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A Method for Detection and Classification of Events
in Neural Activity
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Abstract—We present a method for the real time prediction of
punctuate events in neural activity, based on the time-frequency
spectrum of the signal, applicable both to continuous processes
like local field potentials (LFPs) as well as to spike trains. We test
it on recordings of LFP and spiking activity acquired previously
from the lateral intraparietal area (LIP) of macaque monkeys per-
forming a memory-saccade task. In contrast to earlier work, where
trials with known start times were classified, our method detects
and classifies trials directly from the data. It provides a means to
quantitatively compare and contrast the content of LFP signals and
spike trains: we find that the detector performance based on the
LFP matches the performance based on spike rates. The method
should find application in the development of neural prosthetics
based on the LFP signal. Our approach uses a new feature vector,
which we call the 2 cepstrum.

Index Terms—Cepstral analysis, decoding, multitaper spectral
analysis, nervous system, prediction methods.

I. INTRODUCTION

THE PROBLEM of predicting behavior from observed
brain activity has attracted considerable attention over

the past three decades. A major impetus for this has been the
building of prosthetic devices for helping locked in patients,
and indeed much work in this area uses electroencephalogram
(EEG) from humans to predict intent in simple motor tasks
[1]. However, recent advances in chronic recording and im-
plantation techniques [2], [3] have increased the attempts to
base predictions upon cortical activity recorded from implanted
electrodes [4]–[6] instead of the EEG. Implanted electrodes
have higher signal to noise ratio, and finer spatial and temporal
resolution than EEG or other noninvasive techniques. While
impressive progress has been achieved in predicting motor
intention from recorded cortical activity [7]–[11], important
scientific and technological issues remain.

The studies mentioned above emphasize the firing rate of
multiple single units as the input to the prediction algorithm.
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This approach has two limitations. First, using spike rate as a
summary of the signal ignores information present in the de-
tailed temporal structure of spike activity. This may be reason-
able in certain situations; however, it would be useful to have
a method that enables one to go beyond the spike rate when
such need arises. Second, acquiring and holding single cells for
long periods of time remains a formidable experimental chal-
lenge. This issue is of special importance when clinical ap-
plications are concerned, and suggests the need for more reli-
able control signals to drive prosthetic devices. The local field
potential (LFP) refers to the low frequency component of the
recorded neural activity, which is supposed to reflect the com-
bined synaptic activity of multiple neurons. These signals are a
candidate alternative to spiking activity since they are easier to
measure than single units, and have been shown to carry infor-
mation about underlying motor intention [12]–[15]. However,
algorithms to extract information from the LFP are still crude,
and systematic comparisons to the amount of information avail-
able from spike trains have not yet been made.

Here, we present a general method for recognizing distinct
events within neural time series data, applicable to both LFPs
and spikes. The procedure, inspired by ideas drawn from speech
recognition [16], is fully automated and can operate in real
time, and does not require trial start times or other trial-related
timing information (in contrast to some of the related previous
methods). Prediction in the absence of such information is
of importance since discrete movements such as reaches or
saccades in a prosthetic system would have to be carried out
in the absence of a trial structure. We test the performance of
the method on a set of single unit and LFP recordings from
the lateral intraparietal area (LIP) of two macaque monkeys
performing a memory-saccade task, that were first acquired
and analyzed in [13]. We show that LFPs and spikes can both
be used to predict a significant proportion of the saccades to
the preferred direction in advance of their occurrence, without
using any information about the timing of the trials. In agree-
ment with [13], where trial-related timing information was
specified, we find that the predictive performance of LFPs
matches that of the spike rate; the current study provides de-
tailed quantification of the relation between these two signals
on a trial by trial basis. Finally, we find that the presence of
single units in the recordings does not significantly affect the
performance of the LFP-based predictions.

II. RESULTS

The problem we consider is that of predicting punctate events
from observed neural activity. Such events can be characterized
by their times of occurrence, , and labels (for example, the
directions of saccades), , and the problem is, therefore, that
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Fig. 1. Implementation of the algorithm for LFP recorded from area LIP. (a) The time-frequency spectrum of the first principal component of the LFP recorded
from a single site showing the underlying events at times t with corresponding labels a . Also shown are windows L used to compute feature vectors for each of
these events. The windows are chosen to precede the events if the aim is to predict the events before they occur. (b)–(e) Average spectra and the corresponding 2d
cepstra computed for trials to the preferred direction (b) and (c) and trials to the anti-preferred direction (d) and (e). The vertical line in b,d denotes the beginning
of the memory period. Note the enhancement of gamma band (25–90 Hz) activity in the memory period for the preferred direction. The 2d cepstra also show
differences between the two cases. In addition, they provide a compressed representation. (f)–(g) Detection of saccades to the preferred direction. (f) First principal
component of the LFP recorded at a single site along with a saccade to the preferred direction (P). (g) Negative log-likelihood (risk) as a function of time for
predicting the saccade P. Maximizing the log-likelihood is equivalent the minimizing the negative log-likelihood as discussed in the text. The local minimum at
(for which the log-likelihood is greater than the threshold � ) corresponds to a saccade at PSto the preferred direction. The feature vectors are computed with an
offset t relative to the saccades that are being predicted. The difference in time between S and P is the error in the timing prediction. The prediction is
accepted as correct if this difference is within a specified tolerance and provided it occurs separated from the previous prediction by a duration T.

