A More Biologically Plausible
Learning Rule Than
Backpropagation Applied to a
Network Model of Cortical
Area 7a

Area 7a of the posterior parietal cortex of the primate
brain is concerned with representing head-centered space
by combining information about the retinal location of
a visual stimulus and the position of the eyes in the
orhits. An artificial neural network was previously trained
to perform this coordinate transformation task using the
backpropagation learning procedure, and units in its
middle layer (the hidden units) developed properties very
similar to those of area 7a neurons presumed to code
for spatial location (Andersen and Zipser, 1988; Zipser
and Andersen, 1988). We developed two neural net-
works with architecture similar to Zipser and Andersen’s
modei and trained them to perform the same task using
a more hiologically plausible learning procedure than
backpropagation. This procedure is a modification of
the Associative Reward-Penalty (A; ;) algorithm (Barto
and Anandan, 1985), which adjusts connection strengths
using a global reinforcement signal and local synaptic
information. Our networks learn to perform the task
successfully to any degree of accuracy and almost as
quickly as with backpropagation, and the hidden units
develop response properties very similar to those of
area 7a neurons. In particular, the probability of firing
of the hidden units in our networks varies with eye
position in a roughly planar fashion, and their visual
receptive fields are large and have complex surfaces.
The synaptic strengths computed by the A, algorithm
are equivalent to and interchangeable with those com-
puted by backpropagation. Our networks also perform
the correct transformation on pairs of eye and retinal
positions never encountered hefore. All of these findings
are unaffected by the interposition of an extra layer of
units hetween the hidden and output layers. These re-
sults show that the response properties of the hidden
units of a layered network trained to perform coordinate
transformations, and their similarity with those of area
7a neurons, are not a specific result of backpropagation
training. The fact that they can he obtained by a more
hiologically plausible learning rule corrohorates the va-
lidity of this neural network’s computational algorithm
as a plausible model of how area 7a may perform co-
ordinate transformations.
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An important element of information processing in
the nervous system appears to be the collective be-
havior of large ensembles of neurons. The study of
the emergent properties of these networks has been
an important motivation behind the development of
artificial neural network models whose architecture
is inspired by the biological wiring of nervous sys-
tems, containing a large number of simple compu-
tational units extensively connected to one another.
It is the hope of many neuroscientists that these mod-
els will elucidate, at least at an abstract level, some
of the basic principles involved in information han-
dling by the nervous system and thus perhaps provide
a theoretical framework within which to formulate
experimental questions.

One of the best examples of this type of approach
so far is a neural network model of area 7a of the
primate’s posterior parietal cortex developed by Zip-
ser and Andersen (1988; Andersen and Zipser, 1988).
From lesion and single-cell recording studies in pri-
mates, it appears that area 7a is concerned with the
representation of spatial locations in a head-centered
reference frame (for a review, see Andersen, 1989).
This representation is distributed over a group of neu-
rons that are sensitive to both the position of the eyes
in the orbits and the location of visual stimuli on the
retinas. Other neurons in area 7a respond to either
eye position or visual stimuli alone and are presumed
to provide the inputs from which the visual/eye-po-
sition neurons extract the craniotopic representation.
The latter neurons have very large retinotopic visual
receptive fields, and their response to eye position
interacts nonlinearly with the visual signals. Although
the majority of area 7a neurons maintain the same
retinotopic receptive fields for different eye positions,
the magnitude of the visual response varies with angle
of gaze. Holding the retinal location of a visual stim-
ulus constant and varying eye position (Fig. 1a), An-
dersen and his colleagues found that these neurons’
overall firing rate (visual plus eye position compo-
nents) varied roughly linearly with changes in hori-
zontal and vertical eye position (Fig. 18). The re-
sponse profiles for varying eye position were called
“gain fields,” and a majority (78%) of area 7a cells
had planar or largely planar gain fields (Fig. 1¢; An-
dersen et al., 1985; Andersen and Zipser, 1988; Zipser
and Andersen, 1988).

Zipser and Andersen (1988) designed a computer-
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Figure 1. , Experimental method of measuring spatial gain fields of area 7a neurons. These experiments were carried out several years before our modeling project {Andersen
et al., 1985, 1987). The monkey faces a projection screen in total darkness and is trained to fixate on a point, £ at ane of nine symmetrically placed locations on & projection
screen with his head fixed. The stimulus, s, is always presented at the same retinal location, at the peak of the retinal receptive field, rf, The stimulus consists of 1°- or 6
diameter bright spots flashed for 500 msec. 5, Peristimulus time histograms of neuronal activity recorded from a particular area 7a neuron, arranged in the same relative positions
as the corresponding fixation spots. The arrows indicate the time of visual stimulus onset. The characteristics of the response to the visual stimulus at the various angles of gaze
constitutes the newron’s eye position gain field. Parts a and b were adapted from Andersen et al. {1985). ¢, graphic representation of the gain field in b, introduced by Zipser and
Andersen {1988). The diameter of the thin outer circle is proportional to the total response evoked by the stimulus. The width of each annulus represents the contribution to the
total response due to eye position alone and is measured as the background activity recorded 500 msec before the stimulus onset. The dark inner circle represents the visual
contribution to the response, and its diameter is computed by subtracting the background activity from the total respanse. This representation shows that this neuron’s gain field

is roughly planar in a direction up and to the left.

simulated neural network with an input layer, a layer
of internal or hidden units, and an output layer. The
input layer consisted of two groups of units with prop-
erties similar to those of area 7a neurons sensitive to
either eye position or visual stimulus alone. The out-
put layer coded for head-centered location in an ab-
stract format independent of eye position and was
used to generate error signals to train the network.
The network was trained to perform the coordinate
transformation from retinotopic to craniotopic refer-
ence frames using the backpropagation procedure
(Rumelhart et al., 1986a). The striking result of these
simulations was that in the process of learning the
hidden units developed response properties very sim-
ilar to those of the area 7a neurons that seem to en-
code spatial location—specifically, a roughly planar
modulation of visual response by eye position, and
large complex receptive fields. This result suggested
that area 7a neurons, as an ensemble, can in fact pro-
vide information for the abstract representation of
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space, and that these neurons’ properties can be gen-
erated by a supervised learning paradigm.
Backpropagation networks can learn to perform a
computation without explicit “knowledge,” using only
error signals from the environment as cues to improve
its performance, in a paradigm referred to as “‘super-
vised learning” (Hinton, 1987). This type of training
scheme has conferred upon neural networks a stron-
ger element of biological plausibility than many pre-
vious models of brain function that relied on precom-
piled rules and symbol processing. Moreover, although
various supervised learning algorithms for one-layer
networks were described long before backpropaga-
tion (Widrow and Hoff, 1960; Minsky and Papert,
1969), the discovery of the backpropagation algo-
rithm (Werbos, 1974; Parker, 1985; Rumelhart et al.,
1986a), which can be applied to more powerful mul-
tilayer networks composed of nonlinear units, is in
large part responsible for the recent increase in in-
terest in neural network models. Despite the bio-



logical plausibility of supervised learning, however,
the implementation of backpropagation in the ner-
vous system would require mechanisms such as the
retrograde propagation of signals along axons and
through synapses and precise error signals that are
different for each neuron, which are not accepted as
likely candidates for learning processes in the brain.
To this end, Zipser and Andersen (1988) emphasized
that it was the solution that was of interest in their
model and not the method by which this solution was
learned. They speculated that other, more biological
learning procedures might generate a solution to the
coordinate transformation task similar to that which
resulted from backpropagation learning. It was there-
fore important to ask how crucial backpropagation is
for the development of the hidden units’ properties
in a model like Zipser and Andersen’s.

