
A Neural Representation of Sequential States Within an Instructed Task

Michael Campos, Boris Breznen, and Richard A. Andersen
Computation and Neural Systems, Division of Biology, California Institute of Technology, Pasadena, California

Submitted 21 December 2009; accepted in final form 22 August 2010

Campos M, Breznen B, Andersen RA. A neural representation of sequen-
tial states within an instructed task. J Neurophysiol 104: 2831–2849, 2010.
First published August 25, 2010; doi:10.1152/jn.01124.2009. In the study of
the neural basis of sensorimotor transformations, it has become clear
that the brain does not always wait to sense external events and
afterward select the appropriate responses. If there are predictable
regularities in the environment, the brain begins to anticipate the
timing of instructional cues and the signals to execute a response,
revealing an internal representation of the sequential behavioral states
of the task being performed. To investigate neural mechanisms that
could represent the sequential states of a task, we recorded neural
activity from two oculomotor structures implicated in behavioral
timing—the supplementary eye fields (SEF) and the lateral intrapari-
etal area (LIP)—while rhesus monkeys performed a memory-guided
saccade task. The neurons of the SEF were found to collectively
encode the progression of the task with individual neurons predicting
and/or detecting states or transitions between states. LIP neurons,
while also encoding information about the current temporal interval,
were limited with respect to SEF neurons in two ways. First, LIP
neurons tended to be active when the monkey was planning a saccade
but not in the precue or intertrial intervals, whereas SEF neurons
tended to have activity modulation in all intervals. Second, the LIP
neurons were more likely to be spatially tuned than SEF neurons. SEF
neurons also show anticipatory activity. The state-selective and an-
ticipatory responses of SEF neurons support two complementary
models of behavioral timing, state dependent and accumulator mod-
els, and suggest that each model describes a contribution SEF makes
to timing at different temporal resolutions.

I N T R O D U C T I O N

In a wide range of experimental paradigms, performance
improves if a subject can anticipate when an instructional cue
will become available, and expert performance is frequently
accompanied by anticipatory or short-latency movements (Mi-
yashita et al. 1996) which optimize the rate of reward (Glim-
cher 2004). The two cortical oculomotor areas of interest in
this report, lateral intraparietal area (LIP) and supplementary
eye fields (SEF), have both been implicated in behavioral
timing (Campos et al. 2009; Leon and Shadlen 2003; Ohmae
et al. 2008). Anatomical connections suggest that SEF could be
directly involved in specifying when a saccade should occur
(Shook et al. 1990), and SEF microstimulation can trigger an
already planned movement (Fujii et al. 1995; Missal and
Heinen 2004). The timing of SEF microstimulation, however,
has to be in the appropriate interval, otherwise it will delay the
reaction time and instead facilitate fixation (Isoda 2005), cau-
tioning that the temporal responsibilities of SEF are not limited
to contributing to saccade production but may also enhance
fixation behavior when that is appropriate (Bon and Lucchetti
1990). SEF is also involved in the correct ordering of multiple

saccades (Gaymard et al. 1990; Histed and Miller 2006; Isoda
and Tanji 2002, 2003; Lu et al. 2002).

LIP neurons are generally thought to be involved in speci-
fying the spatial location of eye movement targets and salient
cues (Andersen 1995; Andersen et al. 1985, 1997; Gottlieb
et al. 1998). In contrast to the behavioral ordering disruptions
resulting from an SEF lesion (Gaymard et al. 1990) or revers-
ible inactivation (Histed and Miller 2006), temporary LIP
inactivation results in deficits of saccade metrics (Li and
Andersen 2001). LIP activity, however, correlates with eye
movement start times (Ipata et al. 2006) and exhibits a slight
anticipatory rise before predictable cue presentations (Colby
et al. 1996), revealing access to timing information. Recent
studies have further proposed that LIP neurons might them-
selves represent the passage of time during motor planning
(Janssen and Shadlen 2005; Leon and Shadlen 2003). It re-
mains unclear, however, if the representation of timing infor-
mation in LIP is independent of eye movement planning.

In this study, we characterize the responses of LIP and SEF
neurons while monkeys performed a memory-guided saccade
task. The task featured variable time intervals between events
and a dense sampling of visual and motor space, which allowed
us to separately assess spatial and temporal components of
neural signals. First, the variable intervals between sensory
events allowed us to assess neural responses with respect to
elapsed time in a manner that was orthogonal to movement
planning responses. Second, the dense sampling of visual and
motor space allowed us to confidently identify neurons with
robust responses that were not spatially tuned. Finally, the use
of a standard oculomotor task allowed us to compare our
findings directly with a large body of literature regarding
cortical oculomotor control. Responses were characterized
with respect to five externally defined events and in the
intervals between them (states). These responses were further
categorized as spatially tuned when possible, or modulated but
not spatially tuned, because this distinction had important
consequences for a neuron’s ability to contribute to a repre-
sentation of the sequential states of the task. Recording from
these two oculomotor structures during the performance of the
same task, we are better able to understand how frontal and
parietal oculomotor areas represent events and states in an
oculomotor task, and consequently how they make specialized
contributions to behavioral timing.

M E T H O D S

Studies were performed with two behaving male rhesus monkeys
(Macaca mulatta). Each was chronically fitted with a stainless steel
head post for head immobilization and two recording chambers over
small craniotomies for electrode insertions. Experimental procedures
were in accordance with the California Institute of Technology Insti-
tutional Animal Care and Use Committee.
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Monkeys were seated in a dimly lit room, 34 cm from a tangent
LCD monitor. Stimuli were presented with 800 � 600 resolution and
a refresh rate of 75 Hz using a custom built software display client
with OpenGL. Task logic was controlled by National Instruments
real-time LabView software.

Eye movements were monitored with an infrared oculometer
(ISCAN). A high-speed camera (temporal resolution: 240 Hz, spatial
resolution: 0.06°) was mounted on a wooden frame above the mon-
key’s head and, along with an infrared source, directed into an
infrared reflective hot-mirror held fixed at a 45° angle just in front of
the monkey’s eyes. A trapezoidal notch was cut from the mirror so
that it could be placed close around the monkey’s nose. For both
monkeys, the left eye was monitored.

Recording procedure

Neurons were accessed on vertical penetrations with glass coated
platinum-iridium electrodes (Fred Haer) or Thomas Recording elec-
trodes (ThomasRecording Gmbh). The electrodes were advanced with
a Narishige or Thomas microdrive system through a blunt stainless
steel guide tube pressed against the dura for SEF recordings or a sharp
stainless steel guide tube puncturing the dura and driven down 1 mm
for LIP recordings. Neurons were generally found 1–3 mm beneath
the exterior of the dura for SEF recordings and 5–9 mm beneath the
level of the dura for LIP recordings. Both areas were identified based
on a combination of anatomical localization using an MRI scanned
after the chamber placement surgery and then observation of saccade
related activity at each recording location. We also performed low-
threshold microstimulation (�50 �A) to evoke saccades with monkey
M to confirm the location of SEF.

Waveforms were amplified and isolated on-line with a commercial
hardware and software package (Plexon). Cell activity was monitored
with custom built on-line data visualization software written in Matlab.

Behavioral task

A memory-guided saccade task was used. The monkey was in-
structed to perform a saccade from a central fixation point to one of 43
target locations placed at regular intervals to cover the entire visual
field out to 15° of visual angle in every direction from central fixation.
In a typical recording session, the monkey performed three trials to
each target location, for a total of 129 trials. It is atypical to use such

a large number of target locations in an oculomotor task (but see Platt
and Glimcher 1997). For our study, we used this dense sampling of
saccade target locations not only to characterize the spatial tuning
exhibited by individual neurons, but also so that we could confidently
establish the lack of spatial tuning of an otherwise robust neural
response. In addition, considering evidence that some SEF neurons
encode eye movements in extra-retinal coordinates, such as head-
centered coordinates, but that LIP neurons utilize a gain modulated
retinal coordinate frame (Andersen et al. 1985; Constantin et al. 2007;
Martinez-Trujillo et al. 2004; Park et al. 2006), we were careful to use
a straight-ahead fixation point at the start of each trial. This consid-
eration ensured that eye- and head-centered coordinate frames were
identical and that spatial tuning in either coordinate frame would be
expressed in our paradigm.

Each trial featured five external events that governed the progres-
sion of the task. These events are highlighted in Fig. 1A where the
temporal progression of a trial is shown. After the intertrial interval,
a fixation point appeared (event 1: fixation point on), that the monkey
was required to fixate within 1,000 ms. Following a variable delay of
300–600 ms (for monkey M; 800–1,100 ms for monkey L), a cue was
briefly (250 ms) flashed (event 2: cue on) at 1 of 43 targets in the
periphery. Following a variable interval of 500–800 ms (for monkey
M; 750–1,050 ms for monkey L), the fixation point was extinguished
(event 3: fixation point off), and the monkey was required to make a
saccade to the remembered target location and fixate there. After a
final variable interval of 250–550 ms the target reappeared (event 4:
visual feedback), and then following an additional 450 ms fixation at the
target, the monkey was rewarded with a drop of juice (event 5: reward).