of predicting these times and labels from the observed neural
activity, say, . We propose a solution to this problem based on
maximizing the log-likelihood function of the observed neural
activity. We show that the log-likelihood is naturally expressed
in terms of a new set of quantities which we call cepstra.
These quantities are the features underlying our analysis, and
provide a parsimonious description of the neural activity. Fi-
nally, we discuss an implementation of our approach in real-
time, and apply the method to the problem of predicting sac-
cades from the LIP data mentioned in the Introduction.

A. Algorithm

While there are a number of measures that can be used to
quantitate neural activity, a particularly useful measure is the
spectrum, which, for a stationary process, is defined as the
Fourier transform of the autocorrelation function. Neurobio-
logical time series are not stationary. However, in the absence
of sharp external events LFP spectra are found to be stationary
over a few hundred milliseconds [13]. Therefore, a time-fre-
quency spectrum can be defined by ,
where the Fourier transform is evaluated using data
from a few hundred milliseconds around time , and the angular
brackets denote a statistical average. The spectrum provides
a complete characterization of second order correlations in a

time series [17], both LFP and spikes, and forms the starting
point of our analysis. In addition, the spike spectrum contains
information about the spike rate since the high frequency limit
of the spectrum for spiking activity is the spike rate [18]. The
“derivation” of the likelihood function discussed below is
restricted to the case of LFP; the changes required to carry out
this procedure for spiking activity are discussed towards the
end of the derivation.

1) Log-likelihood: We reasoned that in the absence of
events, the observed LFP data can be characterized by a
time-independent mean spectrum , and assumed that
the occurrence of an event at time causes a system-
atic deviation of from this value within a window

. Here
is an offset allowing for the possibility that the influence of
events on the observed spectrum can either precede or follow
the event in question, and is the duration of the window
[Fig. 1(a)]. In this case, the quantity is
correlated with the occurrence of events and
for outside . Assuming further that distinct
events are sufficiently well-separated in time that the dis-
tinct windows are nonoverlapping [Fig. 1(a)], we mod-
eled an event of type occurring at time by a function

which vanishes outside . Since are
nonoverlapping, provides a
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time-frequency characterization of all events. Now, mo-
tivated by the fact that the distribution of the logarithm
of the time-frequency spectrum is known to be approxi-
mately Gaussian [19], we propose the following Gaussian
approximation to the log-likelihood for the residual process

(i.e., for the conditional probability density function of
conditioned on the events )

(1)

where is an unknown kernel. Note that
on the left hand side is a function of time and frequency.

We now show that under certain conditions, the log-likeli-
hood can be expressed as a sum of independent contributions
from the different events. Letting denote the complement of

on the time axis, the time integrals in (1) can be split
up as follows:

Then, since in , (1) can be written as

(2)

where

is independent of the locations and labels of the events, and
will be ignored from now on since we are doing a maximum-
likelihood analysis.

In the second integral in (2), the regions of integration are
nonoverlapping . Manipulation of the first in-
tegral shows it to contain two contributions, one from the same
regions of integration , and another from nonover-
lapping regions ( for ). If the range of tem-
poral correlations in the log spectrum (as captured by the kernel)
is significantly smaller than (the length of the windows ),
the contribution from the nonoverlapping regions of integration

in (2) is dominated by the one from the same regions, and the
log-likelihood is approximately given by

(3)

2) Feature Vectors: 2d Cepstra: Equation (3) is a sum of in-
dependent contributions from the different events. However, it
still has coupling between the two time and frequency labels
which makes it difficult to use, especially because of the un-
known kernel. However, by introducing the following two-di-
mensional (2-D) Fourier transforms:

(4)

and using the orthogonality relations

(5)

where is the Dirac delta function which is zero when
and infinite for . Equation (3) can be written as

(6)

Here, we have ignored an overall multiplicative factor, and
denotes the complex conjugate of (similarly for the other
quantities). In (4)–(6), the variable is discrete ( ,
where is an integer) and the variable is continuous. A sim-
ilar analysis can be carried out for data sampled at a frequency

: the only change is that the variable is also discrete
( an integer) and the integral over in (6) is
replaced by a sum over . Note that the log-likelihood in (6) is
not only a sum of independent contributions from the different
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events, it is also the sum of independent contributions from the
different values of the and variables. We next show how the
properties of log spectrum allow dropping the kernel from (6)
and lead to the final expression for the log-likelihood.