We addressed precisely this question in our study.
We trained two neural networks with architectures sim-
ilar to the Zipser and Andersen model using a super-
vised learning paradigm that is more plausible from
a biological perspective than backpropagation. The
algorithm we used, which is a variant of the Associa-
tive Reward-Penalty (A,,) algorithm for supervised
learning tasks introduced by Barto and Jordan (1987),
trains a neural network using a global reinforcement
signal broadcast to all the connections in the network.
We found that our networks can indeed be trained by
these algorithms to perform the coordinate transfor-
mation task, and that the hidden units acquire re-
sponse properties very similar to those of area 7a neu-
rons, as in the Zipser and Andersen model. A second
layer of hidden units can be interposed between the
original hidden layer and the output layer without
affecting the properties developed by units in the first
hidden layer. Furthermore, all of our networks per-
form the correct transformation on pairs of eye and
retinal position never encountered before; that is, they
generalize appropriately. A less detailed report of re-
sults from one of the A, networks has recently been
published (Mazzoni et al., 1991).

Materials and Methods

Model Networks

We devised two types of networks that we trained to
map visual targets.to head-centered coordinates, giv-
en any arbitrary pair of eye and retinal positions. The
basic architecture of these networks is similar to that
of Zipser and Andersen’s model.

Mixed A, , Network

We call the first network the Mixed A, , network (Fig.
2a) because its hidden and output layers are trained
by different learning rules (see Training, below). It
is composed of three layers of computing units: an
input, a hidden, and an output layer. The network has
a fully connected feedforward architecture, meaning
that every unit in each layer sends-a signal to every
unit in the next layer through an individual connec-
tion strength or weight (w), so that signals propagate
in one direction from the input toward the output
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Figure 2. 4, Structure of the Mixed Ay, network. The network is composed of three
layers of computing units: input units (encoding retinal location of stimulus and eye
position), hidden units, and cutput units (encoding head-centered location of the visual
stimulus). Retinal position of the visual stimulus is encoded topographically by an 8
x 8 array of input units, each with a gaussian receptive field {described in 5). The
remaining 32 input units code for eye position in a linear fashion (see ¢}, with wo
groups of eight units encoding horizontal gaze angle {with positive and negative slopes),
and two groups of eight units for vertical angle. Units in the output layer code for
head-centered coordinates in @ monotonic format {output 7) similar to the eye position
input, or in a gaussian format (gufput 2) similar to the retinal input. The hidden units
are binary stochastic elements, while the output units are deterministic logistic elements
{see Fig. 3). Shading is proportional to unit activity in the input and output layers.
Connection weights are indicated by w. b, Angle-coding function of the retinal input
units. Each unit’s activity level is a gaussian function of the retinotopic x and
ycoordinates of the visual stimulus, one 1/ width of 15°, and spaced 10° apart
from that of its neighboring units. ¢, Angle-coding function for the eye position units.
Each unit codes for the x or y eye position linearly. The slopes and intercepts for
each unit were assigned randomly within ranges observed for area 7a neurons.

layer. The input layer consists of two groups of units
(Fig. 2a, squares), one coding for the retinal location
of the visual stimulus, and the other for the position
of the eyes in the orbits. These units encode the ex-
ternal input by transforming an angular position into
a value between 0 and 1, which is then sent to the
hidden units. Retinotopic locations are represented
by 64 visual units arranged in an 8 x 8 array, each
with a gaussian receptive field (Fig. 2b) with peak at
10° from its neighbors’ and 1/e width of 15°, produc-
ing a uniform topographic representation of the ret-
ina. Eye position is coded by four sets of eight units
representing horizontal and vertical eye coordinates
with positive and negative slopes, for which activation
is a linear function of eye angle (Fig. 2¢). These rep-
resentation formats were modeled according to char-
acteristics of area 7a neurons established in prévious
studies (Andersen et al., 1985; Andersen and Zipser,
1988; Zipser and Andersen, 1988) and are the same
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Figure 3. & Binary stochastic element. This neurally inspired computing element
performs a weighted sum of its synaptic inputs (x; through x,) by multiplying each
input by a synaptic weight (w;, thiough .}, which can be positive or negative, and
adding these products. This sum (s) is used to compute a value (p) between 0 and
1 from the logistic function [1/(1 + exp(— s)i]. The element then produces an
output of 1 with probability p; and an output of O with probability 1 — p. We used
this element in the hidden layers of alf our networks, as well as in the output layer
of the All Ag,» netwark. b, Deterministic logistic element. This unit computes a weighted
sum of its input in the same manner as the binary stochastic element. This sum is
also passed through the logistic function, but the resulting value {x) is the unit's
output itself. The unit therefore produces a continuous output between 0 and 1, which
is determined exactly by the weighted sum of its inputs. This is the element that was
used in the hidden and output layers of the Zipser and Andersen modef. We used it
only in the output layer of the Mixed Ay, network.

as those used in the input layer of the Zipser and
Andersen model.

The hidden layer (Fig. 24, diamonds) is so de-
scribed because it is not “visible” (i.e., directly con-
nected) to external agents acting at the input or at
the output. The type of computational unit making
up this layer is the binary stochastic element (Fig.
3a). This probabilistic element performs a weighted
sum () of its inputs and passes it through the logistic
function® to obtain a value (p) between 0 and 1. This
value is then used as the probability of producing an
output equal to 1. The output is 0 with probability
1 — p. This type of computing element is “neurally
inspired,” in the sense that it incorporates some well-
established features of neurons. In such an analogy,
the inputs correspond to synaptic inputs from other
neurons, the connection weights represent synaptic
strengths (with inhibitory synapses implemented as
negative weights), and the weighted input represents
the intracellular potential. The probability of firing is
analogous to a neuron’s rate of action potential firing,
and changes in the total weighted input affect the
unit’s probability of firing in a manner similar to how
changes in the intracellular potential affect a neuron’s
firing rate. This hidden layer differs from that of the
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Zipser and Andersen network in that the units of the
latter were deterministic logistic elements (described
below). The number of hidden units in the Mixed
A,» network, as well as in all the networks described
below, varied from two to eight.

