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Research on neural prosthetics has focused largely on

using activity related to hand trajectories recorded from

motor cortical areas. An interesting question revolves

around what other signals might be read out from the

brain and used for neural prosthetic applications. Recent

studies indicate that goals and expected value are among

the high-level cognitive signals that can be used and will

potentially enhance the ability of paralyzed patients to

communicate with the outside world. Other new find-

ings show that local field potentials provide an excellent

source of information about the cognitive state of the

subject and are much easier to record and maintain than

spike activity. Finally, new movable probe technologies

will enable recording electrodes to seek out automatic-

ally the best signals for decoding cognitive variables.

Neural prosthetics research has been a field of intense
activity in recent years. It is by nature highly interdisci-
plinary and includes neuroscience, engineering, neuro-
surgery and neural informatics. Although the ultimate
goal is a practical application, a basic understanding of the
brain’s neural codes and representations is a cornerstone
of this research. Moreover, the brain–machine interfaces
(BMIs) that are at the core of neural prosthetics afford
a new method to study brain mechanisms and will
allow, among other things, the testing of new theories of
brain function.

Current studies that record the spike activity of
neurons have focused primarily on deriving hand trajec-
tory signals primarily, but not exclusively, from motor
cortex [1–5]. Recordings from the cells are ‘decoded’ to
control the trajectories of a robotic limb or a cursor on a
computer screen. In addition, progress has been made in
using EEG-based signals to derive neuroprosthetic com-
mands [6]. This article examines what other signals, in
particular high-level cognitive signals, can be recorded
from single cells or local field potentials (LFPs) and used
for controlling neural prosthetics.

Cognitive-based paradigms in monkey

Cognitive control signals can be derived frommany higher
cortical areas related to sensory–motor integration in the
parietal and frontal lobes. The primary distinction is not
the location from which recordings are made. Rather it is
the type of information that is being decoded, and the
strategy for using these signals to assist patients. Here we
focus on the posterior parietal reach region (PRR) and the
dorsal premotor cortex (PMd), but similar approaches can
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be used for interpreting cognitive signals from other brain
areas. It is likely that some areas will be better than others
depending on the cognitive signals to be decoded and the
parts of the brain that are damaged.

PRR in non-human primates lies within a broader area
of cortex, the posterior parietal cortex (PPC) [7,8]. The
PPC is located functionally at a transition between
sensory and motor areas and is involved in transforming
sensory inputs into plans for action, so-called sensory–
motor integration. The PPC contains many anatomically
and functionally defined subdivisions. Of particular
interest in recent years are areas within the intraparietal
sulcus that are involved in planning eye movements
(the lateral intraparietal area, LIP) [9], reach movements
(PRR) [10], and grasping (the anterior intraparietal
area, AIP) [11].

PRR has many features of a movement area, being
active primarily when a subject is preparing and execut-
ing a movement [10,12]. However, the region receives
direct visual projections and vision is perhaps its primary
sensory input. Moreover, this area codes the targets for a
reach in visual coordinates relative to the current
direction of gaze (also called retinal or eye-centered
coordinates) [12]. Similar visual coding of reaches has
been reported in a region of the superior colliculus [13].
This coding in visual coordinates underscores the cogni-
tive nature of the planning signal within PRR. It is coding
the desired goal of a movement, rather than the intrinsic
limb variables required to reach to the target. Moreover,
PRR can hold the plan for a movement in short-term
memory through persistent activity of its neurons. This
intention-related activity provides a useful neural corre-
late of the intentions of the subject for subsequent
decoding. The human homologue of PRR has recently
been identified in fMRI experiments [14]. Less is currently
known about the coordinates for coding in PMd. However,
studies indicate that at least of subset of cells have
properties similar to those found in PRR [15–17].
Decoding intended reaches

