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The response ¢elds of higher cortical neurons are usually approxi-
mated with smooth mathematical functions for the purpose of
population parameterization or theoretical modeling. We used
instead twononparametricmethods (principal component analysis
and independent component analysis), which provided a basis for
the response ¢eld clustering. Although both methods performed
satisfactorily, the principal component analysis space is more
straightforward to calculate. It also gave a clear preference toward

the smallest number of functional response ¢eld classes.Clustering
was performed with both K-means and superparamagnetic clus-
tering algorithmswith similar results.We also show that the shapes
of the eigenvectors remain consistent regardless of the response
¢eld data sets size.This ¢nding re£ects the fact that the response
¢elds were generatedby the same neural network and encode the
same underlying process. NeuroReport 17:963^967 �c 2006
LippincottWilliams &Wilkins.
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Introduction
The present study addresses parameterization of the
response field (RF) shapes for higher cortical neurons [e.g.
posterior parietal cortex (PPC)]. A static description of the
RF is typically defined as a two-dimensional (2D) map of the
average firing rate in Hz with respect to the spatial position
of the stimulus or the action that the neuron encodes.
Experimentally, the RFs of the neurons in the PPC are
frequently mapped out in tasks in which trained rhesus
monkeys perform saccadic or reach movements with respect
to a grid of visual or auditory targets [1–5]. Furthermore, the
intensity of the RF is often modulated by the position of the
‘effector’ (e.g. eye position, head position, hand position,
etc. [6–8]).

The RFs of parietal (and other) neurons are in most
analyses fitted to some mathematical function. For example,
neuronal responses in the lateral intraparietal cortex, a
subdivision of PPC, have been approximated by Cartesian
2D Gaussian functions [9,10]. The RFs of the neighboring
middle temporal area neurons are often modeled by
elliptical functions [11,12], whereas the responses of the
neurons in the motor cortex are most frequently represented
by cosine functions [13]. In many experiments, the RFs are
undersampled by the limited number of targets (sensory or
motor) that are used to map the RFs. Although some of
neurons indeed have very smooth RFs, others have RFs with
more complex structures [13–15].

A motivation for this study was to establish a method that
would give a quantitative measure of the RFs shapes

without first parameterizing them with some mathematical
function. We decided to use techniques already developed
in face recognition studies such as principal component
analysis (PCA) and independent component analysis (ICA).
Recently, PCA was used to express the variability of the RFs
developed in a neural network [16]. Our analysis also uses a
neural network to provide a population of RFs. The
advantage of using a neural network for this particular
study is that the RFs can be mapped at a much higher
resolution and for more parameters than is typically
obtained in physiological recording experiments.

Methods
Neural network
Although the goal of this paper is to concentrate on the RF
shape analysis, a brief overview of the network architecture
and its training is presented. The network was trained to
perform the well-studied coordinate transformation in
which information on the position of an auditory target,
initially represented in the head-centered reference frame, is
converted into an eye-centered reference frame [3,17,18]. A
three-layer perceptron network [7,19] was constructed from
an input, an output and a hidden layer. The input layer
contained 2D map of Gaussian units encoding sound in
the head, as well as 2D map of sigmoidal units encoding
eye position in the head. The output layer had 2D map
of Gaussian units encoding the sound in the eye. Forty
units exist performing coordinate transformations in the
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hidden layer using noise-modulated nonlinear transfer
functions [20].

The network training was performed using the back-
propagation algorithm. The performance was tested with an
input of 8� 8 uniformly distributed (from �351 to + 351)
target sound positions (head-centered reference frame) and
a single eye position. The same set of test data was used to
map RFs that developed in the hidden units. Twenty-three
out of 40 units had their activation values greater than 25%
of the maximum activation value observed among the
hidden units. These were the units that we deemed
‘significantly active’ and suitable for the shape analysis. In
order to increase the statistics of the active units, we ran the
network five more times with different initialization para-
meters. The RFs of the hidden units were mapped in the
same way, and only the ones with 425% activation were
used. In summary, the network training was executed six
times, which resulted in 119 out of 240 units being kept for
further analysis.

Response field shapes analysis
The RFs encode different parts of the stimulus space from
unit to unit, and they have different shapes. The 119 RFs
were normalized with respect to their maximum firing rate.
The RFs from the model were combined into a measurement
matrix [R1 R2 y R119], where each of the 119 columns had a
length of 8� 8¼ 64 data points.