The hidden units project in turn to the output layer,
which encodes the craniotopic location that is the
vector sum of the positions encoded by the retinal
and eye position inputs. The units in the output layer
(Fig. 2a, circles) are deterministic logistic elements
(Fig. 3b). Like the binary stochastic units, they too
perform a weighted sum of their inputs and pass it
through the logistic function. In the deterministic
logistic element, however, this value between 0 and
1 is the unit’s output itself. The output, therefore, is
continuous and precisely predictable from the input.
In the analogy with the neuron, this continuous out-
put would correspond to the firing rate. The outputs
of the output units encode head-centered location in
one of two possible formats: a “‘monotonic” repre-
sentation analogous to the eye position input, con-
taining any number of units from 2 to 32 (Fig. 2a,
output 1), and a “‘gaussian’” representation similar to
that of the retinal input, with a number of units rang-
ing from 4 to 64 (Fig. 2a, output 2). In the monotonic
representation, the activity of the output units in-
creases for more peripheral locations of the visual tar-
get with respect to the head, regardless of eye position.
The gaussian format units fire for visual stimuli ap-
pearing within limited receptive fields in head-cen-
tered coordinates. We used either representation in-
terchangeably, as this did not seem to affect our results.
A physiological correlate of the monotonic represen-
tation could be a motor signal to the extrinsic eye
muscles (Zipser and Andersen, 1988; Goodman and
Andersen, 1989), while the gaussian format would be
more like a receptive field for 2 mental representation
of craniotopic space. These output representations
are similar to those of the Zipser and Andersen model.

All A, . Network

The second type of network we studied is the All A,
network (Fig. 4a), so-called because all of its con-
nections are adjusted by the A, ; algorithm (see Train-
ing, below). This network’s input and hidden layers
are identical to those of the Mixed A, network. The
output layer, however, is composed of binary sto-
chastic units like the hidden layer. It, too, encodes
craniotopic location in one of two alternative formats.
Due to the binary nature of the output units, we de-
vised output formats for the All Ay, network such that
the collective activity of the output units codes for
discrete adjacent regions of space, instead of contin-
uously varying spatial locations. In the “binary-mono-
tonic” format, four triplets of units divide craniotopic
space into 16 regions by giving an output of 1 if the
x (or ) head-centered coordinate is greater (or less)
than —40°, 0°, or +40° (Fig. 4b). This format is anal-
ogous to the monotonic format of the Mixed A, , net-
work. The binary counterpart of the continuous gaus-
sian output is the “‘binary-gaussian” format, in which
four units have overlapping receptive fields centered
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Figure 4. .3 Structure of the All Ay, network. The input and hidden layers are the
same as for the Mixed Ay, network {Fig. 2). The output layer is composed of binary
stochastic units {Fig. 3a). These code for locations in craniotopic space by dividing the
latter into discrete regions according to one of two formats (output | and output 2)
described in & and c. b, Binary-monotonic format for the All A, network. Each unit
transforms an output value between 0 and 1 into an angle via a step function. An output
of 0 corresponds to all angles less {positive step) or greater (negative step} than a given
“cutoff” angle, and an output of 1 codes for all angles greater or less, respectively,
than the cutoff angle. We use step here to indicate the direction along which the step
function changes from O to 1. Typically there are four sets of three units each, for
horizontal and vertical coding with positive and negative step. Within each set, the
cutoff angles for the three units are —40°, 0° and 40°. Only the functions for one
positive-step triplet of units are plotted. ¢, Binary-gaussian format. Four units divide
craniotopic space into 13 regions using overlapping circular binary receptive fields.
Each unit outputs a 1 for a position within a 100°radius circle centered at one of
the four positions (60°, +60°).

at (£60°, £60°), such that each unit’s output is one
if the spatial position is within 100° of its center (Fig.
4¢). This format divides craniotopic space into 13
regions by virtue of the overlap of the output units’
receptive fields. The number of units in both types of
binary output format may be increased to improve the
output’s spatial resolution. We did not examine the
parameter of number of output units systematically,
as it did not produce significantly different network
behaviors.

Otber Networks

In addition to the two three-layer networks just de-
scribed, we studied the behavior of two similar four-
layer networks. These consist of a Mixed A, , network
and an All A;, network, each with an extra layer of
hidden units between the first layer of hidden units
and the output layer. This extra layer, like the original
hidden layer, is also composed of binary stochastic
units. We did this to see whether the response prop-
erties developed by the ‘units in the hidden layer of
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Figure 5. 2, Learning scheme for the Mixed A, network. Training proceeds in two
phases that are repeated sequentially. First, a pair of retinal and eye positions is
presented at the input layer. The signal propagates forward (solid arrows) to the
network's upper layers along connections strengths that initially have random or 0
values. The network’s output is evaluated by some external agent, and two types of
signals are fed back to the network (broken arrows). One is a vector error signal that
consists of the differences between the actual and desired outputs for the output
units, and is sent to the output units. The other is a scalar payoff signal {r) between
0 and 1 that is sent to the hidden units. In the second phase, the connection weights
are adjusted using the error and payoff signals. The output units adjust their weights
according to the delta rule, while the hidden units adjust them by the S'-modet A,,
learning rule. The backpropagation network used for reference was trained by the
standard backpropagation algorithm described by Rumelhart et al. (1986a). 5, Learning
scheme for the All,, network. This is identical to Mixed Ay learning described in a,
except that the scalar payoff signal r is broadcast to all the units in the hidden and
output layers, and all the weights are adjusted by the S'model Aq, rule. The network
therefore employs only the scalar payoff signal for feedback information on its per-
formance, and no error vector is reguired.

the three-layer networks depended on a direct con-
nection with the output layer.

For comparison purposes, we also set up a back-
propagation network identical to the Mixed A, net-
work described in Figure 24, except for its hidden
units, which are deterministic logistic elements and
not binary stochastic elements.

Training

We trained our networks to perform the coordinate
transformation task in a supervised learning para-
digm. In supervised learning, the network starts out
with all connections and biases set at 0, or at some
set of small random values if the training algorithm
cannot break the initial symmetry (the Ay, algorithm
we used can handle both cases). An input pattern is
presented to the network’s input layer, which prop-
agates a signal to the following layers (Fig. 5, solid
arrows). The output layer thus produces a “guessed”
output based on the initial set of connections. This
output is compared to the correct output pattern for
that particular input, and an error is computed and
fed back to the network (Fig. 5, broken arrows). The
values of all the network’s weights and biases are then
adjusted by a learning rule so that at the next presen-
tation of the same pattern the error is, at least on the
average, smaller than before. This procedure is re-
peated until the error is reduced to a value below a
desired level.

For our task, the input pattern is a signal for the
retinal location of a visual stimulus paired with one
for the current eye position. The desired output pat-
tern is one that codes for a head-centered location
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that is the vector sum of the retinal and eye positions.
The error signal is computed externally to the network.
To draw an analogy with how an animal may learn
the coordinate transformation task, the input pattern
would correspond to a visual stimulus seen with the
eyes at a known angle of gaze (sensed by proprio-
ceptive or corollary discharge pathways). The animal
may then make 2 movement toward the stimulus, and
any metric of performance, such as visually detected
inaccuracies, could be used to generate an error sig-
nal.