Cell categorization analysis

MODULATIONS IN EVENT AND STATE INTERVALS. Responses were
assessed with respect to the five externally defined events highlighted
in Fig. 1A and in the intervals between them, highlighted in B. We
refer to the intervals immediately following an event as “event”
intervals, and we refer to the intervals between events as “states.” We
carefully assessed firing activity in all state and event intervals because
we had observed that neural modulations could occur at times far re-
moved from the eye movement planning and execution intervals that are
typically analyzed in oculomotor tasks. For instance, it is often assumed
that the neurons are “resting” between trials, and likewise, previous
oculomotor studies have considered the firing activity in the intertrial
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FIG. 1. Sequence of events and states in the oculomotor task. A: timeline of the task highlighting the 5 events that governed the task progression.
B: representation of the task as a sequence of states with external events serving as transitions between states (see METHODS).
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interval to be the baseline firing rate of the neuron (Isoda and Tanji
2003). We observed, however, that several SEF neurons were espe-
cially active in these resting intervals, and so we were careful to
perform our cell categorization analysis in a way that would correctly
identify, for example, that a cell was active in the intertrial interval or
when the monkey was waiting for the presentation of the spatial cue.
To achieve this goal, we defined the baseline activity differently than
previous studies. The advantages and disadvantages of this technique
are described in the following text and in the DISCUSSION. The exact
definitions of all event intervals incorporated the known latencies of
responses in LIP and SEF, which are both between 70 and 100 ms
(Bisley et al. 2004; Schall 1991b). The event intervals used for neuron
classification analysis began 75 ms after events and lasted for 150 ms.
This interval was meant to capture any initial response to the event.

Because we used variable duration intervals between events, the
duration of a particular state varied from trial to trial. Previous
researchers have used variable intervals between events to identify
“preparatory set” activity—namely activation between cue presentation
and saccade onset—in the SEF (Hanes et al. 1995). The durations of
each state varied by �300 ms, and the distribution of the durations
was uniform. For cell categorization analysis, we segregated the trials
into two groups—trials in which the state was short versus long.
Specifically, short-duration trials contained states between the shortest
possible duration and 150 ms longer. Long duration trials contained
states between 150 ms shorter than the longest possible duration and
the longest possible duration. The segregation of trials by state
durations is demonstrated in Fig. 2, where all trials are sorted accord-
ing to the duration of the precue state. The firing rates were then
collected from the last 150 ms prior to the shortest duration trial of
each of these two groups. The start and end of these intervals is
marked by vertical blue lines in the spike train rasters in Fig. 2. Firing
data from the first group (between vertical blue lines in the green
rasters) therefore was collected from the 150 ms prior to the shortest
possible state duration. Data from the second group (between vertical
blue lines in the red rasters) included the subsequent 150 ms interval.
These groups also correspond to intervals in which there is decreasing
uncertainty about the remaining duration of the state. The same spike
trains are shown aligned to the subsequent event in the right panels.
The tick marks in the bottom panels represent the mean firing rate of
each group (green � short, red � long, black � baseline), with the
height of the tick mark indicating the standard error. Note that Fig. 2A
is similar to Fig. 1D from a recent paper by Ohame and colleagues
(2008), although the data presented here are taken from the precue
interval and not the delay interval. Importantly, we applied the same
analysis to all of the variable intervals in the task. The duration of the
intertrial interval was not randomized. We performed similar analysis
on this interval, but instead of segregating the trials into the groups,
we collected data from each trial in the two 150 ms time bins
immediately preceding the fixation point on event.

Neural activity was tested in two ways in each analysis interval.
First, we tested whether the neural response in the interval averaged
over all trials was significantly different from the baseline firing rate
exhibited by the neuron (modulated). Second, we tested whether the
activity associated with trials in which a saccade was planned toward
the neuron’s response field was significantly different from activity in
trials in which the saccade was planned in the opposite direction
(spatially tuned). Neurons that were spatially tuned did not always
pass the test for modulation with respect to baseline depending on the
size of the response field and the variability of the responses. In this
section, we describe the first test for modulations of spiking activity
with respect to baseline.

The baseline firing rate was defined as the average firing rates
observed over the entire trial, for each correctly performed trial. There
were, therefore, as many observations of the baseline firing rate as
there were successfully performed trials. The exact interval used for
the calculation of the baseline firing rate extended from 500 ms prior
to the fixation point on event until 1,500 ms after the delivery of the

reward. Importantly, this calculation of the baseline firing rate does
not assume that any particular interval is a common resting interval
for all of the neurons. As noted in the preceding text, previous
researchers have used neural activity from the intertrial interval as the
baseline firing rate for the purpose of statistical comparisons with
firing activity in other task-related intervals (Isoda and Tanji 2003).
One of the important technical points that we hope to make in this
report is that this practice for defining the baseline firing rate can be
misleading when trying to categorize activity in the supplementary
motor cortex.

The firing rates observed in the five event detecting intervals
(fixation point on, cue on, fixation point off, visual feedback, and
reward) and four state intervals (pretrial, precue, memory, and post-
saccade), with two groups of firing rates for each state interval, as
well as the group of baseline firing rates were compared using
ANOVA with Bonferroni correction for multiple comparisons. If the
neural response in an event interval was significantly different from
baseline (P � 10-5), the response was classified as event detecting.
Neural responses in the state intervals were classified as either state
encoding or anticipatory because rising or decreasing activity be-
tween events could serve an anticipatory function, and a tonic re-
sponse between externally defined events that is not rising or falling
could serve a state encoding function. Figure 2 shows a detailed
demonstration of one anticipatory and one state encoding neuron. If
the two groups of firing rates from the intervals within a state were
statistically indistinguishable and were different from baseline, the
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FIG. 2. Detail of state interval activity types. A: neuron exhibiting antici-
patory activity. B: neuron exhibiting state encoding activity in the precue state.
The precue state extended from the time that the fixation point was acquired
until the cue was presented. The time between these events was 300–600 ms.
Rasters are aligned to the time that the fixation point was acquired (left) or the
cue presentation (right). The spike trains are sorted from top to bottom
according to the duration of the precue state in the trial. The black dots in the
left rasters indicate the time that the cue was presented in each trial. The rasters
at the top (green) are the trials in which the precue state duration was 300–450
ms, and the rasters on the bottom (red) are the trials in which the duration was
450–600 ms. Firing rates in the 150 ms intervals immediately preceding the
shortest duration of each of these groups (marked by the vertical black bars in
the rasters) were used to distinguish anticipatory and state encoding activities.
The average firing rates for the analysis intervals � the SE are superimposed
over the smoothed firing rates (Gaussian kernel, SD � 50 ms) in the bottom
panels along with the average baseline firing rate � SE shown in black.
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neural response in that interval was classified as state encoding. If the
intervals had significantly different firing rates, with at least one
significantly different from baseline, the neural response was classi-
fied as anticipatory.

SPATIALLY TUNED RESPONSES. The firing activity of individual
neurons was tested for spatial tuning in the six event or state intervals
that followed the cue presentation. In the three intervals prior to the
cue presentation, spatial tuning was not assessed because the monkey
had no spatial information at those times. Trials were selected in
which the cue appeared inside the neuron’s putative response field or
in the opposite direction and compared for significant differences. The
direction of the response field was calculated separately in each event
or state interval using population vectors. The firing rates observed in
the interval were multiplied by the vector of the cue from the same
trial. These vectors were then summed, and the direction of the
resultant vector was taken as the preferred direction. After the pre-
ferred direction was identified in this way, all locations within the
same quadrant (� 45°) as the preferred direction were defined to be in
the response field of the neuron. All locations in the opposite quadrant
were likewise defined to be away from the response field of the
neuron. The grouping of trials into quadrants was done to increase
statistical power and therefore the confidence with which we could
categorize a neuron as exhibiting spatially tuned activity. The use of
many targets covering the visual field in every direction let us
conclude with confidence that a given neuron was not spatially tuned
even though it might be modulated in a particular interval. This was
important because the response fields of SEF neurons can be very
large. An SEF neuron with a large response field, for example, might
respond similarly for two targets that are spaced far apart from each
other and might appear to be nonspatial if only tested with a small
number of saccade targets.

To assess the significance of spatial tuning, average neural firing
activity for all six intervals was compared using ANOVA with
Bonferroni correction (P � 10-5) for trials in two stimulus condi-
tions—trials in which the cue appeared in the response field versus
away. A neuron exhibited spatial tuning if there was a significant
difference between the firing rates observed in trials in which the cue
was in the response field versus away. This method was intentionally
coarse-grained so that spatial tuning could be established or, alterna-
tively, so that we could conclude that a neuron was not spatially tuned.

Analyses of combined spike trains

Three additional types of analysis were performed to reinforce and
amplify the main findings that resulted from the cell categorization
analyses just described. Unlike the cell categorization analysis, for
which our task was designed, these follow-up analyses required a
pooling of responses from different trials to be treated as if they were
recorded simultaneously. Because the individual trials were of vari-
able duration, it was necessary to “standardize” the spike trains so
they could be treated as if they were the same length.