The PCA was used in format described in [21]. Mathe-
matically, the PCA calculates the eigenvectors of the RFs
covariance matrix. The eigenvectors capture the variability
of the shapes in the set in its most condensed form. The PCA
basis space consists of linearly decorrelated eigenvectors.
The ICA is a powerful technique for finding a set of
statistically minimally dependent basis vectors in multi-
variate data. The ICA was implemented via the InfoMax
algorithm [22] in two architectures as described in [23]. The
InfoMax parameters for this analysis were: a block size of 10
and a learning rate 0.001. It trained after several hundred
epochs. The ICA architecture I was performed on the basis
of the first six (and four) PCA basis vectors that encoded
96% (and 93%) of the RFs variance. For the ICA architecture
II, the ICA was applied onto the RF projection coefficients
for the first six (and four) PCA basis vectors. For the ICA
architecture I, the basis vectors are statistically independent,
but the projection coefficients of the RFs onto that basis set
are not. For the ICA architecture II, as ICA is applied onto
the PCA coefficients, it leads to statistically independent
ICA basis projection coefficients.

We had three possible basis spaces for clustering the RFs
into classes. The clustering gave a better understanding of
the types of the RFs and how they tile the stimulus space.
The choice of the basis space was quantified with respect to
cluster separation in the particular space. The standard K-
means clustering algorithm (Matlab) was applied in four-
dimensional and six-dimensional basis spaces for the
various numbers of clusters (Tables 1 and 2). The ‘silhouette’
function in Matlab provided a measure of the clusters
separation. The silhouette values range from + 1 to �1; + 1
denote clear cluster assignment and �1 marks points with
questionable cluster assignment. A successful clustering has
mean silhouette value greater than 0.6 for all clusters. The
metric used in both K-means and silhouette was squared
Euclidean distance (cosine metrics gave similar, or worse,

results). The results of K-means clustering were compared
with the superparamagnetic clustering (spc) [24,25], which
has the number of clusters left as a free parameter.

The last part of the analysis examines whether the size of
the data set affects the shapes of the basis vectors. This is
performed by calculating eigenvectors as the number of RFs
decreases by dropping the number of network runs to five,
four and three (the analysis so far was performed on the
basis of all six network initializations).

Results
Figure 1 shows six basis vectors for PCA (96% variance),
ICA architecture I and ICA architecture II. The number of
units in the data set was on the basis of six network runs
and 119 out of 240 hidden units were used to calculate the
eigenvectors. The cumulative sum of the PCA eigenvalues
increases with each additional PCA eigen-RF-vector: 0.36,
0.69, 0.88, 0.93, 0.95 and 0.96 for the first six vectors. The ICA
InfoMax algorithm then converts these six eigenvectors into
two other basis sets depending on the architecture. When
discussed in the face recognition literature, it is usually
stated that the PCA and ICA II basis vectors encode more
global features of the face, whereas ICA I vectors encode
more localized features (recognition by parts).

Tables 1 and 2 show K-means clustering of the projection
coefficients from 119 RFs in PCA, ICA I and ICA II basis
spaces (four and six dimensions). The K-means is consid-
ered successful if the mean cluster separation (across all
clusters) is greater than 0.6. The tables show that the
clustering in four-dimensional space has better cluster
separation than the clustering in six dimensions. The RFs
are assigned to the same clusters in both four-PCA and six-
PCA dimensional spaces as their projection coefficients vary
very little in fifth and sixth dimensions. These eigenvectors
only add 3% of the information on the variance of the RFs.

Table1 K-means cluster separation expressed via silhouette value

Clusters PCA ICA I ICA II

3 0.45 0.50 0.29
4 0.56 0.54 0.32
5 0.60 0.62 0.37
6 0.57 0.60 0.42
7 0.53 0.57 0.48
8 0.53 0.54 0.53

The clusteringwasperformedin a six-dimensionalbasis space.The distance
metric used in K-means and silhouette is squared Euclidean. Clusters are
well separated for silhouette40.6.
PCA, principal component analysis; ICA, independent component analysis.

Table 2 K-means cluster separation expressed via silhouette value

Clusters PCA ICA I ICA II

3 0.47 0.53 0.41
4 0.58 0.57 0.50
5 0.63 0.66 0.57
6 0.60 0.64 0.61
7 0.59 0.61 0.62
8 0.56 0.60 0.63

The clustering was performed in a four-dimensional basis space. The dis-
tancemetric is the same as inTable1.
PCA, principal component analysis; ICA, independent component analysis.
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The question still remains regarding what is the best basis
set for the clustering? Each basis set resulted in different RF
classification. PCA works best for five clusters. ICA I works
well for five and six clusters. ICA II has preference toward
higher numbers of clusters (7 or 8). Just on the basis of the
silhouette values, there is no clear winner on the choice of
the basis set among the three methods. We give a slight
preference to PCA as the basis space which separates the
data into five well defined classes. This is convenient in
terms of visualizing what each RF category represents.
When PCA and ICA I coefficients are clustered into five
clusters, the classes are: top, bottom, left, right and center
(Fig. 2). For 89% (106/119) of RFs the cluster assignment is
the same in both basis spaces. The result of the K-means
clustering in the PCA space can also be described as 31% of
RFs are central and 69% RFs are peripheral (top + bottom +
left + right).