In (6) the approximate log-likelihood has been expressed in
terms of feature matrices which are 2–D Fourier transforms
of the logarithm of the time-frequency spectrum. The transfor-
mation to these variables has the following advantage: if the
time-frequency spectrum is broad-band in frequency and slowly
varying in time, as is true of most neurobiological data,
is narrowly localized in the plane. This is seen in Fig. 1:
the average spectra for trials to the preferred and anti-preferred
directions are shown [Fig. 1(b) and (c)] and the absolute value
of corresponding mean cepstra for the LIP data that is the
subject of our analysis are shown [Fig. 1(d) and (e)] (see the
Appendix for details of experiments). Furthermore, it is known
that estimates of the spectrum are known to be approximately
uncorrelated for frequencies that differ by twice the bandwidth
[19]. If, as assumed in deriving (5), temporal correlations fall
off rapidly over the width of the window, will have
a broad distribution in the plane. Based on these ob-
servations, the sums over and can be truncated to

and (the choice of and being guided by the
data under consideration), and can be assumed to be
constant over this range. Then, can be absorbed into a
multiplicative constant. Now, defining , and as one-
dimensional (1-D) vectors obtained by concatenating the real
and imaginary parts of the components and

, the approximate log-likelihood is (apart
from an overall multiplicative constant) given by

(7)

Equation (7) is our final expression for the log-likelihood. The
maximum-likelihood solution to the event detection problem is
then given by maximizing the right hand side of (7) with re-
spect to , under the constraint that the windows
used to compute the feature vectors are nonoverlapping, i.e.,

for all . Note that if training data is avail-
able, the maximum-likelihood estimate of the parameters
is given by where are the known times for events of
type . Thus, is the mean feature vector for events of type

, as is implicit in (1).
The feature vectors in (7) are based on the 2-D Fourier trans-

form of the log spectrum. The use of such Fourier transforms
is related to an approach that is common in speech recognition,
where the Fourier transform of the instantaneous log spectrum
viz. , along with its low
order derivatives is used to construct feature vectors. is
known as the cepstrum, and the variable is known as the que-
frency [16]. In analogy with this nomenclature, we refer to the
2-D Fourier transform of the log spectrum, e.g., as the

cepstrum. While the use of the cepstrum and its derivatives
can be thought of as an expansion of the time dependent cep-
strum in terms of powers of time, the use of the cepstrum can
be thought of as an expansion in terms of sines and cosines. The

advantage of the cepstrum is that dynamics is automatically
included in the feature vector rather than having to incorporate
it via time derivatives.

3) Real-Time Implementation: The solution suggested
above involves maximization over all possible times and la-
bels, whereas in practice events have to be detected as data is
gathered. If maximization of (7) is carried out locally which
marching through the data, there is a danger of locating spurious
maxima and missing the true maxima. To avoid this possibility,
we incorporate label-dependent thresholds, , on the
log-likelihood, and implement the algorithm as follows:

a) and are the earliest time and the corresponding label
for which:

i) is a local maximum of ;
ii)

for all ;
iii) .

b) Subsequently, and are the earliest time greater than
and the corresponding label for which:

i) is a local maximum of ;
ii)

for all ;
iii) ;
iv) .

Finally, since this is a detection problem, we define prediction to
be correct if it occurs within some prespecified window around
a real event with the same label. The duration of this window is a
parameter in the algorithm. This completes our derivation. Note
that if for a particular label “ ,” is set to be too high, no
events of type “ ” will be predicted; on the other hand, if is
set to be too low, too many will be predicted. These parameters
can, therefore, be adjusted to provide a desired total number of
predictions for events of each type. However, since the number
of recordings included in the application discussed here is large
and our aim is to present a new method and its first application,
we simply fixed the thresholds once and for all in the manner
discussed in the Appendix.

