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ABSTRACT During on-line control of movement, the posterior
parietal cortex (PPC) serves as a functional bridge between sensory
and motor areas in the brain. One of the sensorimotor functions
of this area appears to be prediction of the state of the arm during
movement. Because sensory information is substantially delayed, it
has been proposed that the brain makes use of an internal forward
model that integrates both sensory and motor feedback signals to
estimate current and upcoming positions and motions of the limb
during reaching. These predicted states are more useful for rapid
on-line control than are delayed sensory signals. The first part of
this chapter focuses on investigations of on-line control mechanisms
in PPC. The results of these studies indicate that one of the func-
tions of PPC is to serve as a forward model. The second section
highlights research that aims to read-out forward state estimates
from PPC neurons and harness them for direct control of neural
prostheses.

A growing body of clinical and psychophysical evidence
supports the theory that the brain makes use of an internal
model during control of movement; a sensorimotor repre-
sentation of the interaction of one’s self with the physical
world (Jordan, 1995; Kawato, Furukawa, & Suzuki, 1987).
Two primary types of internal models for sensorimotor
control have been proposed: the forward model and the
inverse model. A forward model (i.e., forward output model)
predicts the sensory consequences of a movement ( Jordan
& Rumelhart, 1992; Miall & Wolpert, 1996; Wolpert,
Ghahramani, & Jordan, 1995). That is, it mimics the behav-
ior of a motor system by predicting the expected, upcoming
state of an end effector (e.g., sensory feedback of one’s own
limb) using knowledge of the characteristic dynamics of the
system as well as stored copies of recently issued motor com-
mands. Conversely, an inverse model encodes the motor
commands necessary to produce a desired outcome (Atkeson,
1989). That is, an inverse model estimates the set of proce-
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dures (e.g., motor commands) that will cause a particular
state of the motor system to occur. While inverse models
likely play an important role in sensorimotor control, they
will not be discussed further in this chapter; instead, we will
place emphasis on the forward model and, in particular, the
role of the posterior parietal cortex (PPC) in forward state
estimation for motor planning and control.

Movement intention and anticipation in PPC

PPC is a critical node for bridging sensory and motor rep-
resentations in the brain. PPC associates multiple sensory
modalities (e.g., visual—the dominant sensory input to PPC,
somatosensory, and auditory) and transforms these inputs
into a representation that is useful for guiding actions to
objects in the external world (Andersen & Buneo, 2002).
Evidence from lesions studies indicates that damage to PPC
results in an inability to link the sensory requirements of a
task with the appropriate motor behavior necessary to com-
plete it. For example, parietal lesion patients can have diffi-
cultly planning skilled movements, a condition known as
apraxia (Geshwind & Damasio, 1985). Impairments from
apraxia can range from an inability to properly perform an
instructed or desired arm movement to how to coordinate a
specific sequence of movements to accomplish an end goal.

Numerous neurophysiological studies in monkeys have
shed light on the neural correlates of reach planning in PPC.
Monkeys have served as a successful model for studying
sensorimotor representations in humans since the two
species engage in a variety of similar sensorimotor behaviors.
Moreover, functional magnetic resonance imaging (fMRI)
studies have provided evidence that PPC’s functional role is
similar in both monkeys and humans (Connolly, Andersen,
& Goodale, 2003; DeSouza et al., 2000; Pellijeff, Bonilha,
Morgan, McKenzie, & Jackson, 2006; Rushworth, Paus,
& Sipila, 2001). When trained monkeys plan a reach to
an illuminated target, the firing rates of neurons in the
medial bank of the intraparietal sulcus (MIP) generally reflect
a combination of both sensory and motor parameters
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(Andersen & Buneo, 2002; Mountcastle, Lynch, Georgop-
oulos, Sakata, & Acuna, 1975; Robinson, Goldberg, &
Stanton, 1978). Importantly, during a memory period in
which the monkey must maintain a reach plan to the remem-
bered location of an extinguished target, elevated neural
activity persists in PPC before the reach is executed, suggest-
ing that these neurons likely encode the intention to reach
rather than the visual stimulus location (Snyder, Batista, &
Andersen, 1997). Furthermore, neural responses in MIP are
generally correlated more strongly with the motor goal, and
not the visual cue, during antireach paradigms in which the
target cue direction is dissociated from the reach direction
(Eskandar & Assad, 1999; Gail & Andersen, 2006; Kalaska
& Crammond, 1995).