To standardize the spike trains for each trial, spike trains were
aligned to four different events that occurred at varying intervals. The
four spike trains surrounding those events were then connected into
one spike train of 3 s duration. Some portions of the spike trains from
trials with longer intervals were cut out, and in some of the shorter
trials, portions of the spike train were duplicated. Possible adverse
effects of this standardization procedure are considered in Consider-
ation of task design. For the purposes of these analyses, it would have
been preferable either to have used fixed duration intervals for all of
the recordings or to have recorded the entire data set in a single
experimental session as may be possible in the future with chronic
array implants. We had chosen to use variable intervals, however,
because this allowed us to properly identify what the neurons were
encoding—as analyzed with the cell categorization method described
in the preceding text. For spike train standardization, the alignment

events were fixation point on, cue on, fixation point off (go signal),
and visual feedback. The visual feedback event led directly to the
reward event after a fixed interval. The standardized duration spike
trains extended 400 ms before the fixation point on event until 350 ms
afterward, thus including the final portion of the intertrial interval and
any transient neural response to the presentation of the fixation point.
This was followed by the spike train data from the period 225 ms
before the cue on event until 575 ms afterward, thus including
responses leading up to the presentation of the cue as well as any
responses to the start or the end of the cue presentation. This was
connected to spike train data from 350 ms before the fixation point off
event until 400 afterward, which included responses leading up to the
go signal as well as activity associated with the execution of the
saccade. The last portion of the standardized duration spike train
included data from 200 ms before the visual feedback until 500 ms
afterward, which included responses leading up to the visual feedback
event as well as responses to the presentation of visual feedback and
the subsequent reward delivery.

While this spike train standardization procedure was not used for
the cell categorization described in Figs. 1–5 of the manuscript, the
intervals used for spike train standardization were also used to plot
the four spike trains histograms that were combined for each example
neuron in Fig. 3. As illustrated in Fig. 3, summed firing rates for the
example neurons tended to match up well with the previous and
subsequent spike train segments to which they were connected in
the spike standardization procedure. These standardized spike
trains were used in the continuous measurement analysis illustrated
in Fig. 6, the temporal decode analysis illustrated in Figs. 7 and 8,
and the information theoretic analysis illustrated in Fig. 9. In the
following subsections, these combined spike train analyses are
described in detail.

Continuous measures of firing rate modulations
and spatial tuning

In addition to testing for modulations in entire event or state
intervals, as described in the cell categorization subsection in the
preceding text, we tested for significant modulations in a continuous
fashion (every 10 ms), as shown in Fig. 6. The instantaneous firing
rate was first estimated by summing the standardized spike trains over
all trials, then smoothing with a Gaussian kernel (SD � 50 ms).
Assuming a Poisson distribution of the instantaneous firing rate with
the mean equal to the baseline firing rate, a significant modulation was
identified when the likelihood of the instantaneous firing rate fell
below P � 0.05. The number of neurons that met this criterion was
counted at each 10 ms interval.

In addition to testing for spatial tuning in entire event or state
intervals, we tested for spatial tuning in a continuous fashion (every
10 ms), as shown in Fig. 6. Standard quantitative models were
implemented with MATLAB to evaluate the dependence of firing rate
on cue position (Campos et al. 2006; Draper and Smith 1981; Press
et al. 2002; Zar 1974). An expanded description of the technique can
be found in Campos et al. (2006) and is summarized briefly here. The
standardized spikes trains were smoothed by convolving with a
Gaussian kernel (SD � 50 ms) to estimate the instantaneous firing rate
for individual trials. An initial estimate of the center of the response
field (b3, b4) was calculated as the vector average of all of trials with
associated firing rates that were �50% of the maximum firing rate.
Initial estimates of the remaining parameters were chosen arbitrarily:
b0 � 100, b1 � 4, b2 � 3. The firing rates were then regressed on a
two-dimensional Gaussian using the following equation

F � b0 � b1 · exp��x � b3�2 � �y � b4�2

b2
2 � (1)

where (x,y) is the position of the target. The regression was computed
(Campos et al. 2006; Draper and Smith 1981; Press et al. 2002; Zar
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1974), and the values for the parameters were stored along with the P
and r2 values describing the goodness-of-fit for the regressions.

Temporal interval decode

We used the spiking activity of several neurons from a given
cortical area to “decode” the temporal interval information contained
in the activity of the ensemble of neurons. While the population of
neurons was recorded over several distinct sessions spanning a few
months, for the purposes of the temporal interval decode, all of the
neurons from a given cortical area were considered to have been
recorded simultaneously. We grouped spike trains from trials to the
same saccade target from different recording sessions and then stan-
dardized the spike train durations, as described in the preceding text,
because in the originally recorded trials, the variable intervals between
events lead to variable trial durations.

The following method is adapted from a recent study, and the
following description closely resembles the method previously pub-
lished (Quian Quiroga et al. 2006). Each data set contained �129
trials (43 targets � 3 repetitions). From the standardized spike trains
of 3,000 ms duration, varying window sizes were used to count
spiking events to then be used as input into the decoding algorithm.
The 75 ms time window produced a higher percentage of correctly
decoded temporal intervals than window sizes that were slightly larger
or smaller, and so 75 ms window sizes are used in all of the temporal
decode results presented.

Cells were considered simultaneously recorded in the sense that for
each of three trials to each of the 43 target positions, the responses of
all cells were grouped together as a single trial with m values (in
which m is the number of cells). Trials were considered as points in

an m-dimensional space, each coordinate representing the mean firing
rate for each of the m cells. One at a time, each of these 129 trials was
decoded based on the distribution of all other trials (leave-one-out
decoding) and was assigned to the class of its nearest neighbor in the
m-dimensional space using Euclidean distance (Duda et al. 2001;
Quian Quiroga et al. 2006). In the event that there were two trials
recorded for a given direction, the third trial was randomly chosen
from the other two recorded trials. When only one trial was recorded,
the neuron contributed to the decode of other directions but not to
decodes of the directions with only one recorded trial.

For the temporal decode, each trial was decoded at every 75 ms
from the beginning to the end of the trial. Firing rates from the left out
trial were compared with mean firing rates collapsed across all
directions in the same interval and all other intervals. The time
interval of the nearest neighbor was assigned as the decoded time
interval of the left-out trial.

The simple model-free nearest-neighbor decode usually leads to
error rates greater than the minimum possible, the Bayesian rate
(Duda et al. 2001). Other decode algorithms (e.g., support vector
machine) may outperform the results presented here. This approach
makes no assumptions about the structure of the data. Cells from
different functional categories, for example, were not treated differ-
ently. A clear illustration of the decode technique can be found in
Quian Quiroga et al. (2006).

Information theoretic analysis

To better understand the temporal decode results, a related infor-
mation theoretic analysis was performed (Buschman and Miller 2007;
Shannon and Weaver 1949). Mutual information between firing rates
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and the current temporal position within the trial were computed (Fig.
9). The combined spike trains were first divided into 25 ms nonover-
lapping time bins. The firing rates observed in those temporal bins
were then sorted and organized into 16 equally sized firing rate group
bins. In this procedure, several of the firing rate group bins contained
temporal bins in which no spikes were observed. The bins were sorted
so that zero-spike containing bins were spread evenly across the
temporal extent of the trials, and this sorting avoided bias effects.

At each point in time in the trial, the likelihood that a firing rate
belonging to each of the 16 firing rate bins would be observed at that
point was computed by adding the number of members of each firing
rate bin at that time interval and dividing by the total number of firing
rate bins. This measure yielded the uncertainty about firing rates given
the time interval. To decode the behavioral state, it is the uncertainty
about the time interval given the firing rate that is of interest.
However, these two values are interconvertible because the mean
value of either of these measures gives the mutual information
(because all time intervals and all firing rate bins are equally likely).
More details of the information theoretic analysis technique for
spiking data can be found in the supplementary methods of Bushman
and Miller (2007).

R E S U L T S

Neurons were recorded from the SEF and LIP of two
monkeys during the performance of a memory-guided saccade
task. All neurons encountered in these anatomical regions that
could be reliably isolated were recorded. Neural recordings
were only excluded from the population if the isolation was not
held for a sufficient period of time (�80 trials) or if the
waveform and spiking properties indicated cell body damage.
There were 149 task-related neurons found in SEF (monkey M:
108, L: 41) from a sample of 285 recorded SEF neurons
(monkey M: 175, L: 110). There were 53 task-related neurons
found in LIP (monkey M: 21, L: 32) from a sample of 151
recorded LIP neurons (monkey M: 57, L: 94).

Response intervals and activity types

Based on the temporal profile of the neural responses, we
defined three functional activity types relating to the progres-
sion of the task. We propose that a phasic response immedi-
ately following an external event could serve an event detect-
ing function. Second, rising or decreasing activity between
events could serve an anticipatory function. Finally, a tonic
response between externally defined events that is not rising or
falling could serve a state encoding function. While these
response profiles have been observed previously in SEF and
adjacent areas (Akkal 2004; Brody et al. 2003; Genovesio et al.
2006; Hanes et al. 1995; Isoda and Tanji 2002, 2003; Lebedev
et al. 2008; Matsuzaka et al. 1992; Ohmae et al. 2008; Schall
1991b), they have not been observed in SEF in all intervals of
an eye movement task, such as the precue or intertrial intervals.
Furthermore, these various functional types have never been
presented together or suggested to perform a single coherent
functional role. We will show examples of these activity types
and explain how a diverse collection of these responses can
encode the progression of the task. With our task design, it is
difficult to know if the responses actually carried meaning for
the task or if they were simply stimulus driven. Regardless of
whether these neural responses served specific functions, and
perhaps in addition to the functions they served, we can show
that the collective responses of the population of neurons were

capable of carrying information about the current event or state
of the task.

