual
representations of movement goals.

We hope in upcoming clinical work that human subjects
will be able to control parietal neuroprosthetics by naturally
manipulating their internal representation of the limb. Or with
training, perhaps patients will mentally manipulate the cursor
or end effector directly without remapping imagined actions
or using other indirect strategies. This capability could rea-
sonably be expected to occur given the observed mechanisms
of tool use and/or extension of the body schema in parietal
neurons by Iriki and colleagues (Iriki et al 2001).

These findings as a whole strengthen the case for the use
of the parietal cortex in human clinical neuroprosthetic
applications. They suggest that a human subject controlling a
neural cursor driven by spiking activity in the parietal cortex
could elicit similar results: robust 2D control that is insensi-
tive to the visual and behavioral nuances of a modern com-
puting interface.

Table 1. Statistics for all combinations of conditions and measures table of data for all combinations of training and assessment conditions for
both main measures. Layout of each group from left to right corresponds to layout in figure 5. Note that both measures (Time to Acquire and
ΔTime to Acquire) were computed using the same trials, thus the correspondence in number of trials between the left and right halves of the
table.

Time to Acquire ΔTime to Acquire

Assess.condition Crowd On Crowd Off Crowd On Crowd Off

Train. condition Crowd Off Crowd On Crowd Off Crowd On Crowd Off Crowd On Crowd Off Crowd On

Median 1.779 1.748 1.597 1.531 0.969 0.940 1.106 1.038
IQR 1.062 1.01 1.000 0.984 1.055 1.012 0.999 0.978
n (trials) 893 763 978 745 893 763 978 745
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