PPC is a reasonable location for a forward model of the
arm to reside (which would predict the sensory consequences
of an upcoming arm movement command) given its substan-
tial reciprocal connections with downstream motor areas
(Johnson, Ferraina, Bianchi, & Caminiti, 1996; Jones &
Powell, 1970). Along these lines, many researchers have sug-
gested that the “early” discharge of neurons in area 5 prior
to initiation of an arm movement might reflect the integra-
tion of an efference copy signal fed back to PPC from frontal
motor areas (Kalaska, Caminiti, & Georgopoulos, 1983;
Seal, .Gross, & Bioulac, 1982). Interestingly, Seal and col-
leagues also showed that area 5 responses that occurred
prior to movement onset were generally not sensory in
origin and further demonstrated that these early responses
persisted even after deafferentation. However, some caution
should be advised in attempting to infer the causal flow of
information in parietofrontal circuits during reach prepara-
tion using single-area correlation analyses. For instance, it is
possible that planning and forward model prediction (which
relies on efference copy) may be carried out by distinct
neural processes within PPC. Future simultaneous multiarea
recordings, combined with microstimulation approaches,
may help to shed light on the directional flow of information
in these recurrent interarea circuits during movement
preparation.

A Forwarp MopeL ror Eve Posirion PPC is also a
possible candidate for a forward model of eye position, since
avariety of eye behavior—related signals, such as saccade and
fixation responses, have been described in this region
(Mountcastle et al., 1975). Area 7a saccade responses begin
largely after a saccade occurs, while lateral intraparietal
(LIP) saccade responses can occur before, during, or after
saccades (Andersen, Essick, & Siegel, 1987). Interestingly,
Duhamel, Colby, and Goldberg (1992) showed that the
receptive fields (RFs) of neurons in LIP can update their
receptive fields before an eye movement occurs. Forty-four
percent (16 out of 36) of their LIP sample anticipated the
sensory outcome of an impending saccade (i.e., a stimulus
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appearing in the future location of the RF), and adjusted
their responses approximately 80 ms before the saccade was
launched. It is conceivable that this predictive updating
relies upon a forward model of eye position within PPC,
which estimates the upcoming eye position from oculomotor
commands, though direct evidence of the anticipatory eye
position signal itself in PPC has not been reported. An eye
position signal in PPC could potentially be derived from
passive sensory feedback from the eye muscles (Wang,
Zhang, Cohen, & Goldberg, 2007) and/or the integration
of saccade command signals. It would be interesting to see
whether a component of the eye position signal in PPC
might also encode anticipatory information (ahead of passive
sensory feedback) about the current state of the eye position
during fixations between saccades. Evidence of updating
RFs has also been reported in other brain areas; therefore it
is quite possible that multiple regions are involved in encoding
a forward model of the state of the eye. For instance, Sommer
and Wurtz (2006) discovered a feedback circuit in which
the superior colliculus conveys a copy of the oculomotor
command (i.e., corollary discharge) to the frontal eye field
(FEF), which they showed to be necessary for accurate
updating of RFs in the FEF. Last, response field updating
neurons in PRR, which predominantly encode an intended
reach direction in eye-centered coordinates, update their
response fields when an intervening saccade occurs and
thereby maintaining an eye-centered motor plan even when
gaze is shifted (Batista, Buneo, Snyder, & Anderson, 1999;
Buneo, Jarvis, Batista, & Andersen, 2002). It would be
interesting to test whether the reach response fields of these
PRR neurons also exhibit anticipatory updating just before
the eye moves, similar to the cells found in LIP by Duhamel
and colleagues (1992).