We observed that many of the task-related neurons in our
database of SEF neurons exhibited robust responses that were
not spatially tuned for any particular range of directions or
amplitudes. These neural responses were similar to omni-
directional neuron responses (Chen and Wise 1996) but were
observed at many different phases of the trial, including times
removed from the saccade execution itself. The nonspatially
tuned responses are also similar to the bidirectional set-related
and buildup activation patterns previously observed in the
presupplementary motor area (Matsuzaka et al. 1992), which is
just medial to the SEF, but again we did not limit the analysis
to the interval following the cue presentation as in this previous
report. In the next three sections, we focus on nonspatially
tuned neural responses in SEF at all phases of the instructed
trials. In Fig. 3, there are examples of SEF neurons that
exhibited nonspatial neuronal activity that relate to the pro-
gression of the task. We will use these examples to introduce
the response intervals and functional neuronal response types.
For clarity, a brief review of previous published observations
of each of the three functional subtypes will be included at the
end of the next three subsections.

Event detection

A group of neurons responding to different events could, in
principle, indicate which event the monkey is experiencing at
any point in the task. Several examples of event detection
activity are shown in Fig. 3A. All of the neurons shown in Fig.
3 are examples that did not exhibit spatial tuning in the
intervals that were tested (following the cue presentation). The
first three example neurons responded to one event much more
so than any other event. The first responded to the fixation
point on event with an activation that was much larger than the
cue on and visual feedback responses also exhibited by the
same neuron. The second neuron responded to the cue on event
with a brief depression, and the third neuron responded to the
fixation point off event with an activation. The third neuron
also showed an extended suppression during the memory
period that could be described as state encoding activity. As
detailed in the following text, these activity type categories
could be expressed in single neurons at different times. By
interpreting the event detecting activity of these three neurons,
the most recent event can be known by noting which neuron
was recently modulated. For example, on a given trial, if the
neuron illustrated in the first row of Fig. 3A was active but the
neuron illustrated in the second row had not yet been de-
pressed, then an observer could deduce that the fixation point
on event had just occurred. The remaining examples shown in
Fig. 3A respond to multiple events with similar firing rates.
These neurons do not themselves definitively tell us which
event has just occurred. For example, if the neuron illustrated
in the fourth row is active, we can only deduce that either the
cue on or the visual feedback event has just occurred. How-
ever, if we combine this information with the information from
the neuron illustrated in the second row, which tells us that the
cue on event has just occurred or that it has not, then we can
reliably state with basic logic that either the cue is on (4th row
neuron active, 2nd row neuron depressed) or the visual feed-
back is on (4th row neuron active, 2nd row neuron at baseline).
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Combinations of additional neurons can encode the most recent
event with increasing precision and coverage of the temporal
intervals in the trial.

Neural activity patterns that resembled event detection ac-
tivity have been observed previously in the SEF and neighbor-
ing areas. Robust responses were observed in dorsolateral
prefrontal neurons during the cue and saccade periods of a
delayed-saccade task (Fuster and Alexander 1971; Niki and
Watanabe 1979). Nonspatially tuned event detecting activity in
the saccade interval (e.g., Fig. 3A, 3rd row) also resembles
rank-selective activity, which was observed during the first,
second, or third saccade of a sequence regardless of the
direction of the saccade (Isoda and Tanji 2003). Neurons in
SEF that were active during the delivery of juice reward were
previously described as reward detecting neurons (Amador
et al. 2000; Stuphorn et al. 2000). To our knowledge, there
have been no reports of neurons that were activated after the
presentation of the fixation point, such as the neuron shown in
Fig. 3A, first row.

Anticipation

While it may be satisfactory to know which event happened
most recently, it may also be helpful to know how much time
has elapsed since the previous event. For this function, neurons
with anticipatory activity are very well suited (Brody et al.
2003). For example, a neuron exhibiting anticipatory activity
might start with a baseline firing rate of 10 spikes/s (1 spike
every 100 ms) and then after a triggering event fire one
additional spike in every subsequent 100 ms period. Within the
first 100 ms, the neuron would discharge two spikes, yielding
an instantaneous firing rate of 20 spikes/s. Within the next 100
ms the neuron would discharge a total of 3 spikes and so on. If
the neuron is known to steadily increase in this manner, and
later on we measure the firing rate at 100 spikes/s (10 spikes/s
in a 100 ms period), we can then infer that 900 ms have passed
since the triggering event. The equation that yields the current
time would be: (current firing rate – baseline)/(increase in
firing rate per second). The example neurons shown in Fig. 3B
rise in anticipation of certain events and then reset once those
events occur. As shown in that figure, a single neuron can rise
before just one event in the trial or several. In the case that the
neuron exhibits anticipatory activity prior to multiple events,
knowledge of the current state of the monkey is required to
make sense of each anticipatory buildup.

The plots in Fig. 3 are aligned to four different events for
each neuron, and smoothed mean firing rates are shown with
respect to these alignment times. Anticipatory activity is de-
fined by how the firing rate of a neuron evolves over the course
of the state interval with reference to the time at which the
interval began. The analytical treatment of the variable inter-
vals between states is shown in Fig. 2, where the difference
between anticipatory and state encoding activity patterns is
illustrated. The plots shown in Fig. 3, however, qualitatively
convey the same firing rate patterns in a compact format.

Neural activity patterns that resembled anticipatory activity
have been observed previously in the SEF and neighboring
areas. Anticipatory responses were observed in dorsolateral
prefrontal neurons prior to cue presentation or saccade onset
(Fuster and Alexander 1971; Niki and Watanabe 1979), resem-
bling the second and third rows of Fig. 3B. Coe and colleagues

more recently reported a similar anticipatory rise of activity
prior to the onset of saccade targets in SEF (Coe et al. 2002),
and a significant rise in premovement activity was reported in
SMA (Romo and Schultz 1992) and SEF (Ohmae et al. 2008).
Neurons in SEF that were increasingly active prior to the
delivery of juice reward were previously described as reward
predicting neurons (Amador et al. 2000; Stuphorn et al. 2000).
To our knowledge, there have been no reports of anticipatory
activity prior to the fixation point onset, such as the neuron
shown in the first row of Fig. 3B. Isoda and Tanji, however,
described SEF neurons that exhibited “first-trial selectivity.”
These neurons were active when the monkey transitioned from
one task set to another with one example increasingly activated
just before the first trial of a new set of trials (Isoda and Tanji
2003). This activation profile was arguably similar to the
neuron shown in the first row of Fig. 3A, which exhibited
anticipatory activity before the start of each trial instead of
each set of trials.

Sequential states

The final piece of the event-based representation of sequen-
tial states in SEF is the population of neurons that represent
different states. As the monkey moves through the task, he
goes from one state to another (Fig. 1B), first waiting for the
fixation point to appear, then fixating that point while awaiting
the movement instruction, then continuing to fixate while plan-
ning the instructed eye movement, then re-fixating on the saccade
target while awaiting visual feedback and reward. The example
neurons in Fig. 3C show a variety of neurons that are tonically
active during one or more of these states. None of these re-
sponses were spatially tuned where assessed, and like event-
detection activity, can be used together to decode the state in
which the monkey is currently engaged.

Neural activity patterns that resembled state encoding activ-
ity have been observed previously in the SEF and neighboring
areas. Schall observed preparatory set cells in SEF (Schall
1991a) that resembled the example neuron shown in Fig. 3C,
third row, active in the interval in which the monkey could
prepare a saccade. Romo and Shultz made a similar observa-
tion in the SMA (Romo and Schultz 1987, 1992). Schall made
note of pause-rebound cells in SEF and SMA that were
probably similar to the neurons shown in Fig. 3c, second or
fourth rows (Schall 1991b). The neuron in Fig. 3C, fourth row,
also resembled our own previous characterization of reward
expectancy activity in the SMA (Campos et al. 2005). Last,
Schall counted several modulated but unclear cells in FEF and
SEF, which showed “some apparently systematic modulation
during the trial,” but these units were not analyzed further. To
our knowledge, there have been no reports of SEF neurons
selective to the precue or intertrial intervals of an eye move-
ment task, such as the neurons shown in Fig. 3C, first and
second rows. Intertrial selectivity has been reported in the
temporal lobe (Yakovlev et al. 1998) and the dorsolateral
prefrontal cortex (Mansouri et al. 2006). Precue modulations
have also been identified in the cingulate motor area (Hoshi
et al. 2005) and the dorsal prefrontal cortex (Hasegawa et al.
2004).

The preceding description segregates a set of neurons into
three distinct categories even though individual neurons lie on
a gradient between these categories. For example, sequential
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state activity and anticipatory activity differ from each other
only by the slope of the average firing rates over time. Figure
2 details two neurons that are modulated in the precue state, the
first exhibiting anticipatory activity and the second exhibiting
state encoding activity. The firing activity of the anticipatory
neuron continues to ramp up as the duration stretches longer
and longer. This firing rate profile can encode how much time
has passed since the previous event or, alternatively, how likely
it is for the next event to happen—which is directly related to
how much time has elapsed (see METHODS). The state encoding
neuron, however, continues firing at the same rate. It only
encodes that the monkey is in the precue state. Neurons in the
population modulated in the state intervals exhibited a variety
of slopes, putting them at various points on a gradient between
these two categories. The different slopes are functionally
significant. Anticipatory activity with a high slope can provide
highly resolved information about the time elapsed since the
last event or the estimated time remaining before the next
event. Anticipatory activity with a lower slope can provide less
well resolved information about elapsed time. Finally, sequen-
tial state activity with a flat slope can only provide information
that the monkey is in the time period following a certain event,
without providing any information about how much time has
elapsed, or how much time remains, in that state. Similarly the
definitions of sequential state activity and event detecting
activity differ in the duration of their responses, and in this
case too individual neurons with different response dura-
tions lie on a functional gradient between these defined
categories. Understanding these limitations, for the sake of
characterizing responses in each population, we assigned
individual neurons to one of these three groups in each
analysis interval (see METHODS). In the following section, we
quantify the percentages of neurons across the two popula-

tions that exhibited event detecting, anticipatory, or sequen-
tial state encoding activity, further subdividing each group
according to whether it exhibited spatial tuning. We also
detail the extent to which individual neurons exhibited dif-
ferent types of activity at different intervals.