It was mentioned previously that the spike rate is the high
frequency limit of the spike spectrum [18]. It is, therefore,
necessary to separate the contribution from the spike rates
and the contribution from the spectral shape of spiking ac-
tivity. The latter can be quantified by the normalized quantity,

, where is the spike rate. The above deriva-
tion can then be repeated to show that (7) is applicable to
spiking activity where the cepstra are computed from (4)
with . Here, and are
the mean spike rate and the mean spectrum in the absence of
events. Similarly, if the spike rate varies slowly over ,
(7) can be used for predictions based on the spike rate itself,
where the feature vector taken to be the 1-D Fourier transform
of the logarithm of evaluated over . Thus, a
natural way to combine these two quantities is to construct a
feature vector consisting of the Fourier transform of the loga-
rithm of the spike rate along with leading components of the
cepstrum for spikes. Note that in certain situations (as with the
data we analyse in the next section) the cepstrum may not be
necessary since the rate may a sufficient characterization of the
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information carried by the spikes. We mention the cepstra
of the spikes simply to point out that the method can be used in
cases where one wishes to go beyond the spike rate.

Finally, we mention that maximizing the log-likelihood sub-
ject to the constraints off nonoverlapping windows is equiva-
lent to minimizing the negative log-likelihood subject to these
constraints. This suggests a connection between the approach
adopted here and the risk minimization approach in decision
theory [20]. In that approach, a risk function is constructed as
a sum of the negative log-likelihood and additional terms that
enforce known constraints on the events. The advantage of this
approach over the more conventional Bayesian approach [21]
is that constraints are less influential that prior probabilities in
determining the solution, and prior probabilities are in general
unknown and difficult to estimate. The risk minimization ap-
proach is, therefore, particularly relevant when data is scarce.

B. Application

To test our algorithm, we attempted to predict saccades to the
preferred direction from recordings of LFP and single unit ac-
tivity acquired in [13] from area LIP of macaque monkeys while
they performed a memory-guided saccade task. In this task, the
monkeys were required to make saccades to remembered lo-
cations of targets flashed at one of eight positions arranged in
a circle on a screen (see the Appendix for further details on
the behavioral paradigm). By analyzing recordings in which
single units were found, [13] observed that the firing rate and the
gamma band (30–90 Hz) LFP power during the memory period
are highest for one of these directions (the preferred direction;
the opposite direction is referred to as the anti-preferred direc-
tion), and found sharp directional tuning for both the gamma
band LFP power and the spike rate. We found similarly sharp
directional tuning for the substantially larger set of recordings
under study here (see the Appendix), indicating that there is little
discriminability within the nonpreferred directions. Since, in ad-
dition, the memory period activity in the anti-preferred direction
is not very different from baseline activity, we restricted our at-
tempts to predicting saccades in the absence of timing informa-
tion to the preferred direction alone. As discussed next, even this
simplified problem is qualitatively different from the problem in
which trial start times are used.

1) Quantifying the Performance: Need for Different Metrics
When Trial Times Are Not Supplied: One of our initial findings
is that a different set of performance metrics need to be defined
for detecting and classifying events, as opposed to simply clas-
sifying trials (which is the usual case, e.g., in [13]). In the latter
case, percentages of correct or incorrect classifications provide
an adequate characterization, as specified for example through
a confusion matrix. In the present case, however, events need
to be located in time before being classified. The events being
located and classified occur comparatively infrequently in time,
and do not necessarily have prominent signatures for any given
event (contrast this with say spike detection and waveform clas-
sification from extracellular recordings, which is an analogous
problem). For example, in the present instance, we might be lo-
cating ten events of one type that occur over a twenty minute
interval (see the Appendix for details of experimental data).

While there are a number of ways to characterize the extra
degree of freedom introduced by the event detection stage, we
found it convenient to quantify the “attempt frequency” (AF).
This is the average rate (events per unit time) at which the de-
tector reported events, whether they be correct or incorrect pre-
dictions. Note that in our algorithm, the detection and classifi-
cation are carried out simultaneously by means of a time depen-
dent likelihood (or risk) function (contrast this with the problem
of spike detection mentioned earlier, where detection and clas-
sification are distinct). Note that the “attempt frequency” can be
adjusted by means of the thresholds on the log-likelihood. For a
fixed attempt frequency, one may obtain classification and mis-
classification rates in the same way as one does for the more con-
ventional case, with the caveat that events are detected within a
nonzero time window.

Another quantity we introduce is the “null positive” (NP) rate,
namely the fraction of events that will be correctly detected and
classified simply by chance. This rate is a function of the at-
tempt frequency and is nonzero, since the attempt frequency is
nonzero. It provides the baseline for the detector: the perfor-
mance of the detector may be judged by how much larger the
true positive (TP) rate is compared to the null positive. Note
that NP is a small number, since the events being detected occur
fairly rarely: the probability that a random detector will locate
the events correctly is, therefore, quite small. The calculation of
NP is discussed in the Appendix.