RearFERENCE CANCELLATION IN PPC A forward model’s
ability to predict the sensory consequences of an action is
useful to an organism because a given sensory outcome can
be produced by a variety of potential causes (Claxton, 1975;
Clullen, 2004; Poulet & Hedwig, 2003; Roy & Cullen, 2004;
Sperry, 1950; Weiskrantz, Elliott, & Darlington, 1971). In
particular, the output of a forward model can be used as
an internal reference signal to cancel the sensory effects of
self-motion. For example, motion on our retina can occur
because of movement in the physical world (afference) or
because of motion induced by an eye movement itself
(reafference). Therefore to correctly perceive the motion of
an external stimulus, the brain must distinguish afferent
motion from reafferent motion. A subtractive comparison
between a forward model’s estimate of the expected sensory
outcome of an eye movement and the actual sensory signals
could remove this retinal shift from our perception. For
example, such an internal reference signal is used for
perceptual stability during smooth-pursuit eye movements



(Bradley, Maxwell, Andersen, Banks, & Shenoy, 1996;
Haarmeier, Bunjes, Lindner, Berret, & Thier, 2001).
Interestingly, clinical evidence presented by Haarmeier,
Thier, Repnow, and Peterson (1997) suggested that parieto-
occipital regions may be involved in performing the
comparison between self-induced and external sensory
motion during smooth-pursuit eye movements.

Reafference generation and comparison mechanisms are
also likely employed for the perception of arm movements,
for example, to distinguish self-generated arm movement
from movement in the environment (e.g., the movement of
others) and/or the movement of one’s arm by an external
force. Positron emission tomography (PET) imaging studies
have provided evidence supporting PPC’s role in reconciling
intentions with sensory consequences. For instance, Fink and
colleagues (1999) displayed nonveridical visual feedback of
a subject’s left hand by displaying a mirror image of a sub-
ject’s right hand while they performed a bimanual coordina-
tion task. Such incongruent visual feedback resulted in an
increase in bilateral PPC activation (area 40 and area 7) as
well as bilateral dorsal prefrontal cortex activation. Later,
Farrer and colleagues (2003) performed an experiment in
which they systematically manipulated the degree of control
with which subjects were able to perform a joystick task by
perturbing visual feedback of their hand movements, rotat-
ing the direction of the virtual hand movement by a variable
amount (i.e., 25°, 50°, and a condition with no correspon-
dence). They found a graded activation in the inferior pari-
etal lobule, such that regional cerebral brain flow increased
with decreasing levels of control felt by the subject.

Lesion studies have shown that damage to PPC can
lead to deficits in the attribution of agency. For example,
Sirigu, Daprati, Pradat-Diehl, Franck, and Jeannerod (1999)
showed that apraxia patients with left parietal lesions have
a greater tendency to confuse their own movements with the
movements of an experimenter. When patients’ visual feed-
back was substituted with the hand movements of an experi-
menter (who attempted to perform the same movement),
patients were more likely to confuse their right hand with
the “alien” hand (19% correct ownership judgment), relative
to normal control subjects (79% correct). Since the patient’s
intention and the outcome of the experimenter’s movement
were largely congruent, patients needed to detect subtle spa-
tiotemporal discrepancies between the time-varying state of
the expected state of their hand and the virtual hand on the
computer screen. The authors suggested that these deficits
were caused by damage to an internal model, which main-
tains a time-varying representation of a movement in space.
In a related study, MacDonald and colleagues tested whether
transient disruption of PPC using transcranial magnetic
stimulation (TMS) could affect subjects’ ability to determine
the agency of an observed movement (MacDonald & Paus,
2003). Specifically, they introduced a lag time into the
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display of the visual feedback of the subject’s hand on the
computer screen and asked subjects to detect trials in which
they perceived a delay between the onset of their own hand
movement and the onset of the virtual movement on the
screen. Interestingly, the researchers found that during self-
generated movement, TMS impaired subjects’ ability to
detect asynchrony between the onset of actual and virtual
hand movements. In contrast, when subjects’ hands were
passively moved without prior notice to the subject, their
judgments were not significantly impaired from pre-TMS
control conditions. These results suggest that PPC maintains
a time-dependent representation of action that relies upon
anticipatory mechanisms (and not only sensory feedback),
such as a forward model, to update the state of the arm. This
internal state representation is important for making deci-
sions about both the temporal state and the attribution of
agency of a movement.