Experiments have recently been performed in monkeys in
which reach intentions are decoded from neural activity in
real time, and used to position a cursor on a computer
screen – the so-called brain-control task [18] (Figure 1a).
Arrays of electrodes were placed in the medial intra-
parietal area (MIP), a portion of PRR, area 5 (also in the
posterior parietal cortex), and the PMd. Reach goals were
decoded from activity present when the monkeys were
planning the reach movements, but otherwise were sit-
ting motionless in the dark and were not making eye
Opinion TRENDS in Cognitive Sciences Vol.8 No.11 November 2004
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Figure 1. (a) The task for reach and ‘brain-control’ trials in the experiments of Musallam et al. [18]. 500 ms after the monkeys touched a central green cue and looked

at a central fixation point (red), a peripheral cue (green) was flashed for 300 ms. For reach trials, the monkeys were rewarded if they reached to the target at the end of a

1500G300 ms memory period. During brain-control trials, data from 200 to 1100 ms of the memory period was used to decode the intended reach location. Monkeys were

rewarded if the correct target was decoded. (b) Comparison of neural activity recorded in the posterior parietal reach region (PRR) during reach (red) and brain-control (black)

trials. Each row of the upper rasters is a single trial aligned to the beginning of the memory period. Thickness of the post stimulus–time histogram (graph) represents the

standard error calculated with the bootstrap method. M Z start of memory period. (c) Cumulative performance of a brain-control session using 16 neurons recorded from the

dorsal premotor cortex of one monkey. The overall percent correct in this session was 67.5%. (d) An off-line analysis using the same data, showing the effect of the number of

cells on decode performance. However, the number of neurons that can achieve a high success rate still remained relatively low. (e) Offline decode results performed with an

adaptive (red) and frozen (black) database for all the PRR recording sessions in consecutive order, for the same monkey whose data is shown in (c). There is no statistical

difference between the two populations. Modified from [18].
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movements (Figure 1a–c). Thus the cognitive signals in
the brain-control task were free of any sensory or motor
related activity. Generally only a small number of cells
were required for successful performance of the task,
with performance increasing with the number of
neurons (Figure 1d).

Plasticity. Consistent with several studies of cortical
plasticity [19], animals showed considerable learning in
the brain-control task. The ability of the animals to
position the cursor on the computer screen with their
intentions improved considerably over a period of one to
two months [18] (Figure 1e). This time course for learning
is similar to that seen in motor cortex for trajectory
decoding [2,4].

A closer analysis showed that the improvement in
decoding was due to an increase in the amount of
information carried by the neurons in the brain-control
task [18]. A mutual information measure was calculated
www.sciencedirect.com
which quantifies the degree of spatial tuning of the
neurons. This measure increased along with the increase
in performance of the animals. Plastic changes are very
useful for neural prosthetics, and will enable patients to
optimize performance with training.

Adaptive and frozen databases. Each recording day
began with the monkeys performing a series of reaches to
touch different locations on a computer screen (Figure 1a).
This segment of trials produced a database. Next the
monkeys were instructed with a briefly flashed cue to plan
to reach to different locations but without making a reach
movement (Figure 1a). We then compared the activity
with that in the database and, using a Bayesian decode
algorithm, predicted where the monkeys were thinking
about reaching. If the predicted reach direction corre-
sponded to the cued location, then the animals received a
drop of fluid reward and visual feedback was provided by
re-illuminating the cued location. This approach was

http://www.sciencedirect.com


Opinion TRENDS in Cognitive Sciences Vol.8 No.11 November 2004488
necessary because we couldn’t just say to the monkeys
‘think about reaching to the target’.

However, this approach does open the question of
whether reaches are necessary to build the database.
This would of course be impossible for paralyzed patients.
This point was directly addressed in off-line analysis
by comparing the performance between ‘adaptive’ and
‘frozen’ databases. With the adaptive database, each time
a successful brain-control trial was performed it was
added to the database, and because the database was kept
at the same number of trials for each direction, the earliest
of the trials is dropped. Eventually only brain-control
trials are contained within the database. In the case of the
frozen database, the reach data was used throughout the
brain-control segment. Both decodes were performed with
the same data. As can be seen in Figure 1(e), both data-
bases produce the same performance. Thus paralyzed
patients can be simply asked to plan to make a reach and
this planning activity can be used to build a database even
though the patients cannot actually reach.