2) Prediction of Saccades:: Since there is only one type of
event to predict, i.e., saccades to the preferred direction, the al-
gorithm described in the previous section was applied with just
one type of event (labeled P), as shown in Fig. 1(f) and (g). Each
recording was divided into two halves of equal duration and the
first half was considered the training set and the second the test
set. The mean feature vector and the threshold were
determined from the training set using a cross-validation proce-
dure to reject outliers (see the Appendix). The feature vectors
for the LFP were based on cepstra. The use of cepstra to
model spiking activity was precluded in these recordings by the
high variability of the single-trial spike spectra [13]. This is a
consequence of the limited number of spikes in each trial, and
suggests that most of the behavioral information in these exper-
iments is contained in the firing rate. As discussed at the end
of the derivation, the Fourier transform of the logarithm of the
spike rate is a natural feature vector in this case. However, for
consistency with previous work [13], we used rates themselves
as the feature vectors. The duration of the window over which
the feature vectors were computed was set to be
ms, and the offset was chosen as the mean time between
the saccade and the beginning of the memory period. Since,

ms, this ensured that the windows preceded the
saccades. The parameters used to compute the LFP spectra and
the spike rates, and the chosen dimensions of the cepstral feature
vectors are discussed in the Appendix. Finally, a prediction was
considered correct if it occurred within ms of a known
saccade to the preferred direction.

The results of the analysis are displayed in Fig. 2, in terms of
the fraction of correct predictions or TPs [Fig. 2 (left) -axis],
the AF [Fig. 2 (right) -axis], and the NP rate [Fig. 2 (left)

-axis] (see the Appendix for calculation). The results show that
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Fig. 2. Detection and prediction without externally supplied timing informa-
tion. Average fraction of correct predictions for trials to the preferred direction
(TP); expected number of predictions for a random detector (NP), and the AF.
The results are shown pooled across all recordings (c), and separately for the two
monkeys (a) and (b). Note that the performance greatly exceeds that expected
from a random detector. Note also that the performance of the LFP-based pre-
dictions is comparable to that of the spikes, and that the performance of the
LFP-based predictions in recordings is not significantly affected by absence of
single units. Error bars were estimated using jackknife over recordings. Values
of TP and NP should be read on the left y-axis, while that of AF should be read
on right y-axis.

the method described here performs significantly better than the
null case corresponding to a random detector with well over
50% of the saccades being correctly predicted from the LFP and
approximately 50% being correctly predicted from the spiking
activity. The method used here to set thresholds on the log-like-
lihood (see the Appendix) led to varying AF and TP for the dif-
ferent groups. However, in each case, the method generated a
reasonable number of correct predictions (TP). The ratio TP/NP
is approximately 4.5 for LFPs without single units, 6.25 for
LFPs with single units and 6.5 for single unit activity, indicating
that predictions from the LFP recorded at sites with single units
compare favorably with those from the spike rate. The slight
difference in the predictions from LFP recorded at sites without
single units and those recorded at sites with single units is attrib-
utable to the heterogeneity in the quality of the recordings—note
that there were over 90 recordings from sites without single units
as opposed to only 28 sites at which single units were found (see
the Appendix). Note also that AF is likely to increase faster than
TP. In fact, by choosing the thresholds differently for the LFP
recordings we were able to get TP to NP ratios to be very sim-
ilar for all three cases (results not shown). Finally, we note that
the AF values in bottom row of Fig. 2 correspond to the number
of false positive (FP) detections varying between being equal to
and twice the total number of saccades (The sum of the number
of true and FP events is given by the duration of the recording
times the attempt frequency, AF. This enables computation of
FP given AF, TP, and the duration of the test data.). While this
value of FP might seem large, note that the important measure
is TP/NP, which is substantially above 1 for each of the groups.

The conclusion of essential equivalence between the three
classes was borne out from the performance on individual
recordings shown in Fig. 3. This figure displays the sorted
values of the TPs for analyses based on LFPs recorded at sites
without single units [Fig. 3(a)], LFPs recorded at sites with

Fig. 3. Predictionsfor all recordings. Sorted values of the fraction of correct
predictions (TP) for all recordings: 86 LFP recordings from sites without single
units, 27 LFP recordings from sites with single units, and 30 single unit record-
ings. (a) LFP recordings without single units, (b) LFP recordings with single
units, and (c) single-unit-based predictions. Note the similarity in the distribu-
tions.