Forward state estimation_for on-line control

During execution of a goal-directed arm movement to
continuously guide the arm to a target, the brain must main-
tain an estimate of the time-varying state of the arm (e.g.,
position and velocity of the arm, coded in a variety of poten-
tial coordinate frames) and compare that state measurément
with the desired state of the movement. Unfortunately, the
human brain, in particular PPC, does not have direct
access to the true state of the arm owing to delayed and
noise-corrupted measurements of the state from the visual
and proprioceptive domains; for example, visual signals typi-
cally reach sensorimotor association areas of cortex after
a delay of approximately 90 ms (Raiguel, Xiao, Marcar, &
Orban, 1999), or 30 ms in the case of proprioception
(Petersen, Christensen, Morita, Sinkjaer, & Nielsen, 1998).
Subsequent processing delays are incurred during control,
owing to sensorimotor integration, motor command genera-
tion, and execution, resulting in an average loop delay
of more than 100 ms for proprioceptive control (Flanders
& Cordo, 1989) and over 200 ms for visuomotor control
(Georgopoulos, Kalaska, & Massey, 1981; Miall, Weir,
Wolpert, & Stein, 1993). These long delay times severely
limit a feedback control system’s ability to make rapid adjust-
ments to an ongoing movement and thus increase the likeli-
hood that a reach trajectory might become erroneous and/or
unstable.

Tue OsservER FrRAMEWORK Fortunately, the brain can
also monitor recently issued motor commands (i.e., efference
copy), which can be transmitted centrally (e.g., from frontal
motor areas) with little delay time (e.g., one synapse +
transmission time < 10 ms) and used by a forward model to
form an estimate of the current or upcoming state of the arm
well in advance of late-arriving sensory information.
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Ficure 41.1 Flow diagram illustrating sensorimotor integration
for reach planning and on-line control. Items in rounded boxes
denote pertinent sensorimotor variables; computational processes
are contained in rectangular boxes. Prior to a reach, an intended
trajectory is formulated as a function of both the initial state of the
arm and the desired endpoint, the target location. An inverse
model is used to determine a set of motor plans that will result in
the desired trajectory. Motor plans are then issued (e.g., by primary
motor cortex, M1) and subsequently executed by muscles acting
upon the physical environment (i.e., biomechanical plant hexagon).

Since the output of the forward model reflects a best guess
of the next state of the arm, errors due to various sources of
noise will inevitably accumulate over time for this estimate.
Therefore it is likely that sensory observations, which arrive
at later times, are also continually integrated by the brain to
update and refine the estimate of the forward model (Miall
& Wolpert, 1996) (figure 41.1). A system that estimates the
state of a movement by combining the output of a forward
model with sensory feedback about the state is generally
referred to as an observer (Goodwin & Sin, 1984). For linear
systems in which the noise is additive and Gaussian, the
optimal (i.e., in the mean squared error sense) observer is
known as a Kalman filter (Kalman, 1960). Wolpert and col-
leagues first applied the Kalman filter to model how subjects
estimate the sensorimotor state of the hand during goal-
directed reaches. They showed that a Kalman filter could
accurately account for subjects’ estimates of the perceived
end location of their hand while making arm movements in
the dark (Wolpert et al., 1995). Therefore the Kalman filter
can serve as a useful theoretical model for studying senso-
rimotor state estimation in the brain.

Two linear stochastic equations govern the basic opera-
tion of the Kalman filter:

xp = Apxpy + By +w,, (forward model) (1)

602

MOTOR SYSTEMS

Following movement onset, the state of the arm is continuously
monitored and corrected, if necessary, to ensure successful comple-
tion of the reach. Critical to rapid on-line correction of movement
is the forward model, which generates an anticipatory, a priori
estimate of the next state of the arm, £z, as a function of the previ-
ous state and efference copy. Intermittent sensory feedback is used
to refine the a priori estimate of the forward dynamics model
(observer). The a posteriori current state estimate, £, can then be
evaluated to make corrections to subsequent motor commands.
(After Desmurget & Grafton, 2000.)