The network is trained by being repeatedly pre-
sented with a finite number of patterns forming a
chosen training set, the connection weights being
adjusted after each pattern presentation. We used two
types of pattern sets to train the networks. One is a
set of random pairs of retinal locations and eye po-
sitions so that the desired output associated with each
input is an arbitrary location in head-centered space.
In‘the analogy with the learning animal, learning with
this set would correspond to looking at various stimuli
in the visual field at various angles of gaze. The other
type of training set consists of input patterns for which
the eye position is chosen randomly, while the retinal
location is computed so that the vector sum of the
two inputs is one of a few chosen craniotopic loca-
tions. The resulting training set contains a few fixed
spatial locations, each represented by a large number
(at least 10) of retinal and eye positions that add
vectorially to it. For an animal, this type of training
corresponds to looking at an object fixed in space
with the eyes in various orbital orientations. This
training set was used to see how well the network

generalized to new locations in space once it had

been trained on a few fixed ones.

We devised two variants of the supervised learning
procedure for A, networks of Barto and Jordan (1987)
to adjust the weights of our networks. The essence of
this algorithm is the A, learning rule. Every binary
stochastic element in a given network receives a scalar
reinforcement (or payoff) signal, r, whose value, in
the supervised learning paradigm, depends on how
close the current output is to the desired output. Spe-
cifically, » assumes a value between 0 and 1, with 0
indicating maximum error in the output (i.e., every
unit that should be firing is not, and vice versa), and
1 corresponding to optimal performance (no error in
the computed head-centered position). The weights
of the input connections on each binary stochastic
element are then adjusted in such a way as to maxi-
mize the value of this payoff. Using the notation of
Figure 3a, where x, represents the output of the #th
unit in the network, p; its probability of firing, and w;
the connection weight for its input from the jth unit,
the equation for updating the weights on a binary
stochastic unit is

Aw, = pr(x, — }Jl-)xj + 21 — N0 — x,— pix, (1)

where Aw, denotes the change in the value of the
connection strength w,, after each pattern presenta-
tion, and p and A are constant parameters representing
the learning rate. As shown in Figure 34, each unit

298 A More Plausible Learning Network Model of Area 7a » Mazzoni et al.

also has a constant input, or bias (b,). The value of
this bias is also adjusted by the rule in Equation 1,
setting x; = 1. Typical values for the parameters in
this equation were 0.3 for p and 0.01 for A. We will
describe this equation in more detail in the Discus-
sion. The value of r is computed, externally to the
network, as

r=1—¢ )

where ¢ is a measure of the current error at the output
layer. In our model, € is computed as the #th root of
the absolute value of the output units’ error averaged
over the number of output units:

; | & 1/n
e={E§ |, — x,eI} s (3)

where & indexes the K output units in the network,
x,* is the desired output of the kth unit in the output
layer, x, is its actual output, and # is a constant. Values
for n ranged from 2 to 6. This expression for e is
different from the one used by Barto and Jordan (1987),
who computed e as the sum of the squares of the
output units’ errors. Both expressions give a quantity
nonlinearly related to the absolute value of the output
units’ errors, but our expression is more sensitive to
small errors (a given unit’s absolute error, |x,* — x|
is always less than or equal to 1). Barto and Jordan
referred to their learning algorithm as the “S-model
A, rule,” borrowing terminology from learning au-
tomata theory. In order to distinguish our modifica-
tion of this rule from the original one, we refer to our
training algorithm as the S’-model A, rule.

We used the §'-model A, , rule to adjust the weights
of all the binary stochastic units in our networks. This
includes all the weights in the All A, networks and
the weights between the input and hidden layers of
the Mixed A, , network. The output units of the Mixed
A, network, being deterministic units with contin-
uous output, were trained by the delta rule for output
units (Rumelhart et al., 1986a). This rule adjusts the
weights of each output unit according to

Aw, = of(x* — x)f" (s)]x, 4)

where x, indicates the kth output unit, x,* is the de-
sired output of the kth unit, & is a scalar learning rate,
fis the derivative of the logistic function with respect
to the unit's net input s,, and x; is the output of one
of the hidden units “presynaptic” to it. Typical values
for & were between 0.5 and 2.5. This learning rule
also is the basis for the backpropagation algorithm
and is used in identical form to train the output units
of backpropagation networks.

Results

Learning

All the networks described above learned to perform
the coordinate transformation task to any desired ac-
curacy. Figure 6 shows the general behavior during
training of the two Ay, networks studied and com-
pares them to that of a backpropagation network, with



identical architecture, learning from the same train-
ing set. We plot here the absolute value of the output
units’ error, averaged over the number of output units
and the number of patterns in the training set, versus
the number of presentations of the complete training
set. The A, networks produce learning curves with
much more jitter than the curve for backpropagation
training, due to the stochastic nature of their hidden
units and to the type of error signal used in A, train-
ing (see Discussion). All three networks, however,
produce curves with similar envelopes, and the times
required for convergence are comparable. For the
backpropagation network, which has a continuous
output, the error decreases monotonically (Fig. 6a),
while for the All A;, network, which has a binary
output, the error follows a noisy path down to 0 and
spends increasingly more time there, flickering oc-
casionally to the value of the output’s smallest re-
solvable angle (Fig. 6¢). The error for the Mixed A, ,
network is also noisy, because this network’s hidden
units are stochastic. It assumes, however, a continu-
ous range of values (Fig. 6b), because the output units
are logistic elements. Similar training curves were
obtained for both monotonic and gaussian formats.
Neither algorithm had serious problems with local
minima (i.e., getting stuck at suboptimal solutions).?

Response Properties .

We studied the response properties developed by the
hidden units during training in the same manner as
Zipser and Andersen did for their model, except we
plot the units’ probability of firing (which is a con-
tinuous variable) instead of its instantaneous output
(which is binary). The probability of firing can be
thought of as equivalent to the firing rate and thus
equivalent to the continuous output in the Zipser and
Andersen model. In other words, over a number of
repeated presentations of a given input pattern, the
frequency with which a binary unit’s output is 1 en-
codes a continuous value, which can be conceived as
a firing rate.