Fig. 4. Histogram of timing differences. Timing differences between the pre-
dicted times of occurrence of events to the preferred direction and their true time.
(a) LFP and (b) single units. Both distributions are quite narrow with widths of
roughly 70 ms (LFP) and 85 ms (spikes).

single units [Fig. 3(b)], and spike rates [Fig. 3(c)]. While there
was considerable variation in performance across recordings,
the distributions for the three categories were quite similar. The
attempt frequency values are not displayed: they were found to
be negatively correlated with the fraction of TPs ( ;
t-test), an indication of the heterogeneity in the quality of the
recordings. Note also that for a particular performance level,
there were always more LFP recordings without single units
than recording with single units (Fig. 3). For example, the
ratio of TP to NP was greater than 10 in more than 30 LFP
recordings but in just 10 single unit recordings. This is not
simply a consequence of having more recordings since one can
imagine a situation where there are more recordings without
single units but their predictive power is low.

Finally, the distributions of the errors in timing are displayed
in Fig. 4 pooled across all recordings. The distribution obtained
from the LFP, and that obtained from the spike rate were found
to have similar widths, approximately 70 ms for the LFP and 85
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ms for the spikes, indicating once again that the dynamic LFP
spectra and spike rate contain the similar predictive power in
our data. The figure also indicates that increasing the tolerance
in the timing error (set to ms) will not increase the quality
of the predictions. There is a slight bias in the timing predic-
tion. This is a consequence of the fact that the point process
model assumed in deriving the algorithm is only approximately
valid for the windows used to calculate the feature vectors in
this case. In particular, the model assumes that events affect the
observed time-series only within the windows used to define the
feature vectors (see the Appendix. In contrast, the elevation of
the gamma band power in the LFP and the spike rates persist
outside the windows chosen in our analysis. The bias can be
removed either by increasing the duration of the windows or
by including more events in the detection. The first possibility
is limited by our aim of keeping a causal window between the
segments of data used to compute feature vectors and the event
locations. We leave the second possibility for future work.

The previous analysis did not use information about the
timing of the trials. To compare the results of our approach
with those reported in [13], we also analyzed the problem
where the timing of the saccades was known, and the task was
to classify them into two categories based on the log-likeli-
hood: a) saccades to the preferred direction and b) saccades
in anti-preferred directions. In this case, we defined
as the mean feature vector for saccades to the anti-pre-
ferred direction, computed with the same parameters as
before( ms, ) ms. Then, a saccade with
feature vector, was assigned to the preferred category if

and to the
anti-preferred category otherwise. A saccade to the preferred
direction was considered correctly classified if it was assigned
to the preferred category and a saccade to any of the other di-
rections was considered correctly classified if it was assigned to
the anti-preferred category. The results are displayed in Fig. 5.
“ ” denotes the fraction of correct predictions for saccades to
the preferred directions, “ ” denotes those for saccades to the
anti-preferred direction, and denotes those for saccades to
the remaining directions. Once again classifications based on
the cepstrum of the LFP were comparable to those based
on the spike rates. More than 90% of the trials to the preferred
and anti-preferred direction were classified correctly based on
the LFP. When spike rates were used, the performance was
slightly worse going down to 80% for the preferred direction.
Furthermore, a substantial fraction of the saccades to directions
other than the preferred and anti-preferred directions were
classified as belonging to the anti-preferred class, confirming
that there is not much discriminability within trials to the
nonpreferred directions. These results are similar to those
obtained in [13] from recordings at sites with single units. Note
that the improved quality of these results compared to those
displayed in Fig. 2 confirms the idea that event detection and
classification without using trial specific timing information
is a qualitatively different, and a substantially more difficult
problem than the one in which external timing information is
supplied. We mention in passing that we also attempted clas-
sifications based on all eight directions. The average fraction
of correct predictions based on the LFP was approximately

Fig. 5. Predictionof event type when timing information is supplied. Average
percentage of correct predictions for saccades to the preferred direction (P); anti-
preferred direction (A); all other directions (R). The results are shown pooled
across all recordings, and separately for the two monkeys. Note that the perfor-
mance of the LFP-based predictions is comparable to that of the spikes. Note
also that the performance of the LFP-based predictions is not significantly af-
fected by whether single units were present in the recordings. Error bars were
estimated by a jackknife across recordings. The arrow at the bottom left of each
plot indicates the noise level.

0.50 for the preferred direction and 0.34 and 0.25 for the two
directions adjacent to the preferred direction. For the spike
rate-based analysis, the corresponding numbers were 0.62,
0.28, and 0.19, respectively. Predictions for the remaining
directions were almost at chance level (0.125). The increase in
error when predicting the preferred direction was largely from
misclassifying the preferred direction saccades into one of the
two adjacent directions. The reduction in performance seen in
these results lends further support to our approach of attempting
to predict the saccades to just the preferred direction in our
data. We also attempted predictions into just the four categories
(preferred, the two adjacent directions and anti-preferred) and
found similar results.