Dk = Hixi +u; (state observation model) 2)

where ¥, is the time-varying state of the arm at time step &
and is modeled as a linear function of the previous state, x;_,
and the control term, %_;. The control term is considered to
be a known motor command, which is likely specified by
frontal motor areas (e.g., primary motor or premotor cortex)
and then fed back to sensorimotor circuits performing state
estimation. For instance, the motor command at each time
step might be determined by using an optimization proce-
dure that minimizes a cost function associated with carrying
out a particular trajectory (Todorov, 2006). Here, y; is a
sensory measurement (visual and proprioceptive) made at
time step k. (Note that sensory feedback is in fact a delayed
representation of the state of the arm.)

To estimate the state of the arm at each time step £, the
output of the forward model, £} (i.e., the a priori estimate),
is linearly combined with the difference between the output
of the observation model (i.e., the predicted sensory mea-
surement) and the actual sensory measurement. This dis-
crepancy, the “sensory innovation,” is then optimally scaled
by the Kalman gain, £, to produce an a posteriori estimate
of the state of the arm:

X =% +Kk(_yk_H921:) (3)



In brief, discrete state estimation consists of a two-step recur-
sive procedure such that the forward model generates an a
priori estimate of the state, which is next refined by poten-
tially innovative information gleaned from the sensory input
to form the final, a posteriori estimate. PPC, specifically the
parietal reach region (PRR) and area 5, seems to be a rea-
sonable site for an observer for on-line control to reside,
since it has access to two key inputs to the observer model:
alarge number of internal feedback connections from frontal
areas (i.e., efference copy) and substantial sensory input from
both visual and somatosensory domains (Johnson et al.,
1996; Jones & Powell, 1970).

Continuous sensorimotor control and state estimation

wm PPC

Clinical and psychophysical studies in humans have estab-
lished that PPC is involved not only in specifying movement
plans, but also in the execution and control of ongoing
movement. For example, it is well known that lesions in
parietal cortex often lead to optic ataxia, that is, impairment
in locating and reaching to stimuli in three-dimensional
space (Balint, 1909; Perenin & Vighetto, 1988; Rondot,
Recondo, & Ribadeaudumas, 1977). For instance, optic
ataxia patients have difficulty making rapid and “automatic”
corrective movements when guiding the hand to targets
that have been jumped (Pisella et al., 2000). Similarly,
Grea and colleagues (2002) reported a patient with bilateral
parietal lesions who was unable to amend her movement to
pick up a cylinder after it had been jumped to a new location
at movement onset. Interestingly, instead of making correc-
tive movements during an initial trajectory, the subject
needed to perform two distinct movements: one that repre-
sented the initial plan and a second movement to reach to
the new location of the cylinder. Using TMS applied to the
posterior parietal cortex, Desmurget and colleagues (1999)
were able to transiently disrupt the ability of most of their
subjects to correct reaching trajectories made to targets that
were displaced around the time of movement onset. Later,
Della-Maggiore, Malfait, Ostry, and Pans (2004) showed
that TMS applied to PPC interfered with the ability of sub-
jects to adapt to novel force-field environments. An intrigu-
ing, potentially unifying explanation for all of these deficits,
which was originally suggested by Wolpert, Goodbody, and
Husain (1998), is that PPC may serve as an observer, which
forms an internal estimate of the state of the arm during
movement. A failure to accurately maintain this estimate
on-line could result in an inability to monitor and therefore
correct an ongoing movement. For example, Wolpert,
Goodbody, and Husain reported a parietal lesion patient
who was unable to maintain an internal estimate of the state
of her hand. She could not maintain a constant precision
grip force in absence of vision; with no vision of her station-

ary arm, she perceived it to drift slowly in space over 10-20
seconds until eventually reporting it to disappear. When she
was asked to make slow-pointing movements to peripheral
targets while maintaining central fixation, large errors accu-
mulated in her trajectories (although self-paced movements
were not impaired).