An interesting feature of area 7a neurons is that the
visual and the eye position contributions to their over-
all response interact nonlinearly. For a constant ret-
inal stimulus position, the total response is not com-
posed of a constant visual response to which an
independently varying amount of activity is added as

the eye position changes. As Figure 7a and the work .

of Andersen and Zipser (1988; Zipser and Andersen,
1988) show, the visual and eye position components
can vary simultaneously, in either the same or op-
posite directions, or to different degrees with eye po-
sition (see Andersen and Zipser, 1988, for a more
detailed analysis of area 7a gain fields). When ex-
amined after training, the hidden units of both types
of A, networks displayed gain fields similar to those
of area 7a neurons (Fib. 75,¢), as well as the same
type of variety. The overall response of the hidden
units, moreover (Fig. 7, thin circles), was always
roughly planar along vertical and horizontal eye po-
sitions. This result was found in 78% of spatially tuned
area 7a neurons (Andersen and. Zipser, 1988). When
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Figure 6. Leaming curves for the various networks studied. The error plotted is
the absolute value of the difference between the network's expected and actual output,
averaged over the units in the output layer and over the patterns in the training set.
This average error corresponds approximately 1o the radial distance between the
craniotopic location encoded by the output layer and the correct one {given by the
sum of the retinal and eye position vectors). The broken fine is a scaling reference of
10° corresponding roughly to the resolution of the visual input. A three-layer network
architecture with three hidden units was used in a-c. The training set consisted of
12 random inputs coding for four spatial locations. A two-unit monotonic output format
was used, which provided for easy conversion of the error values from unit activation
levels to angular coordinates of craniotopic space. The training set was chosen small
for better visualization of network behavior. The error for the binary output units of
the All Ay, network was converted to degrees using the same fingar activation function
as for the other two networks. a, Backpropagation training; 5, Mixed Ay, training; ¢,
All A, training.

a second hidden layer of binary stochastic units was
added to either the Mixed A., or All A, network,
both networks learned to perform the task, and the
units in the first hidden layer still developed planar
gain fields similar to those of area 7a (Fig. 7d; only
All A, , shown).

It is worth noting that when studied in more detail,
that is, when sampled over a larger range of eye po-
sitions, the gain fields produced by A, (as well as
backpropagation) training are not exactly planar, but
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Figure 7. Eye position gain fields for area 7a neurons and for the model networks’
hidden units. Gain fields for four different neurons {a) or hidden units {6-c} are shown
in each case: The nine circles in each box are a set of responses sampled at ning
. different eye positions, with the retinal location of the stimulus held constant. As
described in Figure 1, the thin outer circles represent the total activity {normalized|,
the dark inner circles are proportional to the contribution of the visual stimulus to the
total response, and the white annuli are the background activity due to eye pasition.
By “activity" we mean frequency of firing for area 7a neurans and probability of firing
for the networks’ hidden units. The spacing between eye positions is 20° for area 7a
neurons. It is 20° for all the networks’ hidden units, except for the two gain fields
in the battom feft of ¢ and & for which the spacing is 40°. &, Area 7a neurons; b,
Mixed A, network; ¢, All Ay, network; o, Al Aq, network with two layers of hidden
units.

roughly sigmoidal along one direction of eye position
(Fig. 8). In other words, the overall responses are
approximately planar within a range of eye positions
and are flat outside this range. It turns out that this
range is determined by the most eccentric eye posi-
tions on which the network was trained. The unit
whose gain field is shown in Figure 8, for example,
was part of a network trained with eye positions be-
tween —40° and 40° (horizontally as well as verti-
cally), and it developed a gain field approximately
planar over this range along the x direction (there
were other units in the network with similar gain
fields oriented along the ydirection). This resuit shows
that the hidden units learn to interpolate for eye po-
sitions between those in the training set, but they do
not learn to extrapolate to eye positions outside this
range. We believe that this is a direct consequence
of using a sigmoidal probability function (or input-
output function in the case of the deterministic lo-
gistic element) for the hidden units. The gain fields
of area 7a neurons may also flatten outside 2 certain
range of eye positions, producing a sigmoidal shape
like that in Figure 8. At present, the recording data
available are too noisy, and perhaps too limited in
range of eye positions, to distinguish between a sim-
ple plane and a sigmoid for the gain fields.

There was also a qualitative similarity between the
visual receptive fields developed by the network’s
hidden units and those of area 7a neurons, as shown
in Figure 9. The most striking feature of these neu-
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probability of firing

Figure 8. Probability of firing {total response alone} of a hidden unit from a Mixed
Aqe network, sampled over a continuous range of eye positions. The gain field is
planar over a wide range of eye positions. Note the slight saturation effects {flattening)
at the edges of the eye position field.

rons’ receptive fields is their size, which extends to
diameters of 80° (Fig. 9a). This feature is reproduced
by our model networks (Fig. 9b,¢). Another feature
is the complexity of these receptive fields’ surfaces,
characterized by one or more smooth peaks of various
eccentricities, which sets area 7a neurons apart from
those of many other visual areas. The networks’ hid-
den units also display a similar complexity in their
receptive fields, although such a comparison can be
qualitative at best. As was the case for the gain fields,
the addition of an extra hidden layer did not signifi-
cantly affect the types of receptive fields developed
by units in the first hidden layer (Fig. 9d; only All A,
shown).

The response properties of the A, , networks’ hid-
den units are similar not only to those of area 7a
neurons, but also to those of hidden units of networks
trained by backpropagation to compute coordinate
transformations. These response properties were de-
scribed by Zipser and Andersen (1988; Andersen and
Zipser, 1988). We were able to reproduce them also
in a backpropagation network with the same number
of units and the same training set as the A, networks
(Fig. 10). This similarity suggests that the 8'-model
A, rule and backpropagation compute similar solu-
tions (i.e., sets of network connection strengths) to
the coordinate transformation problem.

Comparison of Solutions

The solutions found by $'-model A, training and by
backpropagation are not just similar in the qualitative
sense depicted in Figures 7, 9, and 10. In fact, for a
given training set, we found that the set of weights
trained by the A, algorithm may be transferred to a
backpropagation network (with continuous output
hidden units) without any appreciable reduction in
the accuracy of the network’s response to that training
pattern, and vice versa (Fig. 11). This is true for both



Figure 9. Visual receptive fields of area 7a neurons and networks” hidden units. As in Figure 7. the variables sampled are firing rate for area 7a neurons (a) and probability of
firing for the hidden units {6-g). a, Area 7a neurons’ receptive fields. Each was sampled at seventeen points in a 40°radius circle, and a smooth surface was obtained by gaussian
interpolation (adapted from Zipser and Andersen, 1988). &, Mixed Ay, netwark. ¢, All Aq, network. &, All A, network with two layers of hidden units.

versions of our networks (Mixed and All A, ) and for
networks with one and two hidden layers, as long as
the output format is the same for the A, and back-
propagation networks being compared. The individ-
ual values of the weights are not the same after train-
ing by the three different procedures, but the overall
structure of these weights is such that the two algo-
rithms’ solutions to the coordinate transformation
problem are functionally equivalent for the various
network structures.