III. CONCLUSION

The only previous study aimed specifically at comparing pre-
dictions from LFP with those from spikes was that in [12]. Using
feature vectors based on the spike rate and the evoked potential,
and knowledge of trial times, these authors showed that LFPs
from the primary motor cortical area contain as much informa-
tion about arm movements in a center-out task as that contained
in the spikes. In more recent work, Rickert et al. [14] showed
that the spectral content of LFP signals in the motor cortex (as
characterized by the power in different frequency bands) can be
used to predict movement, similar to recent findings of [15] in
the parietal cortex. However, these studies utilized information
about trial times to aid the predictions. As discussed previously,
prediction without use of the trial structure is a substantially
more difficult problem than that where such knowledge is used.

Our analysis indicates that the LFP spectra and the spike rates
have comparable predictive power for saccade plans in LIP even



BOKIL et al.: DETECTION AND CLASSIFICATION OF EVENTS IN NEURAL ACTIVITY 1685

when timing information is not supplied externally, and adds to
the evidence provided in [12] and [13] of the equivalence be-
tween spikes and LFP. The presence or absence of single units
in the recordings did not correlate with the quality of the predic-
tions. Coupled with the fact that LFPs are much easier to record
than spikes, these results suggest that LFPs could supplement
or replace spikes as the basis for predictions. In addition, by
providing a unified framework for detection of transient events
underlying both point-like and continuous neural data our work
provides a bridge between predictions based on spiking activity,
and those based on continuous signals such as EEG and LFP. In
contrast to previous work on predictions from LFP [12]–[15],
our method is based on rather general properties of spectral es-
timates and does not require an ad-hoc choice of feature vector.
In addition, it does not require trial specific timing information
nor does it require a model relating the observed neural data
to the underlying behavior. It is, therefore, easily applicable to
other behavioral situations involving punctate events and opens
up the possibility of further detailed studies regarding the equiv-
alence between spikes and LFP.

One concern may be that our classifier is contaminated by ac-
tivity evoked by the visual response to target presentation rather
than the memory period activity per se. We should note that the
main goal of this work was to develop a suitable algorithm to de-
tect and classify events from the LFP signal, irrespective of the
precise origin of these events; therefore, this concern is not of
central importance in the present work. This was also the reason
that we did not attempt a systematic comparison of our choice of
feature vector with simpler choices (for example, with a feature
vector composed of the LFP power in distinct frequency bands),
or a systematic test of the dependence on the various parameters,
e.g., the bandwidth, the duration of the window used to compute
the feature vector. However, to assess the method in the context
of the memory period per se, we repeated our calculations on a
subset of the recordings choosing the windows for computations
of the cepstra to follow the visual transient, and found results
(not shown) that were comparable to the ones stated above.

Several issues have not been addressed in this study. The
time between consecutive saccades here was required to be at
least 1000 ms. However, in natural viewing a saccade occurs
approximately once every 200–300 ms. To apply our method
to such a case would require that the feature vectors be com-
puted over windows of duration less than 200 ms. We did not at-
tempt to test our method in detail with such small windows, rea-
soning that this issue is best addressed with multi-electrode and
multi-cellular recordings. The preferred direction of the LFP
and single units recorded at a particular site was almost always
identical, and these directions spanned most of the eight direc-
tions allowed in this study. It is, therefore, likely that multi-elec-
trode recordings would allow prediction of saccades to multiple
directions. Evidence for increase in the quality of predictions
from multi-electrode recordings has recently been presented for
LFP data from motor cortex in [14], [15]. Another problem we
have ignored is that of predicting other behavioral markers. This
problem is perhaps best treated by combining our approach with
more detailed probabilistic models of the underlying events. Fi-
nally, applying this technique to other experimental paradigms,
particularly with the aim of testing the generality of the equiva-

lence of spikes and LFPs found in our study, and implementing
it a prosthetic system remain important issues for future work.

APPENDIX A
DESCRIPTION OF DATA

Behavioral Paradigm

The behavioral paradigm in these experiments was as fol-
lows: at the start of the trial a spot of light appeared at the center
of a screen. The monkey was required to fixate on this spot. Once
fixation was acquired a peripheral target was flashed for approx-
imately 100 ms at one of eight locations arranged in a circle
around the fixation spot. The monkey was required to maintain
fixation and hold the target location in memory until the fixa-
tion spot turned off. This was the “go” signal to the monkey
to perform a saccade to the remembered location of the target.
The mean time between the “go” signal and the target presen-
tation was approximately 1000 ms.We had available for anal-
ysis chronically implanted tetrode recordings of LFP recordings
from 88 sites from the first monkey, and from 44 sites in the
second monkey. Spike data consisted of spike times for 16 iso-
lated single units from 12 sites in the first monkey, and 16 from
16 sites in the second monkey (for details of spike sorting, see
[13]). Recording sessions were between 700 and 1000 seconds
long, and had between 10 and 15 trials to each direction.