MEeNTAL StMuLATION OF MOVEMENT ~ Evidence that PPC is
involved in sensorimotor state estimation also comes from
the study of the mental simulation of movement, which
presumably activates circuits that overlap with those engaged
during motor control but inhibits execution of a movement
itself (Decety, 1996; Gerardin et al., 2000; Stephan et al.,
1995). When normal healthy subjects imagine making a
goal-directed movement, mental simulation time typically
matches the time needed to execute that same movement
(Decety & Michel, 1989; Donders, 1969). This suggests that
the brain is able to maintain a realistic estimate of the state
of the hand over time while imagining a movement, despite
sensory feedback being unavailable. Shadmehr and Krakauer
(2008) interpreted this finding in the context of observer
theory, suggesting that this capability indicates that the
brain/observer is able to rely entirely upon the output of a
forward model (in the absence of sensory feedback) to
estimate the state of the arm during mental simulation (e.g.,
Kalman gain in equation 3 is set to zero). Interestingly,
patients with unilateral motor cortex lesions (Sirigu et al.,
1995) who show prolonged movement times compared to
normal control subjects are still able to accurately imagine
the duration of their movements (i.e., the simulation time
and execution time remain well matched for these patients).
Therefore, aberrant motor commands (« in equation 1) that
are produced by the motor cortex could theoretically still be
used by an intact observer to predict the correct temporal
sequence of hand states (and therefore the trajectory
duration), even for an impaired movement. Similarly,
patients with lesions of the cerebellum (Kagerer, Bracha,
Wunderlich, Stelmach, & Bloedel, 1998) and of the basal
ganglia (Dominey, Decety, Broussolle, Chazot, & Jeannerod,
1995) also do not show a difference between simulation and
execution times.

While M1, the cerebellum, and the basal ganglia do not
appear to be critically involved in state estimation during
simulated movements, PPC, by contrast, does appear to be
essential for maintaining an internal representation of the
state of the hand, which is necessary for producing a consis-
tent relationship between simulation and execution time.
Sirigu and colleagues (1996) later reported an impairment
in the ability to simulate a movement in patients with right
PPC lesions: the time needed to mentally simulate a move-
ment was significantly different (generally less) than the time
needed to execute the same movement. (Note that, similar
to motor cortex lesion patients, actual execution time was
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prolonged in comparison to control subjects.) This incon-
sistency suggests that the brain was unable to reliably
estimate the state of the hand after damage to PPC. This
impairment could be explained by multiple possible failures
of the observer model: (1) an error in the forward model
(i.e., faulty 4 or B matrices in equation 1), (2) an error when
incorporating sensory feedback into the a priori estimate of
the forward model (i.e., faulty H or K matrices in equation
3) or (3) a combination of these. On the basis of known
strong sensory input to PPC, it is probable that PPC is
involved in integrating sensory feedback into the state esti-
mate. However, because visual and proprioceptive inputs
were effectively removed during the above mental simula-
tion tasks (e.g., eyes were closed, muscle activity was absent),
it is less likely that erroneous state estimation was due exclu-
sively to faulty integration of sensory feedback. Also, most
parietal lesion patients significantly underestimated the time
it would take to complete a movement when simulating it.
Such a systematic decrease in imagined movement duration
may have arisen due to an erroneous a priori estimate
made by a forward model, whose transition matrices 4 and
B govern the rate at which the arm propagates through
space. Therefore these mental simulation results suggest that
PPC is also involved in propagating the state of the arm
forward in time using a forward model (equation 1). If we
assume that PPC incorporates sensory information into the
forward model state estimate as well, then PPC would be
best described as an observer, as Wolpert and colleagues
suggested.