a
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Generalization

A property that is often exhibited by artificial neural
networks trained by examples is the ability to gen-
eralize from those examples, that is, to produce the
correct output when presented with input patterns
that were not in the training set. This property is of
great theoretical and practical importance, as it dem-
onstrates that the model network has not merely
learned to associate patterns in the training set with
their correct outputs on an individual basis, but has

b

Figure 10. Response properties ‘of hidden units in a backpropagation-trained network. Shown are representative gain fields (2] and the receptive fields (5} recorded from the
hidden units of a backpropagation netwark after it was trained to perform the coordinate transformation. Note the similarity between these response properties and those of the
hidden units of Ay-trained networks {Figs. 7, 9). Two of the receptive fields in b {tap right and middle left) are adapted from Zipser and Andersen {1988).
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Figure 11. Error values {as defined for Fig. 6) produced by various networks when
trained sets of connection strengths were swapped among them. Three networks
[backpropagation (BF), Mixed Ar-p, and AN Arp] were first trained to a given accuracy.
The trained weights were then exchanged among the different newworks, and the error
upon presentation of the training set was recorded. The value of 10° is again used
as a scale reference {see Fig. 6). The average error for all untrained networks was around
60°, The error values do not show a significant change when backpropagation training
is replaced by Mixed or All Ay, training, and vice versa, showing that the solutions
found by the different algorithms are functionally equivalent. &, Backpropagation-trained
weights tested on backpsopagation network; b, Mixed Aq-trained weights tested on
backpropagation network; ¢, Mixed Ay »-trained weights tested on Mixed Ag, network;
d, Backpropagation-rained weights tested on Mixed A, network; ¢, Backpropagation-
trained weights tested on backpropagation network (binary output format of Al Asp
network used in the training set); f, All Ay,-trained weights tested on backpropagation
netwark; g, All Ag-trained weights tested on All Aq, netwark; h, Backpropagation-
trained weights tested on All Ay, network.

learned to perform the transformation implied in the
training examples. In our task, this mapping is the
addition of two position vectors.

We tested two extensively trained networks for two
types of generalization abilities. One is the ability to
perform the correct vector addition of new, random
input patterns that code for the same output locations
as the training set. As shown in Figure 12 (left), all
three networks performed this task extremely well.
The other generalization task required the trained
networks to give the correct output for input patterns
coding for new output locations (Fig. 12, right), which
is a more difficult task. Although all networks pro-
duced some error, this was still considerably less than
for the untrained nets, indicating that the networks
generalized to a considerable extent.

Discussion

Choice of the Learning Algorithm

The choice of the algorithm used to update the net-
work’s connection strengths was the central issue of
our study. There exist a number of procedures to
change the weights of a network in order to maximize
some measure of performance in a supervised learn-
ing paradigm (for review, see Barto, 1985; Hinton,
1987; Lippmann, 1987; Anderson and Rosenfeld, 1988;
McClelland and Rumelhart, 1988). An important class
of such learning algorithms consists of those that max-
imize the performance measure by following its gra-
dient (i.e., the direction of its maximum increase)
with respect to the weights and adjusting them ac-
cordingly, arriving at the set of weights that produces
the optimal output for every pattern in the training
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Figure 12. Generalization properties. Three-layer networks were trained by the
three different algorithms on @ set of 40 randorh input pairs. The nets were then
tested on a new pattern set, and the average absolute error {as defined for Fig. 6)
was recorded {solid bars). The errar for this testing set was also recorded for the
untrained networks for reference {hatched bars). In the test for the recognition of the
training output locations /eft), the testing set consisted of 40 new random inputs
that coded for the same four spatial locations as in the training set. This tested
whether the nets had really learned to add the eye position and retinal location vectors
10 obtain the resulting craniotapic location, and not just formed an associative memory
storage of the training set. In the test for generalization to new locations (7ight), the
testing set consisted of random inputs that coded for 40 new random head-centered
lacations. This tested for the netwarks' abifity to generalize the vector addition operation
to new targets. Note that the error bars labeled Mixed Ay, were obtained {for the
second task only) by transferring a set of Mixed Ay q-trained weights on a deterministic
network and testing for generalization using this network. The reason for doing this
was that the Mixed A, network cannot perform the second generalization task because
there are too few hidden units to produce new locations in the continuous output
format. The All Ay, network does not have this problem because the binary output
format coces for regions of space and not for unigue locations. BF, backpropagation.
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set. Backpropagation is an important and powerful
algorithm belonging to this class. It has been used to
train networks to perform such disparate tasks as pro-
nouncing written English text (Sejnowski and Rosen-
berg, 1986) and detecting explosives in passengers’
luggage at airports (Shea and Lin, 1989). It is also the
training procedure used by Zipser and Andersen to teach
their network to perform the coordinate transformation
task (Zipser and Andersen, 1988). Powerful as it is, how-
ever, backpropagation suffers from the problem men-
tioned above of not being easily implementable in
biological neuronal hardware. Central to the backpro-
pagation algorithm are (1) the feedback of detailed error
signals that are specific for each output unit, (2) the
retrograde propagation of these signals from the out-
put units back to the hidden and input units, and (3)
the adjustment of synaptic strengths using global net-
work information, that is, information about the ac-
tivities and errors of units removed from the synapse
whose strength is adjusted. These requirements rep-
resent major hurdles to envisioning backpropagation
as a plausible model of learning in biological neural
networks even to only a rough approximation, a con-

‘cern that has been expressed by some of the discov-

erers of this algorithm (Rumelhart et al., 1986b). Pos-
sible solutions to this problem have been proposed,
which require, for example, specialized connections
carrying the error signals for each unit in the network
(Hecht-Nielsen, 1989), or symmetrical feedback path-
ways with connection strengths identical to those in
the forward network (Parker, 1985; Zipser and Ru-



melhart, 1990). Besides being rather unconvincing
from a biological perspective, however, these com-
plicated mechanisms detract quite a bit from the sim-
plicity of structure and process that makes parallel
neural networks so appealing as models of nervous
system function.

We chose the A, , learning algorithm because it uses
the same abstract principles involved in supervised
learning as backpropagation, but with specific pro-
cesses that are more plausible for implementation in
neurobiological hardware. In particular, in the A, al-
gorithm, (1) the feedback signal is a single scalar
value computed from the output units’ average error;
(2) this signal is the same for all units in the network,
and as such it does not require backwards propagation
along network connections; and (3) synaptic strength
is adjusted using the payoff signal and information
about the activity of the presynaptic and postsynaptic
unit only. We will return to these three features short-

ly.

How the Network Learns
The abstract principle used by backpropagation is
gradient descent, the minimization of an error mea-
sure by following the negative of its gradient with
respect to the weights. A priori there are no concep-
tual or experimental obstacles to envisioning the brain
using this principle, too, given a plausible perfor-
mance measure. The $'-model A, algorithm, as im-
plemented in both of our network classes, also makes
use of this general principle. While the backpropa-
gation algorithm, however, computes the exact value
of the error’s gradient for a given input pattern, the
S’-model Ay, rule computes only an estimate of that
gradient (Williams, 1986, 1987; Barto and Jordan,
1987). Units trained by the A, rule do not have the
detailed information about the error vector and the
state of other units, which is necessary to compute
the exact gradient and which backpropagation units
obtain through nonbiological pathways. Due to the
random noise in their output, however, A, , units can
“jitter” their activity during learning so as to get an
estimate of how the noise in activity affects the payoff
they receive, which in turn allows them to estimate
the direction in weight space along which to change
their weights in order to increase reinforcement.
While this method allows A, ,-trained units to adjust

their weights properly using only locally available-

information, it is more random in its search for a so-
lution than backpropagation. These differences are
obvious in the learning curves of Figure 6. Backpropa-
gation’s precise computation of the performance gra-
dient tells the algorithm the exact manner in which
to change the weights so that the error is monoton-
ically decreased, resulting in the smooth curve of Fig-
ure 6a. As this curve shows, the error falls quickly to
a value below the resolution of the gaussian units in
the retinal input (10°), and then continues to decrease
much more slowly as the output is refined to match
the training signal. The curves for A, learning (Fig.
6b,¢) follow an envelope very similar to the backprop-
agation curve, but they are much noisier. The noise

is due to the randomness of the A, , units’ output. In
order to learn, the A, element adjusts its weights so
that its net input drives its probability of firing toward
one of the flat regions of the sigmoid function, thus
effectively decreasing the randomness of its output.
The decrease of the Ay, units’ jitter as learning pro-
ceeds is reflected in decreasing noise on the learning
curves.