Population characteristics

The prevalence of all types of activity is shown graphically
in Fig. 4A for the SEF population and B for the LIP population.
For each interval, the number of neurons that could be classi-
fied as modulated, meaning they were significantly modulated
(active or depressed) but not classifiable as spatially tuned (see
METHODS), is shown in black. Prior to the cue-presentation,
spatial tuning was not tested, and in these intervals a neuron’s
activity could be either categorized as modulated or not task
related.

Spatial tuning was defined as an increased firing rate asso-
ciated with a cluster of target positions relative to the fixation
point at the center of the stimulus display monitor (see METHODS). In
the postsaccadic, visual feedback, and reward intervals, the
spatial tuning was assessed in the same way although the
monkey was fixating the target location at these times. Spatial
tuning in these intervals could therefore reflect remaining post-
saccadic responses, eye position sensitivity, or early prepara-
tions for a re-centering saccade to start the next trial. The
number of neurons with spatially tuned activity is indicated by
the height of the gray bars for each tested interval (cue on event
and following). The number of neurons exhibiting event de-
tecting activity is indicated by the height of the black bars
above the event interval labels (fp on, cue, go, feedback, rew).
The number of neurons exhibiting state encoding activity or
anticipatory activity is indicated by the height of the black bars
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FIG. 4. Prevalence of activity types in neuronal populations.
Prevalence of activity types in the SEF database (A), data from
both monkeys combined. The labels on the horizontal axis are
the 5 events and 4 states during which each neuron was tested
for modulated (significantly active or suppressed; �) or spa-
tially tuned (p) neural activity. Activity within each state was
further classified as state encoding (state) or anticipatory (ant).
B: prevalence of activity types in the lateral intraparietal area
(LIP) databases, data from both monkeys combined.
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above the state interval labels. As can be seen in these panels,
the neurons in LIP were more likely to be spatially tuned
during the trial compared with modulated but nonspatial as in
SEF. The spatially tuned activity exhibited by SEF neurons
tended to occur early in the trial and then taper off, whereas in
LIP more neurons were spatially tuned throughout the trial
with larger numbers reaching significance around the time of
the movement or just after the movement and the cue presen-
tation. Note that the SEF population contained more signifi-
cantly modulated neurons that were not spatially tuned at all
points in time within the trial after cue onset compared with
LIP. Finally, the LIP population showed little modulation
before cue onset, whereas the SEF population showed greater
modulation before the cue.

The preceding activity type analysis considered each event
or state interval independently, but as can be seen in the
example neurons of Fig. 3, single neurons frequently exhibited
multiple types of activity at different points in the trial. For
instance, the event detecting neuron shown in Fig. 3A, third
row, also exhibited a consistent suppression of activity during
the memory state and therefore expressed state encoding ac-
tivity as well. Similarly, the anticipatory neuron shown in Fig.
3B, second row, also showed a tonic elevated discharge during

the memory period as another example of state encoding. In
general, these three types of activity were not segregated into
distinct populations of neurons, but instead, multiple activity
types could be expressed in single neurons at different times in
the trial. Individual cells were also modulated in multiple
consecutive intervals.

In Fig. 5, we show the extent to which single neurons
expressed multiple activity types at different times in the trial.
Event detecting neurons and state encoding neurons, for in-
stance, do not appear to belong to segregated neuronal popu-
lations but instead refer to phasic and tonic discharge patterns
that can be expressed in one neuron at different times. Figure
5A shows the state and event intervals for which each task
related neuron (each row � 1 neuron) was significantly mod-
ulated (black) or spatially tuned (gray). Clearly many neurons
are modulated in more than one interval. Figure 5B shows
Venn diagrams for the numbers of neurons that were either
spatially tuned, modulated but untuned, or exhibiting both
tuned and untuned activity at different intervals. As described
in METHODS, we defined spatially tuned and modulated re-
sponses to be mutually exclusive (i.e., a modulated response
was significantly elevated or depressed with respect to baseline
and not classifiable as spatially tuned). Because these tests
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FIG. 5. Combinations of activity types in single neurons.
A: state and event intervals for which each task related neuron
(each row � 1 neuron) was significantly modulated (�) or
spatially tuned (p). B: number of neurons exhibiting modulated
activity only, spatially tuned activity only, or both for each
population. C: numbers of neurons exhibiting event detecting,
state encoding and/or anticipatory activations that are both
modulated (left number) or spatially tuned (right number).
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were made in multiple intervals, it was possible for a neuron to
exhibit modulated activity in one interval and spatially tuned
activity in another interval. The Venn diagrams refer to the
numbers of neurons that only exhibited spatially tuned activity,
only exhibited modulated activity, or exhibited both at dif-
ferent intervals. The population sizes recorded in each area
were unequal with about twice as many neurons recorded in
SEF compared with LIP, and a higher proportion of neurons
in SEF were found to be task related. Both populations
contained similar numbers of cells that were spatially tuned
only (and not modulated but untuned in other intervals),
indicating that the proportion of spatial neurons to all task
related neurons in SEF is about half that in LIP. There were,
however, about five times as many neurons in the SEF
population that were modulated and not spatially tuned in
other intervals, making up �2/3 of the task-related popula-
tion in SEF and one-third of the task-related population in
LIP. Figure 5C shows the number of neurons exhibiting
each of the three activation types, alone or in combination,
separately for modulated and spatially tuned activations.
Each segment of the diagram contains two numbers, the first
counting combinations of modulated activations, and the
second combinations of spatially tuned activations.

Because any description of firing rates in particular state or
event intervals will be influenced by the exact choice of start
and end time of these intervals, we present analysis in Fig. 6 of
continuous measures of firing rate modulations and spatial
tuning without regard to our interval definitions. In Fig. 6, A
and C, the smoothed (Gaussian kernel, SD � 50 ms) normal-
ized firing rates are shown for SEF and LIP populations,
respectively. The normalized firing rates are averaged over all
trials, and consequently, all saccade target directions. In Fig. 6,
B and D, the goodness-of-fit for a spatial tuning model of
smoothed firing rates versus target location (2D Gaussian) is
shown as calculated at each 10 ms. The neurons are sorted
according to the time of occurrence of their maximum, nor-
malized firing rates in both panels. All of the recorded neurons
are included in these intensity plots. The results shown by these
continuous methods are qualitatively similar to those found
using predefined intervals. That is, �40% of neurons are
significantly modulated in the SEF population during the cue
presentation, and between 10 and 20% at all other intervals in
the trial (Fig. 6A, bottom). In the intervals in which spatial
tuning was assessed (during and after cue presentation), only
about two-fifths of the responsive (modulated or spatially tuned
at each point in time) SEF neurons were spatially tuned (Fig.
6B, bottom). In contrast, about three-quarters of responsive LIP
neurons were spatially tuned from the cue onset through the
saccade period, and a much higher percentage of responsive LIP
neurons were spatially tuned around the time of the saccade (Fig.
6D, bottom). Prior to the cue presentation, the LIP neurons
showed little modulation, whereas the SEF population exhibited
greater modulation at that time.

Decoding the current temporal interval

Based on the observation that the neurons that were not
spatially tuned were consistently responding at specific inter-
vals in the trials, we next tested whether the responses of a
population of neurons could be used to decode the current
temporal interval on a trial-by-trial basis. We adapted a model-

free decode method previously applied to the spatial decode of
eye and arm movements (Duda 2001; Quian Quiroga et al.
2006) and quantified its performance in decoding the specific
time interval within the task to which a set of firing rates
belonged (see METHODS). In Fig. 7 are the results of the method
using the full database of SEF neurons collected in monkey M
(because the SEF neurons were more likely than LIP neurons
to be modulated but not spatially tuned). The performance of
the monkey M SEF database was higher than that of monkey L,
mainly on account of a larger sample size, although the results
were qualitatively similar. In the summary subsection in the
following text, we illustrate the decode performance as a
function of sample size via bootstrapping.

Figure 7A shows the confusion matrix for the temporal
decode for the SEF database. The trials were divided into 40
nonoverlapping 75 ms intervals for the decode (see METHODS).
High intensity along the diagonal indicates that time intervals
were decoded correctly. The decode algorithm frequently de-
coded the exact temporal interval. Figure 7B shows the per-
centage of exactly correct decodes (dotted line) for all points in
time in the trial. The algorithm tended to have peaks of
performance around the fixation point on, cue on, fixation point
off, and reward events. These points in time correspond to the
externally generated stimuli that lead to robust and unique
event detecting responses.