Directional Tuning

We calculated the principal components of the LFP data,
and determined LFP tuning curves from the mean gamma band
(25 90 Hz) power in the first principal component for a 500
ms window immediately after the onset of the cue. A total of
113(86%) recordings were found to exhibit significant differ-
ences between the power for trials in the preferred direction and
those in the anti-preferred direction ( ; t test). For the
single unit recordings, tuning curves were constructed using the
mean spike rate in the same window, and 30(93%) cells were
found exhibiting significant differences in the rate between
trials to the preferred and anti-preferred directions ( ;
ANOVA). The analysis of this paper involved these well-tuned
recordings. Finally, 27(84%) of the recordings with single
unit activity showed significant differences in gamma band
LFP power between trials to the preferred and anti-preferred
directions. The choice of the first principal component of the
LFP is not critical to our analysis. In the recordings under study,
the four LFP recordings on the tetrodes are so similar that any
one of these could have been used as well. In fact, taking the
average of the LFP recorded at the four tetrodes gave results
that were very similar to those reported here.

APPENDIX B
TRAINING THE ALGORITHM

As stated in the Applications section, each recording was di-
vided into two halves with equal number of trials, and the first
half was considered the training data and the second was consid-
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ered the test data (thus giving approximately 5–7 trials to each
direction in each half). The mean time difference between
onset of the memory period and the saccade for all the trials was
calculated in each training dataset. Then, segments of data (both
spikes and first principal component of the LFP) of
ms duration centered at time before each saccade to the
preferred direction in the training data were extracted. Similar
segments extracted for saccades to the anti-preferred directions.
The extracted segments of LFP data were used to calculate the
time-frequency spectra using 300 ms moving windows, stepped
through 50 ms. We used the multi-taper method [19] with 5 ta-
pers, which corresponds to a bandwidth of Hz. The mean
(baseline) spectrum was computed from the training half of
each recording using the same parameters. The spectra were
then used to compute cepstra using (4). In a similar manner,
extracted segments of spiking activity were used to compute
spike rates by convolving the spike times with a Gaussian kernel
(width 50 ms), stepped through 5 ms.

With these cepstra in hand, we then computed and
for each LFP recording using the following cross-valida-

tion procedure: we computed average cepstra for saccades
to the anti-preferred direction, and constructed a 1-D feature
vector from them, say, . Then, we dropped one sac-
cade to the preferred direction in turn and computed the average

cepstra from the remaining preferred directions, and the cor-
responding 1-D feature vector, say, . Subsequently,
we tabulated all the saccades to the preferred direction satisfying

, where are the times of these saccades and
are the 1-D feature vectors constructed from the cep-

stra corresponding to these dropped saccades. Saccades which
do not satisfy this condition were considered outliers. The
cepstra of those saccades that did satisfy the above condition
were, therefore, averaged to give . A similar cross-valida-
tion analysis carried out for the anti-preferred directions gave
the mean feature vectors . In computing and for
the LFP, it was necessary to fix the dimensionality of the feature
vectors. This was done by first plotting

in the neighborhood of the a few saccades to
the preferred direction with varying choice of dimensionality.
We found that the log-likelihood function changed by less than
0.0001 when the cut-off dimensions exceeded 5 in the direc-
tion and 10 in the direction. This choice was fixed for all
subsequent analyses. To complete the training process, we set

where
the minimum is over all the saccades tabulated earlier as cor-
rectly classified. This is the minimum threshold required to en-
sure that the dropped saccades can be correctly predicted from
the remaining ones by the algorithm stated in the main body of
the paper. Finally, and were computed for
spiking activity using the same procedure.

APPENDIX C
ESTIMATE OF NOISE PREDICTION

Consider a detector that consists of independently placed
windows of duration . A correct prediction is said to occur

when an event falls within one of the detector windows. can,
therefore, be interpreted as the allowed error in the timing pre-
diction (chosen to be 500 ms in our analysis). If the events are
distributed as a Poisson process of mean rate , and the detector
windows are placed randomly, the expected number of correct
predictions by chance is . Thus, the expected fraction
of correct predictions is , where is the length of the
recording. is the number of events per unit time, i.e., an
attempt frequency. This formula was used to compute values of
NP in Fig. 2. Thus, given a total number, , of events predicted
by our algorithm for a recording session of duration (this in-
cludes correct predictions and FPs), .
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