Biological Plausibility of the A, , Algorithm
As we mentioned above, one crucial requirement for
our choice of a learning algorithm was a greater plau-
sibility of biological implementation than the back-
propagation algorithm. We must point out at the out-
set, however, that A, , networks were not designed as
literal models of biological neural nets (Barto, 1985,
1989). Because of the poor knowledge we have of the
precise mechanisms of information processing used
by nervous systems, the most useful connection be-
tween artificial and biological neural networks is pres-
ently limited to the description of abstract processes
in simplified models and the investigation of the pos-
sibility of implementation in the biological hardware.
In other words, the A, , element was not designed by
collecting scattered known facts of neurobiology and
molding them into a computationally interesting unit
capable of supervised learning, but rather as a simple,
“neurally inspired” element with a few theoretically
motivated features that give it interesting learning
abilities. We will discuss biological plausibility,
therefore, in its literal sense of suggesting that the
abstract computing processes performed by the A,
unit during learning are more in keeping with pos-
sible neural mechanisms proposed and partly dem-
onstrated by experimental neuroscientists than the
mechanisms used by backpropagation networks.

The first and most salient element of A, , models,
which aligns them with many neurobiological and
psychological models of learning, is the scalar rein-
forcement signal, . This has the attractive features of
being computed from an average value of the error of
the output units and of being transmitted as a single
value to all the A, -trained units in the network equally.
This error could also be detected, for example, as a
function of the angular difference between an object
in space and the end position of a reaching arm move-
ment or a saccade toward that object. After successful
training, this difference would be nil and reinforce-
ment would be maximal. The reinforcement signal
could thus be computed by a part of the nervous
system that monitored the animal’s behavior with very
little information about the activity of area 7a neurons.
The fact that a single value is valid for All A,, units
implies that only one connection is necessary from
the reinforcement computing region to area 7a. In the
backpropagation algorithm, on the other hand, the
output units’ errors must be kept as separate com-
ponents as they are fed back to the network to adjust
individual weights.

A single scalar value is easier to transmit to a group
of neurons than an error signal with specific multiple
components. Evidence that the nervous system may
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use such signals already exists. For example, the nu-
cleus basalis sends a widespread system of cholin-
ergic connections to several cortical areas, and the
signals involved appear to be related to behavioral
choices and reward (Richardson et al., 1988). The
reinforcement signal required by our model, of course,
would not have to be distributed on such a wide scale.
The signal could carry information about a specific mo-
tor task, for example, the accuracy of a saccade to a
target, and thus be used only by one or a few ensembles
of neurons in area 7a. Because a single signal, however,
would be valid for an entire group of neurons, there
would be no need to propagate it through special
pathways to specific units in the network of interest.
This feature of the A, algorithm is more attractive
than backpropagation’s requirement for the retro-
grade propagation of error signals along specific path-
WAys.

Besides not having to carry specific information to
train individual neurons, the reinforcement signal used
in our networks has the advantage that it can be inde-
pendent of any coordinate system. In backpropagation,
the “teacher” signal must code for the correct head-
centered locations as a vector in a craniotopic reference
frame. The A., algorithm, on the other hand, com-
putes its feedback signal from the average of the out-
put error’s absolute value (Egs. 2, 3), which is a single
number that can be derived from the comparison of
retinotopic as well as craniotopic positions.

Another “biological” feature of learning by Ay, units
is the use of information that is locally available to

. the element itself at its individual synapses, in a fash-
ion reminiscent of Hebbian learning. The weight-ad-
justing equation for the ith A, unit (Eq. 1) consists
of the sum of two terms, each assigning the “reward”
and the “penalty” portions, respectively, of the
learning rule. These terms consist of three compo-
nents: (1) the payoff signal, » (and the correspond-
ing penalty value, 1 — r); (2) information regarding
the current state of the unit (x, — p,); and (3) the
output of the presynaptic element, x,, directly avail-
able at the synapse that the jth unit makes onto the
7th unit.

We have already discussed the first component. In
the second, x; is the unit’s output (0 or 1), and p, is
the probability that the unit’s output will be one given
the current net input, which depends on the unit’s
weights. As mentioned above, this probability could
also be interpreted as the rate at which the unit will
fire given the present input. These two values, as well
as x, (component 3), are effectively available at the
connection between the input unit and the given hid-
den unit. The A, rule therefore embodies one of the
most important elements of Hebbian learning (Hebb,
1949), that is, the proportionality of a change in syn-
aptic strength to both presynaptic and postsynaptic
signals. HebBian learning remains one of the most
attractive mechanisms for synapse modification, both
on theoretical (Linsker, 1989) and experimental
grounds (Ito, 1984; Kelso et al., 1986; Sejnowski et
al., 1989; Stanton and Sejnowski, 1989; Brown et al.,
1990). This is in contrast to backpropagation, in which
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changes in strength at one connection require infor-
mation about the activities and error signals at all the
connections in every layer above that connection (Ru-
melhart et al., 1986a).

The Mixed A,, network, as we have mentioned,
uses the A,, rule only to train its hidden units. Tts
output units are trained by the delta rule (Eq. 4).
Although this is the same rule as is used for the output
units in backpropagation training, this does not pose
as many obstacles to biological implementation as the
full backpropagation algorithm does. As shown in Fig-
ure Sa, the only extra information required by the
delta rule, as compared to the Ay, rule, is an error
vector from the external evaluator. This is needed to
form an individual error signal for each output unit,
whose weights are then adjusted by error correction.
There is no requirement, however, for backpropaga-
tion of error or activity signals across synapses. In fact,
the delta rule also has a Hebbian form at the output
layer, again in the sense that all the information re-
quired to adjust a connection’s strength is available
at the synapse. In Equation 4 two terms are multiplied,
the first of which (in square brackets) contains “post-
synaptic’ information, while the other is the activity
of the “presynaptic” unit.