Although the algorithm was less able to decode the exact
temporal interval at times removed from the four events listed
in the preceding text, it frequently did succeed in decoding a
temporal interval that was nearby. That is, between events the
decoded temporal interval tended to be another temporal in-
terval within the same state (e.g., precue). This ability to
decode the exact temporal interval within a state depends on
the neurons expressing anticipatory activity because these are
modulated across the time within the state. The state-encoding
neurons, in contrast, are similarly responsive during the entire
state and therefore will help to limit the decode to the correct
state interval but not more precisely within the state. The boxes
in the confusion matrix in Fig. 7A outline the temporal extent
of the different states and event periods in the trial. The cue
event and the memory state boxes are labeled in Fig. 7A, and
the sequence of boxes from the top left to the bottom right
follow the same order as the labels on the axes of C. Figure 7C
averages over these periods and shows the confusion matrix
of the temporal decode for each state and event. Intensity
along the diagonal indicates that firing rates for each tem-
poral interval were almost always decoded as the same or
another temporal interval within the same state or event. The
performance of the temporal decode within the same state or
event is shown as a solid line in Fig. 7B. Notice that while
the dotted line (exact temporal interval decode performance)
dips between events, the solid line (temporal interval decode
within the correct state or event) maintains high perfor-
mance.

The database from area LIP of the same monkey did not
perform well when using the same temporal decode algorithm.
There were substantially fewer LIP neurons recorded, but
when we dealt with the issue of sample size, we found that for
similar numbers of cells, the LIP population performs consid-
erably poorer in decoding temporal intervals. The temporal
decode performance of each area is shown in Fig. 8, which
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compares performances using randomly chosen subsets of
neurons so that data from the two areas can be directly
compared even though the original numbers of recorded neu-
rons were unequal. SEF performed better in decoding the
current state or event for equally sized and randomly chosen
subsets of the population. The temporal decode results in Fig.
8 show the correct state or event decode performance for
increasing population sizes. The mean of the solid line in Fig.

7B would be plotted as a single point at the far right side of Fig.
8, left, because the results shown in Fig. 7 are from the entire
SEF dataset of monkey M. It is clear that SEF achieves better
performance even when the neuron sample sizes are compara-
ble. The mean values correspond to the performance that one
could hope to achieve with a random sampling of neurons in
each area, such as would be encountered with an unmovable
electrode array.
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FIG. 6. Continuous measures of activation, sup-
pression, and spatial tuning. A: continuous measures of
firing rate increases and decreases for all recorded
neurons in the SEF databases, data from both monkeys
combined. Top: normalized firing rates, each row cor-
responding to 1 neuron. The color scale ranges from
no firing activity (blue) to 5 times the baseline firing
rate (red). Neurons are sorted according to the occur-
rence of their maximum firing rates. The time progres-
sion corresponds to merging the four variable intervals
among the fixation point on, cue on, fixation point off,
and visual feedback events. The black lines indicate
the timing of these events. Subtle discontinuities can
be observed between these events where the spike
trains were merged. Bottom: total number of signifi-
cantly modulated (see METHODS) neurons at all points
in time, shown as the percentage of the total number of
recorded neurons in the sample. B: r2 values (good-
ness-of-fit) for nonlinear regressions on a 2-dimen-
sional Gaussian, using smoothed firing rates at every
10 ms and the positions of the saccade targets. Each
row corresponds to the neuron from the same row in
the left column. Color scale ranges from 0 (blue) to 1
(red). Bottom: percentage of neurons that were spa-
tially tuned of the neurons that were responsive at that
point in time (spatially tuned and/or significantly ac-
tive or suppressed). C and D: continuous measures of
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for all recorded neurons in the LIP databases, data
from both monkeys combined.
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Information theoretic analysis

The LIP population as a whole is less suited for the temporal
decode because of the spatial tuning exhibited by the vast
majority of neurons found there. Spatially tuned neurons will
be inactive either because of the current behavioral state (e.g.,
pretrial) or because the target appeared at a nonpreferred
location. Therefore if the neuron is not firing, there is no
information about the temporal interval, and these neurons will
generally not fire in the majority of trials. During intervals that
the neurons might fire, the spatial tuning also leads to higher
variance than if the neurons were not spatially tuned.

Using information theoretic analysis we quantified the rela-
tive information about the current temporal position available
from two example neurons. The first neuron is an untuned SEF
neuron that responds to two separate events, cue on and visual
feedback, and the second, from LIP, also responds to two
separate events, cue on and fixation point off (go) although in
a spatially tuned manner. In Fig. 9A we show the firing rates of
the example SEF neuron (the same as the neuron in Fig. 3A, 4th
row) divided into 25 ms nonoverlapping time bins (x axis) for
each trial (y axis)—see METHODS. As can be seen, there are two
time intervals with consistently high firing. The raster for the
example LIP neuron is given in Fig. 9B. and the cue period
activity is organized according to the location of the cue in D

with white intensity corresponding to higher firing rates. In
contrast to the amount of information in time given by the
example SEF neuron, shown in Fig. 9C as the black line, the
same measure of information applied to a similarly responsive
but spatially tuned LIP neuron, shown in the same panel with
a blue line, is clearly substantially lower.

When only targets that fall within a neuron’s response field
are considered, the variance decreases, and we can recover
behavioral state information from spatially tuned neurons. In
the spatial intensity plots (Fig. 9D), the center of mass of the
firing rates from the time of the cue presentation is shown as a
yellow star, and the 10 closest targets to this response field
center are labeled in red. The 10 targets that are farthest away
are labeled yellow. In Fig. 9E, we show the rasters of these two
groups of trials, the preferred vector trials on the top row and
the anti-preferred direction on the bottom row. Finally when
we apply the same information analysis to this restricted subset
of trials, we get the results presented in Fig. 9F, which shows
that for the preferred direction trials (red), there is higher
information at the cue and saccade periods because the neuron
consistently fires at a higher rate. In the anti-preferred trials
(blue), the firing rate is consistently suppressed throughout the
entire trial, and there is overall no mutual information available
between the firing rates and temporal interval. Furthermore, in
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comparison to the smaller peaks of information seen when all
trials are taken together (blue line in Fig. 9C), when the highly
informative preferred vector trials are separated from the un-
informative remaining trials, the information level for these
trials is much higher.

The same procedure was applied to all spatially tuned
neurons to assess the effect of limiting the information theo-
retic analysis to trials in which eye movements were directed
into the neuron’s response field. We tested neurons in both LIP
and SEF populations that were spatially tuned during the cue
presentation (the time period that evoked substantial responses
in both areas) and observed a consistent increase in information
when we compared trials in which the target was in the
response field versus a location opposite. In the LIP population,
we observed an average 50%, increase in firing rate information in
the period extending from the cue presentation to the saccade
when we calculated the information content on the restricted set of
trials in which the target was in the response field. In the SEF
population of spatially tuned neurons, we observed an 18% in-
crease in firing rate information in the same interval. In the
postsaccadic and intertrial intervals, there was no advantage
associated with restricting the calculation of information con-
tent to trials in which the target had been in the response field
for both the LIP and SEF populations.

D I S C U S S I O N

In this report we have shown that SEF contains a collection
of neuronal response profiles that can collectively support the

representation of sequential states within the context of an
oculomotor task. This representation depends on robust acti-
vations occurring at particular intervals of the task and is
especially reliable if the same neurons do not exhibit spatial
tuning for the direction of the saccade instructed in the current
trial. While a subset of these response profiles have been
observed previously in SEF and adjacent areas (Akkal 2004;
Brody et al. 2003; Genovesio et al. 2006; Hanes et al. 1995;
Isoda and Tanji 2002, 2003; Lebedev et al. 2008; Matsuzaka
et al. 1992; Ohmae et al. 2008; Schall 1991b), our report is the
first to propose a single coherent functional role for modula-
tions that occurred at all intervals of a recorded trial. To our
knowledge, this report also contains the first demonstration of
robust modulations in SEF in the intertrial interval and in the
interval just prior to the cue presentation of an eye movement
task. Nonspatially tuned activations can serve different func-
tions if they occur at different times as has been proposed
previously and as we describe in the following text, but in this
report, we make the argument that collectively they can rep-
resent the sequential states of the task, which in turn can assist
in behavioral timing. This report is similar to a recent report on
the role of SEF in smooth pursuit (Shichinohe et al. 2009) in
that it describes a set of single unit responses, most of which
have been described previously, that when taken together can
perform an aggregate function (Schlag and Schlag-Rey 2009).

LIP neurons tended to respond spatially and were not found
to assist as well in the sequential state representation. It has
been previously reported that elapsed time influences LIP
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activity when it is integral to the eye movement instruction
(Janssen and Shadlen 2005; Leon and Shadlen 2003). These
previous reports considered eye movements either directly into
or away from the neurons’ preferred directions, and the neural
activity was found to correlate with elapsed time. Furthermore
the anticipatory modulation that correlated with elapsed time
was found to be strongest in LIP neurons that represent the
locus of the intended eye movement (Janssen and Shadlen
2005) and therefore was correlated with the likelihood of the
eye movement. The results in the current report help contex-
tualize these previous findings. We found that when only
preferred vector saccades were considered, the LIP neurons did
carry significant information about the temporal interval. When
considering all possible saccade directions, however, SEF
provided a better read-out of the current temporal interval—the
current external event or state—within the context of the task
and for the entire duration of the trial. LIP, with more spatially
tuned activations, was less able to provide an accurate read-out
of the current state or event. Overall the prevalence of SEF
neurons with activity that was not spatially tuned made it a
better predictor of the current behavioral state in all trials,
while LIP neurons generally contained state information about
saccades directed to their preferred locations. The current
results, therefore argue that SEF contains a better all purpose
code for time than LIP (Janssen and Shadlen 2005; Leon and
Shadlen 2003) because the code in SEF is independent of
saccade vector specification.