How much time is required to decode a goal? In the
brain-control experiments thedecodewasbasedona900 ms
period inwhich the animalwas planning to reach.However,
off-line analysis showed that the task could have been
performed with time segments as short as 100 ms [18].

Expected value

Signals related to reward prediction are found in several
brain areas [20]. In an eye movement region, area LIP of
the posterior parietal cortex, Platt and Glimcher [21]
found that cells code the expected value of rewards. Using
a saccade task they showed that the neurons increased
their activity when the animal expected a larger reward or
the instructed saccade was more likely to be in the cells’
receptive fields. Recently similar effects have been found
for PRR neurons for amount of reward in the reaching
task and the brain-control task [18]. PRR cells are also
more active and better tuned when the animal expects
higher probability of reward at the end of a successful trial
(Figure 2c,d). Rather remarkably, PRR cell activity also
shows a reward preference, being more active before the
expected delivery of a preferred citrus juice reward than a
neutral water reward (Figure 2a,b). The expected value in
brain-control experiments could be read out simultane-
ously with the goal using offline analysis of the brain-
control trials [18]. These experiments show that multiple
cognitive variables can be decoded at the same time.

Local field potentials

It has recently been found that the local field potentials
recorded in the posterior parietal cortex of monkeys
contains a good deal of information regarding the animals’
intentions. In area LIP, the eyemovement area adjacent to
PRR, the magnitude of the gamma band (w25–90 Hz)
oscillations in LIP was found to be a good predictor of the
direction in which monkeys planned to make saccades
[22]. Interestingly, another useful oscillation in the local
field potential in area LIP was present in the beta band,
centered at around 20 Hz. This oscillation was not direc-
tion tuned, but rather indicated the behavioral state of the
animal. When the animal was planning a saccade it slowly
www.sciencedirect.com
increased, whereas at the time of the eye movement it
dramatically decreased in amplitude [22].

A direct comparison of the ability to decode intentions
was made using the spikes and LFPs obtained from LIP
[22]. A linear discriminant analysis was used to predict,
from single trials, the direction of a planned movement.
The performance for predicting direction was similar for
spikes and LFPs. The decoding of the behavioral state was
also examined; that is, whether the monkey was planning
or executing a movement. The LFPs were better than
spikes for the state decode [22]. The better performance
of the LFP state decodes may reflect the activity due to
circuits within LIP or inputs to LIP from external sources.
Further work will be required to distinguish between the
two. In motor cortex, LFPs evoked by limb movements
can be decoded to predict the movement directions, with
similar performance to spike decodes [23]. Electrocortico-
graphic LFP recordings from human cortex have been
used to control a one-dimensional cursor [24].

From a practical point of view, these LFPs are extremely
useful forneural prosthetics applications.Amajor challenge
for cortical prosthetics is to acquire meaningful data
from a large number of channels over a long period of time.
This is particularly challenging if single spikes are used
because typically only a fraction of probes in an implanted
electrode array will show the presence of spikes, and these
spikes are difficult to hold over very long periods of time.
However, as LFPs come from a less spatially restricted
listening sphere, they are easier to record and are more
stable over time. Thus it would be of great advantage to
be able to use the LFPs for decoding when and where
patients intend to make movements.

We now turn to some of the engineering issues that
are relevant to the development of future cognitive neural
prostheses.

Moveable electrodes for autonomous neuron isolation

and tracking

Chronic recording experiments use electrodes that are
introduced only once, and typically a large number of
electrodes are implanted. These electrodes remain in place
and are not moved and, as a result, the recordings are not
optimal. Ideally, it would be advantageous to be able to
adjust the electrodes and there are some systems which
allow movement of chronically implanted electrodes with
manual adjustment [25–29]. However, with permanent
implants of large numbers of electrodes, such manual
adjustment would be tedious and impractical for patients.
This is especially true considering that the brain tissue
moves with respect to the electrodes over time and would
require constant adjustment of the positions of the
electrodes. Automated movable probes would overcome
many of these limitations.