The classification description becomes harder to describe
as we move toward higher numbers of clusters. When the
PCA coefficients are clustered in six classes, the categories
top, bottom, left and right remain the same, whereas the
central category splits into symmetrical central fields and
irregular central fields. For the ICA I, the sixth category
becomes bottom-left fields.

The K-means results are compared with the clusters
obtained using the spc in four-dimensional PCA eigen-RF-

space. The algorithm placed 112 (out of 119) units in the five
categories. The two clustering methods had 86% of the RFs
assigned to the same class.

Figure 3 shows the average response field (RFAV) and four
leading PCA eigenvectors calculated on the basis of a
different number of network runs. The three rows in Fig. 3
are results for the five, four and three network runs,
respectively. Each RFAV reflects the overall coverage of the
2D stimuli space and it remains the same whether it is
calculated on the basis of 108 units (five network runs), 87
units (four network runs) or 65 units (three network runs).
The stimuli space is always tiled so that the central region of
the space is slightly better represented than the periphery.
The shapes of the eigenvectors as well as their cumulative
sum of eigenvalues also remain consistent.
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Fig. 1 Six leading eigen-response ¢eld-vectors based on n¼119 units data set. First row shows principal component analysis (PCA) eigenvectors with
their CEV (cumulative sum of eigenvalues). Second row represents independent component analysis (ICA) I basis vectors.Third row shows ICA II basis
vectors.

Top Bottom Center Left Right

Fig. 2 The K-means clustering sorted the hidden units according to
their projections onto the ¢rst four eigen-response ¢eld (RF)-shapes.
The general groups of theRFs are: top, bottom, left, right and center with
respect to the head-centered stimuli space.
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Discussion
As stated in the introduction, many experiments have
shown that when the neuronal responses are probed with a
finer resolution of the sensory/motor targets, the RF shapes
can vary substantially from cell to cell. Instead of fitting the
RFs with various mathematical functions, we proposed that
the RFs need to be analyzed in their original format.

The basic idea is to compress a variety of the neuronal RFs
in the data into a small number of eigen-RF-shapes using
several face recognition techniques. In face recognition, the
performance of the PCA, ICA I and ICA II is measured by
how many correct ‘recognitions’ there are when the new face
image is presented. In [23] it was shown that both the choice
of method, as well as the type of distance metrics (squared
Euclidean, cosine, city-block) depends on the nature of the
task (e.g. face identification vs. recognizing facial actions). In
our study, the choice of the optimal basis set was tested by
grouping the RFs into clusters and measuring in which basis
space the clusters have best separation, thus defining the RF
classes. Although it was difficult to pick one basis space over
the other, we favored the PCA space as the most straightfor-
ward to calculate and interpret. It also had clear preference
toward the smallest number of the RF clusters, and each
cluster had an easy functional description (peripheral and
central fields). The spc algorithm has an advantage over the

K-means clustering because no a priori assumption on the
number of clusters is needed.

An important consideration for neural recording studies
is whether the shapes of the basis vectors change as more
and more neurons are included in the study. We show in
Fig. 3 that if the additional RFs are produced by the same
neural mechanism, then their ‘cumulative’ eigenvectors
should continue to look the same. This is said with the
assumption that some minimal data set is already achieved,
which can be observed in a uniform coverage of the
stimulus space in RFAV. A further extension of this analysis
may be a direct comparison between the first few
eigenvectors in a real neurons data set and the eigenvectors
from a theoretical model.

Conclusion
This analysis presents an objective approach for analyzing
the shapes of the RFs in higher cortical areas. The variability
of RF shapes in the data set can be expressed by finding the
basis-RF-set. The categories of the RF shapes may be defined
based on the projection coefficients which are calculated by
multiplying each RF vector by the first few eigenvectors. We
also show that as the RFs shapes reflect the underlying
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Fig. 3 The rows show the average response ¢elds (RFs) and the ¢rst four principal component analysis (PCA) eigenvectors calculated on the basis of
¢ve, four and three network runs. n denotes how many hidden units were selected for the RFAV and the eigenvector calculation (n¼108, 87 and 65,
respectively).CEV is the cumulative sum of eigenvalues.
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process that the network encodes, there exists a unique set
of eigenvectors that describes its RF set.
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