Decoding of movement intentions

The spatial tuning for saccade targets found in abundance in
area LIP provides a basis from which to decode eye movement
vectors. To properly decode the movement vectors from pari-
etal neurons, it is necessary to know if the current representa-
tion formed by the firing activity of the neurons indeed repre-
sents the upcoming motor intention and, if so, when it is meant
to be executed. There have been some efforts to selectively
decode parietal activity from the appropriate interval, including
a state machine decoding design in which the movement
encoding state necessarily follows the visual onset state (She-
noy 2003) or through the use of spectral analysis of local field
potentials to identify state transitions (Bokil et al. 2006). It may
instead be simpler to look to SEF for state sequence informa-
tion because the SEF population has abundant information
regarding the sequential progression of the task. Importantly,
the SEF population contains many neurons modulated outside
of the sensorimotor transformation interval (cue presentation to
saccade execution). The population of SEF responses can
therefore provide ongoing detailed information of the current
behavioral state of the monkey, for instance by detecting the
transition between the intertrial interval and precue interval at
which times the LIP population is largely unmodulated. With
access to SEF and LIP neural activity, one could decode the
current state from SEF and use that information to collect firing
activity from LIP spanning an entire relevant state to achieve
the most accurate spatial decode possible.

Consideration of task design

Two of the novel observations presented in this report are
state encoding activity in the SEF during the precue and

intertrial intervals of an eye movement task. It is difficult to
know with certainly why these results have not been observed
before. We suspect that a major reason is that SEF has been
studied in the same way as other oculomotor areas, which
excluded the possibility of observing these responses. First,
several studies have focused exclusively on neurons that ex-
hibited spatial tuning (Roesch and Olson 2005), which is a
hallmark of neurons in the oculomotor system. Second, the
analysis of the recorded data has usually focused on neural
responses starting with the presentation of the cue and ending
with the completion of the instructed saccade—the sensorimo-
tor interval. Previous researchers have used firing activity from
the intertrial interval as a baseline period (Isoda and Tanji
2003), indicating an underlying assumption that all of the SEF
neurons are in a resting state at that time. Likewise, in 1992,
Matzuaka and colleagues used the precue interval as the
baseline period (Matsuzaka et al. 1992), which may have
prevented them from observing precue anticipatory activity
that was reported a decade later (Coe et al. 2002) or the precue
state encoding activity reported here. Neural activity has been
observed during active fixation in the SEF in tasks in which
monkeys were required to maintain fixation but not generate
saccades (Bon and Lucchetti 1990; Schlag and Schlag-Rey
1987; Schlag et al. 1992). This active fixation signal may have
been the same as precue, memory, or visual feedback state
encoding activity because the monkey was required to maintain
fixation at these times in the task employed here.

To identify modulations in all of the intervals in the task,
such as the precue and intertrial intervals, it was necessary to
define the baseline firing rate as the average activity observed
for each neuron over the entire recording and not in any one
preselected interval (see METHODS). This definition of the base-
line appears to be a novel analytical method of our study and
required some caution so as to avoid false positives. For
instance, one might suspect that a large activation during the
trial might artificially increase the baseline firing rate, and
result in the false identification of a modulation (specifically a
suppression of activity) in other intervals. For this reason, a
very conservative significance threshold (P � 10-5) was used
that also had to survive correction for multiple comparisons.
This method was also verified by visual inspection and was
observed to work properly. We observed, for example, that
neurons with a strong modulation in one interval were not
mistakenly classified as having a significantly suppressed ac-
tivation in all other intervals. Importantly, even if there was a
problem of false positives, there is no reason to believe that our
definition of baseline firing activity would lead to falsely
detected modulations in any one interval (such as the intertrial
interval) more so than any other interval. In some cases,
neurons were active for multiple consecutive intervals. The
analysis presented in Figs. 5 and 6 show the activation patterns
of each task related neuron.

We used a memory-guided saccade task to assess firing rate
modulations that were related to elapsed time, but in a way that
was orthogonal to eye movement planning (see METHODS).
Because events in the task were separated by variable intervals,
the monkeys could not exactly predict the occurrence of each
subsequent event. This aspect of the task design may have
diminished the utility of extremely accurate time interval
estimation and consequently affected the percentages of neuron
response types that we encountered in our neuronal popula-
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tions—especially anticipatory activity that could contribute to
a high-resolution time interval estimate. While the use of
variable intervals was ideal for the cell categorization analysis
presented in Figs. 1–5, it posed a challenge to the analyses
presented in Figs. 6–9 (see METHODS). To deal with these
challenges, we introduced a spike train standardization proce-
dure. A possible unintended effect of this procedure could have
been a better decode between events, but this is where the
algorithm did not perform as well as described in RESULTS. In
the future, it might be fruitful to vary the temporal predictabil-
ity of targets (Akkal 2004), for instance, by comparing blocks
of trials with variable intervals with blocks of trials with fixed
intervals.

Alternative interpretations

Individual neurons could serve other functions in addition to
their contribution to a sequential state representation. Event
detecting neurons, for example responding to the cue presen-
tation, might serve to inhibit a reflexive saccade to the cue
stimulus. Neurons responding after the delivery of reward have
been proposed to serve a reward detection function (Amador
et al. 2000; Stuphorn et al. 2000). We do not see these as
conflicting interpretations of our results but rather complementary.
Consider that an alarm clock that plays radio news as the alarm
signal could serve two functions, one, to wake up the owner and
two, to provide him with the morning’s news. The variety of
circumstances under which event detecting neurons fired, how-
ever, implies that none of the previously proposed functional
explanations for event detecting activity could be applied to the
variety of responses we observed. Note that the example event
detecting neuron in Fig. 3A, last row, responded to visual
stimuli onsets or offsets in central or peripheral locations. The
data presented here suggest that a diverse set of neurons in SEF
collectively represent every functional state of behavior and
that this could facilitate the expression of behavior in the
correct sequence.

Anticipatory activity has been described previously in SEF
neurons and was considered as a bias for a particular move-
ment (Coe et al. 2002). Such a bias does not seem a reasonable
explanation for the precue anticipatory activity reported in our
study because there were 43 potential targets, chosen ran-
domly, and it would be a highly inefficient strategy if the
monkey tried to predict the upcoming saccade target. For the
neurons exhibiting presaccadic climbing activations that were
not spatially tuned, these could not contribute to the motor
preparation for the particular saccade that would be executed
on any given trial. Instead such neurons may have contributed
to the timing of the executed saccade on every trial, and the
buildup of activity at this final stage may have contributed to a
growing readiness of move the eyes. Similarly, the anticipatory
activity in the precue period may have contributed to a readi-
ness to perceive relevant information. Anticipatory activity
near the end of the trial may signal how close the monkey was
to reward.

State encoding neurons, in addition to representing the
current state of the trial, may also serve behavioral purposes
such as facilitating fixation (Bon and Lucchetti 1990; Schlag
and Schlag-Rey 1987; Schlag et al. 1992) in the presaccadic
intervals via inhibitory connections to omnipause neurons
(Shook et al. 1990); withholding reflexive movements (Ever-

ling and Munoz 2000); preparing for any movement in general,
termed “preparatory set” (Everling and Munoz 2000; Hoshi
et al. 2005; Shima et al. 1996); integrating task rules for the
selection of task-appropriate motor plans (Miller et al. 2005);
and stimulus encoding in a manner that is dissociated from the
spatial location of the stimuli. State encoding activations in the
period between visual feedback and reward delivery have been
observed in the nearby supplementary motor area and proposed
to signal reward expectation (Campos et al. 2005).

One might suspect that the state encoding activations ob-
served in the precue period could be attributable to microsac-
cades during central fixation or postsaccadic visual responses
following the acquisition of the central fixation point. As
detailed in Fig. 2B, however, not only do the precue state-
selective neurons begin firing after the fixation point has been
acquired, they also stop firing only after the cue was presented.
As Schall pointed out with regard to preparatory set activity, it
was necessary to use variable intervals to observe this type of
activation pattern (Schall 1991b). The time at which the neu-
rons stop firing cannot be attributed to a postsaccadic visual
response or microsaccades during fixation.

Neural representation of behavioral timing

The three general nonspatial cell types identified in SEF
support both the accumulator (Brody et al. 2003; Macar et al.
1999; Reutimann et al. 2004) and state-dependent (Lucchetti
et al. 2005; Mauk and Buonomano 2004) models of the neural
representation of behavioral timing. The state-dependent net-
work model is similar to a three-colored traffic light, while the
accumulator model is like a pedestrian countdown signal.
Anticipatory neural activity, characterized by increases or
decreases in firing rate activity prior to external events, which
can support precise behavioral timing, has been found in a
variety of brain structures including the striatum (Apicella
et al. 1992), caudate (Hikosaka et al. 1989; Lauwereyns et al.
2002a,b; Watanabe and Hikosaka 2005), frontal eye fields
(Bruce and Goldberg 1985; Coe et al. 2002), dorsal premotor
cortex (Mauritz and Wise 1986; Vaadia et al. 1988), cingulate
motor area (Niki and Watanabe 1979), supplementary motor
area, and presupplementary motor area (Akkal 2004) as well
the two areas under study in this report, the supplementary eye
fields (Coe et al. 2002; Ohmae et al. 2008) and the lateral
intraparietal area (Coe et al. 2002; Colby et al. 1996; Maimon
and Assad 2006). Anticipatory neural activity has been sup-
posed to support the expectation of predictable sensory events
(Apicella et al. 1992) that are linked to reward (Lauwereyns
et al. 2002a), expectation of reward itself (Amador et al. 2000;
Campos et al. 2005; Stuphorn et al. 2000), behavioral biases
for a particular movement (Coe et al. 2002; Hikosaka et al.
1989; Mauritz and Wise 1986; Takikawa et al. 2002; Watanabe
and Hikosaka 2005) to attenuate reaction-time delays (MacKay
and Crammond 1987), the readiness to produce or cancel a
movement (Libet et al. 1983) that has similarly been described
as the beginnings of a proactive triggering process (Maimon
and Assad 2006), the inhibition of reflexive movements (Guit-
ton et al. 1985), and tracking behavior, as in smooth pursuit
(Heinen and Liu 1997; Shichinohe et al. 2009). Ohmae and
colleagues reported climbing activity in the SEF during the
delay period of a delayed-saccade task that was not correlated
with reaction time. The authors suggested that this activation
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profile reflected anticipated and elapsed time during this phase
of the task (Ohmae et al. 2008).