Movable electrodes would be extremely well suited for
cognitive-based prosthetics. Within different cortical
areas there are various types of cells that code different
parameters. For instance, in the frontal eye field one finds
visual, visual-motor and motor cells [30–32]. A similar
distinction can be made in area LIP, along with subsets of
cells that carry information about eye and head position
[33–35]. In both areas the cells for all of these attributes
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Figure 2. (a) Response of a neuron during brain-control trials in which reward type was varied: orange juice (black) versus water (red). Volume of juice and water was the

same (0.12 ml). Rasters are aligned to the onset of the memory period. The direction of the intended reach (up, right, etc.) that elicited the responses is shown. Blue vertical

lines superimposed on the graphs enclose the 900-ms memory segment used to calculate the tuning curves and the duration of the neural activity used to decode

reach intention during brain-control trials. (b) Tuning curve of the neuron, which shows that it is more active before the expected delivery of a (preferred) orange juice reward

than a neutral water reward. (c,d) Tuning curve calculated from the firing rates of two additional cells when the probability (c) and magnitude (d) of the reward was varied.

Modified from [18]
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have spatially selective response fields. To decode several
variables, it would be ideal to choose the different cell
types and, for each response type, further choose receptive
fields that can tile the entire space. As an example, pre-
vious experiments that decoded intended reach directions
in PRR concentrated on the cells that coded the planned
movement in the absence of vision and actual movement
[18]. This was a subset of the cells recorded with the fixed
geometry electrode arrays, with other cells being respon-
sive to vision or to movement execution. To search out cells
coding the high-level movement plan would improve the
decode performance substantially.

Cell selection would not be the only advantage of an
autonomously controlled electrode technology. Autonom-
ously moving probes could also improve the signal quality,
stability and longevity of chronic recordings. The reported
values of these neuronal signal metrics vary widely
across different animals, cortical areas, and array designs.
Although some arrays have provided useful signal for
periods of up to a few years [36–38], the quality of single
cell activation in most channels of fixed-geometry
implanted electrode arrays noticeably degrades after a
few weeks or months [39]. Factors contributing to this
www.sciencedirect.com
deleterious loss of signal include reactive gliosis [40,41]
resulting from electrode movement in the tissue or bio-
incompatibility of the electrode’s surface material [42,43].
Another difficulty arises from the arrays’ fixed electrode
geometries, which cannot be adjusted once they are
implanted. Consequently, the array’s useful signal yield
might be low, as the electrodes’ active recording sites could
lie in electrically inactive tissue, or be distant from cell
bodies (which generally produce the largest extracellular
signals). Even if the initial placement is satisfactory, fixed-
geometry electrode arrays can drift in the brain matrix
(owing to tissue movement caused by respiratory or
circulatory pressure variations [44] and mechanical
shocks due to body movements [45]). This drift can lead
to the separation of the electrode from the vicinity of active
cells, thereby lowering signal yield of the electrode array.
(SeeBox1 for recentadvances inmovable probe technology.)
Synthesis

In this article, we have outlined a new strategy for neural
prosthetics that is based on the recording and decoding
of signals related to the cognitive intentions of the subject.
These cognitive control signals are derived from the
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Box 1. Recent advances in movable probe technology

Clearly, the possibility to reposition electrodes automatically after

implantation would significantly improve the quality and yield of

neural recordings for prosthetics application, and allow specific cell

types to be chosen. Recent engineering research has been directed

to developing a new class of computer controlled multi-electrode

systems that continually and autonomously adjust electrode positions

under closed-loop feedback control so as to optimize and maintain the

quality of the recorded extracellular signal [46,47].

The eventual goal is to use micro-electro-mechanical systems

(MEMS) technology to produce a movable electrode array implant.

One promising method is to use electrolysis techniques to move and

lock the probes in place [49–52]. This movement is accomplished by

passing electrical current within small bellows-chambers filled with

fluid. The gas released by electrolysis increases pressure within the

bellows and moves the electrode. The electrodes can be moved in the

opposite direction by reversing the current flow and the use of a

catalyst. Advantages of this electrolysis technique include relatively

low driving voltage, low heat dissipation, the ability to lock electrodes

in place without the need for continuous power dissipation, the ability

to generate very high forces, and the ability to provide hundreds of

microns of electrode displacement.