The last feature that adds some biological flavor to
the A,, unit is the probabilistic nature of its output.
The unpredictability of the exact firing rate produced
by a neuron for any given presentation of a certain
input has long been recognized as a feature of nerve
cells (see, e.g., Tolhurst et al. 1983; Tolhurst, 1989;
Vogels et al., 1989). In fact, this stochastic aspect of ac-
tivity is one of the reasons neurophysiologists usually
present data as summed histograms of several trials
(Sejnowski, 1981). This is a feature that is not in-
cluded in the deterministic units of backpropagation
networks. The binary stochastic element’s output is
not simply noisy. It has a variance that is an increasing
function of the mean probability of firing. The vari-
ability of spike trains recorded from cortical neurons
also exhibits this statistical property (Vogels et al.,
1989).

Many discussions of this aspect of neural activity
have emphasized the difficulties it creates, such as the
requirement it may impose on certain types of sensory
information to be distributed over populations of neu-
rons (Tolhurst, 1989). In our model, however, the
intrinsic variability of the A, , units’ responses to input
signals is essential for the learning process. It allows
the network to jitter its weights around the current
set of values, thus sustaining the search for a better
solution. The noise provides the algorithm with the
means of obtaining information about local variations
in reinforcement. By making successive incremental
adjustments to the weights, the algorithm converts
these local variations into an estimated gradient of
the reinforcement signal. In this manner the noise
compensates, in a sense, for the scarcity of informa-
tion contained in the scalar payoff signal. The sto-
chastic aspects of the model, therefore, are not mere
demonstrations of robustness to noise. The A, rule
demonstrates, rather, how a computational unit’s out-



put variance can be used to achieve learning in a
network that receives less than optimal feedback in-
formation.

Simulation Results

The basic results of this study corroborate the validity,
from a physiological perspective, of parallel networks
with distributed representations as models of area 7a.
We have shown that the A,, algorithm can train a
neural network to perform the same coordinate trans-
formation task as that performed by Zipser and An-
dersen’s model. We also found that the solution dis-
covered by this algorithm is equivalent to that found
by backpropagation. As was established in Zipser and
Andersen’s analysis (Zipser and Andersen, 1988), this
solution gives hidden unit response properties (pla-
nar gain fields and large visual receptive fields) very
similar to those of area 7a neurons presumed to code
for spatial location. These response properties, there-
fore, are not a specific result of the backpropagation
training procedure. The set of connections strengths
computed by the A;, algorithm, moreover, is not a
unique one imposed by the network’s architecture.
Other solutions, not involving planar gain fields or
large receptive fields, can be constructed that would
work for the training sets we used. It is striking, then,
that A, , and backpropagation produce this particular
algorithm for computing coordinate transformations,
and not any other.

In a more detailed analysis of the model, we have
shown that a second layer of hidden units can be
added to the network without changing the response
properties of the first hidden layer, and that the model
networks are indeed capable of generalizing their co-
ordinate transformation abilities to new input pat-
terns. Both these results strengthen the physiological
significance of this model architecture. The former
implies that relay elements—an important and ubiq-
uitous feature of brain architecture—are not an ob-
stacle to learning and allow similar solutions to de-
velop. The latter establishes the important point that
these model networks are indeed learning to perform
the coordinate transformation task. They do not mere-
ly act as content-addressable memories, associating
each input pattern in the training set with its correct
output individually, but rather they are capable of
abstracting from the training examples the transfor-
mation common to them, in this case vector addition,
and applying it successfully to new pairs of retinal
and eye positions. This property has been observed
before in parallel networks with very few hidden units
in the hidden layer compared to the input layer (Cot-
trell et al., 1987).

The number of training iterations required for con-
vergence by Ag, and backpropagation were compa-
rable for networks and training sets of the size we
used. We have not examined in our study the issue
of how the A, algorithm behaves for networks with
considerably larger numbers of hidden units and
training locations. From previous experience with this
learning rule (Barto and Jordan, 1987), learning should
be significantly slower for such networks. It may be

possible, however, to make the algorithm more re-
sistant to scale changes, for example, by using a to-
pographically more specific reinforcement signal. Our
use of a single scalar feedback signal could thus be
viewed as a worst-case scenario that does not exclude
more specialized signals that may be used by biolog-
ical systems.

Future Directions

It would be desirable to modify the A, algorithm so
that it could train networks with continuous-output
hidden units. Actually, any algorithm capable of per-
forming gradientdescent using a scalar reinforcement
signal to train continuous-output units would be ac-
ceptable. Such algorithms are currently being de-
veloped (e.g., Gullapalli, 1988), and it would be a
natural continuation of this work to try to apply them
to networks modeling area 7a. The major hurdles
in these algorithms involve the theoretical details
of simultaneously updating the mean and variance of
multiparametric distributions required by continuous
stochastic units. The present form of these algorithms
is similar to that of the A, procedure for binary units.
It is conceivable that the extension of the concepts
of supervised A, , learning to networks with contin-
uous output units will be a natural refinement that
should not drastically change the types of solutions
obtained.

Conclusion

We have shown that (1) the A, algorithm can train
neural networks to compute coordinate transforma-
tions; (2) the convergence times for small networks
are comparable to those obtained by backpropagation
training; (3) in the process of learning this compu-
tation, the hidden units develop gain fields and re-
ceptive fields qualitatively similar to those of area 7a
neurons; (4) the solutions are equivalent to those
computed by backpropagation; and (5) these net-
works generalize appropriately. We have also pointed
out a2 number of features of the A, algorithm that
bring it closer than backpropagation to what is known
about biological learning. We must emphasize again
that the focus of our interest at this point is not in
how literally A;, networks reproduce individual
neurophysiological processes. It is rather the fact
that these algorithms form a family of training pro-
cedures that yield similar functional representations
when applied to a class of parallel distributed net-
works, and that they can do so using mechanisms not
excluded, and perhaps suggested, by neurophysio-
logical evidence.

These results represent a step toward establishing
the physiological validity of the architecture and gen-
eral learning principles of the model of area 7a intro-
duced by Zipser and Andersen. They show that phys-
iological properties can arise from a more plausible
learning algorithm than backpropagation, thus sug-
gesting that the detailed processes by which neuronal
ensembles learn may play only a secondary role in
their ultimate collective behavior. Abstract optimi-
zation principles, such as gradient descent, may in-
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stead be more important determinants of neuronal
learning strategies, and it would be worthwhile to
pursue such hypotheses with further theoretical and
experimental studies.

Notes

1. The logistic function, which is a type of “squashing”
function, has a sigmoidal shape and maps real-valued inputs
into the interval 0 to 1, according to f{s) = 1/(1 + exp(=s)).
In our networks, s is the sum of the unit’s inputs weighted
by the corresponding connection strength, plus a bias.

2. The frequency of local minima was around 5% for back-
propagation and approximately 1% for the A, algorithm,
in approximately 200 different simulations. One likely rea-
son for the rather high frequency of local minima for back-
propagation is the small number of hidden units in the
network. The A, , networks were less affected by this param-
eter, mainly because the unit’s output noise improved the
network’s chances of escaping local minima.
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