Anticipatory, or climbing, neural activity is the hallmark of
one of the two prevailing views on how behavioral timing is
accomplished in the brain (Brody et al. 2003; Macar et al.
1999; Reutimann et al. 2004). The competing model posits that
timing is encoded as particular groupings of activated neurons
in a network (Lucchetti et al. 2005; Mauk and Buonomano
2004), such as the event detecting and state encoding neurons
in our dataset. The two models are not mutually exclusive. The
anticipation of events posited by accumulator models and the
detection of those events required for network models are
complementary processes and have long been observed within
the firing of single neurons (Fuster and Alexander 1971). In
support of both models, Niki and Watanabe first discussed
timing units, which included neurons with anticipatory rises
before perceptual events and during motor preparation as well
as tonic activations extending through the delay period (Niki
and Watanabe 1979). More recently, there have been studies
presenting neural activations not related to spatial parameters
that provide further evidence for the network-based represen-
tation of behavioral timing, including state-encoding responses
in the rostral cingulate motor area before, during, and after
every event in a trial, thereby reflecting each step of the
behavioral task (Hoshi et al. 2005) and event detecting activity
in the claustrum preceding all movements in a nonselective
manner (Shima et al. 1996). Results such as these have been
the basis of the hypothesis that the prefrontal cortex is primar-
ily engaged in the temporal structuring of behavior (Fuster
1989).

Our results support both of these behavioral timing models.
Event detecting neurons could serve to transition the local
network into a new state, which would be in turn stably
maintained by the activity of state-encoding neurons. Antici-
patory neurons could also accumulate inputs from the tonic
state encoding neurons, providing high-resolution estimates of
the elapsed time since the previous event or the time remaining
before the next event. These three types of units can therefore
work together to provide temporal information on multiple
time scales, suggesting that state-dependent network and ac-
cumulator models describe the representation of time within
SEF at different levels of temporal resolution.

Flexible representation of sequential states?

The task employed in this study could not determine whether
individual neurons encoded the ordinal position of each behav-
ioral state or the behavioral states themselves independent of
the order (Berdyyeva and Olson 2009) because we could not
permute the various events. For instance, we could not instruct
the monkey to wait for the spatial cue after the cue had already
been presented. We discussed this issue in a recent report of an
experiment featuring two instructional cues (Campos et al.
2009). Suppose that there are two cues presented asynchro-
nously in a task, and an SEF neuron is found to be tonically
active between the presentations of the cues. Such a neuron
might fire because the first event just occurred or the second
event is about to occur or because the monkey is currently
waiting between events one and two. If the presentation order
of the cues is reversed, the activation patterns of individual
neurons might change as a consequence depending on the

“meaning” of the activation pattern. We hypothesize that the
nature of the change, if any, would depend on how the monkey
has learned the task, how often the temporal order of the cues
was reversed, how predictable was the reversal, and how those
cues were utilized in the task. We further hypothesize that
several neurons would fire at a different task interval but that
several would remain unchanged (Berdyyeva and Olson 2009).
This issue, however, does not affect the ability of the popula-
tion of SEF neurons to encode the sequential states of a task.
Even if several neurons fired at a different interval, the sequen-
tial state representation could still be decoded based on the set
of neurons active in each interval. Our paper suggests that,
while many individual activation profiles can be found in SEF
that might reflect individual behavioral states or the ordinal
position of states, when an aggregate view is taken, the result-
ing population characteristics can serve the function of piecing
together the various temporal epochs, and their related task
demands, to form a coherent string of behaviors required to
perform even the most basic task.

Is timing a general function of the medial frontal cortex?

Supplementary motor cortex is composed of three subre-
gions—the SEF, which is specialized for movements of the
eyes, the supplementary motor area (SMA), and the presupple-
mentary motor area (pre-SMA), which are primarily concerned
with movements of the body and limbs. It is not clear from the
results presented here if timing is a general function of sup-
plementary motor cortex or if the representation of sequential
states in SEF is particular to eye movement tasks. Would SEF
neurons respond in a similar fashion during an arm-movement
task? Previously, we reported evidence for a complementary
question, whether timing information concerning an eye move-
ment task is present in the SMA. We found a neural activation
in the SMA that signaled the expectation of reward at the end
of an eye movement task (Campos et al. 2005) that could be
useful in predicting the onset of a reward delivery event as has
been found previously in SEF (Amador et al. 2000; Stuphorn
et al. 2000). We hypothesized that it would be useful to the
monkey to broadcast reward information broadly to support
learning and to acquire additional rewards more efficiently in
the future. For example, if there was some combination of limb
or body movements that influenced the amount of reward that
monkey received, the reward expectancy signal in SMA and
SEF could reinforce whatever high-level motor plans were
spontaneously active prior to a large reward delivery.

We suspect that while all of the supplementary motor cortex
contains reward related information, it is also an area where
signals that will be used to control arm versus eye movement
behaviors are to some degree segregated. We would hypothe-
size that SMA or pre-SMA neurons would collectively repre-
sent the sequential states of a delayed or memory-guided arm
movement task. That is, there would be event detecting, antic-
ipatory, and state encoding activity present for each state and
event for a task in which the monkey was required to control
the movements of his arms. We hypothesize that SEF sequen-
tial state activations in such a task would be limited by the
demands placed on eye movement behavior. If the monkey was
required to fixate for the entire trial, there might be neurons
that represent the oculomotor state of fixation (from fixation
acquire until the end of the trial) with very few or no neurons
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responding to other events in the trial. If the monkey was not
required to fixate, we would hypothesize that SEF would only
become active around the time of reward delivery because the
reward related signals are broadcast broadly.

Using a button-hold task, Mita and colleagues found “time-
graded” neurons in the SMA and pre-SMA that exhibited
changes in elapsed time similar to the neurons that we de-
scribed as “anticipatory.” In addition, many neurons in the
pre-SMA, but rarely in the SMA, were “time-selective,” mean-
ing that they encoded the instruction given in the task (Mita
et al. 2009). The authors suggested that pre-SMA was therefore
involved in retrieving information to structure the forthcoming
motor behavior. This time-selective activity could therefore be
similar to what we described here as “state encoding” because
the monkeys learned that each behavioral state had its own
range of possible durations. Our sample size was too small and
our recording locations were not done in such a systematic
manner as to judge whether there was a rostral-caudal segre-
gation of state encoding versus anticipatory neurons. If such
segregation does exist, it could form the basis for the identifi-
cation of a pre-SEF in monkeys.

Hierarchy of sequence information

Our study has shown that a population of neurons in the SEF
reflects every behavioral state related to an instructed eye
movement behavior. Previous work has shown that SEF neu-
rons can also represent individual eye movements within an
instructed sequence (Lu et al. 2002), mirroring findings about
sequential limb movements in the supplementary motor area
(Tanji and Shima 1994). Based on these results and others,
supplementary motor cortex has long been thought to play a
role in programming sequential movements of the eyes and
limbs. In contrast, neurons downstream from the SEF, in
primary motor cortex, do not have cellular activity that sug-
gests a role in the programming of sequential behavior (Tanji
and Shima 1994). Our results show that the representation in
SEF is not limited to eye movement encoding but also extends
to all aspects of an instructed eye movement task, including
fixation and intertrial intervals.

An instructed eye movement or sequence of eye movements,
however, is only a small portion of the behavioral programs
that must be operating within our subjects. Each trial is situated
within a recording session, during which there were individual
periods of focus or disengagement from the task. There were
then multiple recording sessions during an experimental ses-
sion, which in turn only comprised a fraction of the monkey’s
day. It is likely that neurons in other areas might encode
sequences of behavior on these longer time scales. Fujii and
Graybiel found neurons in an area lateral and maybe slightly
anterior to the SEF that were selectively active at the end of
saccade sequences (Fujii and Graybiel 2003). This suggests
that sequences of actions are represented at multiple time
scales with some regions encoding all relevant behavioral
states in service to a particular action (such as reported here in
SEF) and others representing the start and end of coordinated
groups of actions. A related theory has been proposed for
cognitive control more generally (Koechlin et al. 2003). Man-
souri and colleagues likewise found neurons in the same region
as Fujii and Graybiel that were selective to a given rule across
multiple trials, or transitions between blocks of trials (Man-

souri et al. 2006), paralleling the state encoding activity de-
scribed here on a longer time scale.
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