Another advance would be adding microfluidic delivery to the

implant. These microfluidic systems would also work via electrolysis,

and could potentially deliver anti-inflammatory agents to manage

the effects of the electrodes’ presence, or to deliver therapeutic and

neurotrophic factors. The MEMS movable probes and microfluidic

channels can be constructed as linear probe arrays (see Figure I).

These arrays would comprise the electrodes/needles, micro-electro-

lysis systems, and control electronics. The individual chips with linear

arrays would be stacked within a chamber, allowing the most

flexibility in the overall geometry of the implanted array of electrodes

and microfluidic channels. The depth of the individual chips can be

adjusted coarsely using a motorized chip adjuster following surgery.

After coarse adjustment, electrolysis actuators would provide the fine-

tuning of the electrodes positions automatically and continuously. The

integration of pre-processing electronics (e.g. pre-amplifiers, filters,

and multiplexers) into a multi-electrode array front-end would improve

recording performance by improving signal-to-noise ratio and buffering

the signal of high impedance electrodes. Such a preprocessing chip has

recently been developed [53].
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designed as linear arrays on flat chips. These chips can be stacked in the chamber to allow versatility in the number and spacing of electrodes and injectors. The initial
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visual-motor system, taking advantage of the fact that
humans have a dominant visual sense. However, this
approach of using high-level cognitive signals can be
extended to a variety of neuronal networks.

Some advances have already been made towards the
goal of developing a cognition-based neural prosthetic. On
the neurophysiological front, it has been shown that the
www.sciencedirect.com
intention to reach to a goal can be read out from PRR and
PMd in monkeys and used to control the position of a
cursor on a computer screen without the animals moving
their limbs [18]. Furthermore, the cognitive variable of
expected value has also been decoded from PRR in brain-
control tasks [18]. LFPs can be used, along with spikes, as
sources of neural signals for decoding cognitive variables.

http://www.sciencedirect.com


Box 2. Neuroprosthetic control systems based on intelligent

devices and supervisory control

Intelligent devices and hierarchical, supervisory control algorithms

are required for cognitive-based prosthetic systems [54]. Any system

that translates thoughts into action will require a computer interface,

and often some electromechanical devices. Such systems must match

the information that is decoded from the brain to the informational

requirements of the computer interface and the commanded devices.

On the brain side, the cognitive approach focuses on decoding high-

level information at the abstract or symbolic level. The informational

requirements on the electromechanical device side can vary widely

with the type of device and intended task. For graphical computer

interfaces, the problem of control system design reduces to matching

the cognitive states of the brain to the symbolic states of the task.

For instance, iconic menus on computer monitors can be used for

communication with a wide range of devices from household

utilities to computers for exploring the Internet.

Physical electromechanical devices require more detailed instruc-

tions. Supervisory control systems can convert symbolic level

commands into detailed motor device commands, which are then

carried out and monitored by the supervisory controller. There is

much to be gained by pursuing this approach, as it has additional

advantages for both the neuroprosthetic user and the system

engineer. To interface the brain to different electromechanical

devices, often only the lowest level of the control hierarchy need

be re-engineered for the specific mechanical device. Similarly, the

hierarchical nature of supervisory control should allow patients to

learn much more quickly how to command a new device.

Because a patient’s workspace will be limited, knowledge of that

workspace, combined with the decoded desires of the subject, may

be sufficient to successfully complete tasks using intelligent devices.

For example, given the Cartesian coordinates of an intended object

for grasping, a robotic motion planner [55] can determine the

detailed joint trajectories that will transport a prosthetic hand to the

desired location. Sensors embedded in the mechanical arm ensure

that it follows the commanded trajectories, thereby replacing the

function of proprioceptive feedback that is often lost in paralysis.

Other sensors can allow the artificial arm and gripper to avoid

obstacles and control the interaction forces with its surroundings,

including grasping forces, thereby replacing somatosensory feed-

back. Only the intent to grasp or ungrasp an object is needed to

supervise these actions. Hence, low-level physical details and

interactions need not be specifically commanded from decoded

brain signals. However, if available, motor signals can augment low

level plans and controls.

Box 3. Questions for future research

† As PRR codes targets in eye coordinates, can the goals of move-

ments be determined accurately across eye movements? Prelimi-

nary data suggest that they can [18]. Possible contributing factors for

successful decodes despite eye movements include the fact that

activity in PRR shifts with the eye movement to maintain the correct

spatial coding of location [12], the pattern of eye and hand move-

ments is highly stereotyped [56], and PRR activity also carries

information about eye position [57].

† Does the fact that the main sensory input to PRR is vision make it

versatile for learning brain-control tasks in paralyzed patients? Many

forms of paralysis interrupt somatosensory inputs which are a major

source of sensory feedback to motor cortex. On the other hand vision

usually remains intact and can provide direct feedback signals regard-

ing the performance of brain-control tasks.

† Does the fact that PRR is relatively anatomically removed from the

motor and somatosensory pathways that are often damaged in para-

lysis render it more intact for the control of prosthetics in paralyzed

patients?

† Will PRR signals be able to make rapid on-line adjustments of

the operation of external devices controlled by the neural prosthetic?

A patient with bilateral parietal lesions could not perform such

on-line corrections [58], nor could healthy individuals during periods

when PPC activity is disrupted by transcranial magnetic stimulation

[59]. These results suggest that the PPC is essential for visually-

guided, on-line corrections of movement trajectories.
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Moreover, LFPs provide a better signal for specifying
cognitive state changes than do spikes [22]. Another
advantage of LFPs is that they are easier to record and
more robust over time than spikes. Engineering advances
include the development of algorithms for the automatic
advancement of electrodes [46,47]. These algorithms will
allow the cognitive-based prosthetic to select specific cell
types to enable the best tiling of cognitive spaces and the
ability to simultaneously read out substantial numbers of
cognitive variables. These algorithms will also facilitate
the increased yield, quality, and stability of signals for
long term chronic recordings.

The read-out of intended goals is an important com-
ponent of a cognitive-based prosthetic. Once the goals are
determined, supervisory control systems and smart
external devices will transform the high-level intentions
to the low level computations required to obtain the goals
(see Box 2). The decoding of expected value is also
important, particularly for ‘locked-in’ patients who cannot
move or speak. These signals can operate much like ‘body
www.sciencedirect.com
language’ by providing, on-line and in parallel with read-
outs of other cognitive variables, the preferences, mood
and motivational level of the patient.

This research suggests that a wide variety of cognitive
variables can be decoded from patients. For instance,
implants in speech areas might provide a direct readout of
speech. This direct approach would be preferred to using
more cumbersome letter-boards and time-consuming
spelling programs. Implants in emotional centers could
provide on-line readouts of the patients emotional states.
Thus, future applications are likely to involve recordings
from many areas to read out a substantial number of
cognitive variables. In the future, cognitive-based and
motor-based approaches will probably be combined in
single prosthetic systems to capitalize on the benefits of
both (see also Box 3).

It could be argued that the motor cortex should be the
only location for reading out the subject’s cognitive vari-
ables because many movement areas of cortex converge
onto this one area. There are at least two reasons to not
depend solely on motor cortex. One is that it produces a
bottleneck that will reduce the number of cognitive vari-
ables that can be read out at any one time. For instance,
one could access a patient’s mood by asking him or her to
move a cursor on a computer screen to a set of questions.
However, this would preclude the motor cortex from
performing other tasks at that time. It would be far better
to read out this signal simultaneously from an area that
directly processes the mood of the subject. The second
reason is that the normal functional architecture of motor
cortex is for generating commands for movement trajec-
tories. It may be possible that motor cortex could be treated
like an undifferentiated neural network and trained to
perform any task. However, when neural networks are
trained to do a large number of different tasks they tend to
do each one poorly compared with being trained to perform
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a small number of tasks [48]. What we are proposing
instead is to use the intrinsic organization of the nervous
system to provide multiple channels of communication
and control. By using activity from several different parts
of the brain and decoding several cognitive variables, a
neural prosthetic can provide a patient with themaximum
access to the outside world.
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