Neural correlates of sensorimotor state estimation

wm PPC

Psychophysical and clinical reports have pointed to both the
parietal lobe and the cerebellum as candidate neural sub-
strates for a forward model (Blakemore & Sirigu, 2003; Miall
et al., 1993; Wolpert, Goodbody, & Husain, 1998; Wolpert,
Miall, & Kawato, 1998). For example, Desmurget and col-
leagues suggested that PPC encodes a forward model of the
arm’s dynamics, from which it may also compute an esti-
mate of the motor error (i.e., the difference between the
target vector and the movement vector), which could then
be transformed into a corrective motor command by the
cerebellum (Desmurget & Grafton, 2000). While numerous
studies have shown that PPC and the cerebellum are likely
to be involved in forward model control, finding direct
neural correlates of forward model state estimation in the
brain has proven difficult.

ON-LINE DIrecTIONAL CONTROL S1GNALs IN PPC Previous
encoding studies have shown that area 5 neurons are
correlated with a variety of movement- and task-related
parameters (most notably velocity and target position)
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during reaching movements made with a manipulandum
(Ashe & Georgopoulos, 1994; Averbeck, Chafee, Crowe, &
Georgopoulous, 2005). These studies concluded that area
5 largely encodes a sensory (i.e., proprioceptive) representa-
tion that slightly lags the state of the movement (ie., lag
time = —30 ms). More recently, we further investigated the
neural representation of on-line directional control signals
in both area 5 and MIP while monkeys performed center-
out and obstacle avoidance joystick trajectories under
central eye fixation (Mulliken, Musallam, & Andersen,
2008a) (figures 41.24 and 41.2B). We analyzed the
correlations of single neurons recorded in both area 5
and PRR with the static goal angle (fixed angle from the
starting cursor position to the target) and the dynamic
movement angle of the cursor (angle of heading) during a
joystick task.

To characterize a neuron’s dynamic tuning for movement
angle, we constructed a space-time tuning function (STTF).
Each horizontal slice in the STTT plots a neuron’s instan-
taneous firing rate as a function of the angle measured at
a particular lag time (Paninski, Fellows, Hatsopoulos, &
Donoghue, 2004). For each lag time in the STTF, we also
calculated the mutual information between firing rate
and movement angle. The resultant temporal encoding
function (TEF) indicated how strongly a neuron’s instanta-
neous firing rate encoded the movement angle at different
lag times (i.e., from past (lag time < 0) to future (lag time
> 0) angles). The lag time corresponding to the peak of the
TEF was considered to be the optimal lag time (OLT).
Figure 41.2C shows a representative movement angle STTF
for a single neuron. This neuron encoded the most informa-
tion about the movement angle at an OLT of 0 ms and
therefore best encoded the current state of the movement
angle (figure 41.2D).

For our PPC population, during the center-out task, 56%
of task-related neurons encoded significant information
about the movement angle, and 75% of these significantly
encoded the goal angle (note that PPC neurons appeared to
be more engaged during the obstacle task: 79% encoded
movement angle, and 93% encoded goal angle). Interest-
ingly, we found an anatomical correlate for the representa-
tion of goal angle and movement angle in PPC: Mutual
information for goal angle increased gradually with record-
ing depth in the sulcus, while movement angle information
(peak information measured at OLT) decreased with depth.
A stronger encoding of target-related signals deeper in the
intraparietal sulcus (IPS) and, conversely, a favored repre-
sentation of hand movement-related activity in surface
regions of the IPS are consistent with findings from previous
PPC studies of reach planning, in which eye-centered target
signals were commonly found in deeper structures such as
PRR and more hand-related activity was reported for surface
area 5 neurons (Buneo et al., 2002).



Movement

o0
®e angle

Target
9
®
® Goal
angle
Fixation
Firing rate (Hz)
C 18 20 22 24 26’28

120

Lag time (ms)
o

w4 12 3m4 m Sm/4 3m/2 Tn/4
Movement angle (radians)

Ficure 41.2 Experimental design and representative neuron. (4)
Example center-out trajectory showing the goal angle and move-
ment angle, and their respective origins of reference. Large and
medium-sized circles represent the target and fixation point, respec-
tively. Dots denote cursor position sampled at 15-ms intervals along
the trajectory. (B) Example trajectories for obstacle task. The
dashed circle depicts the starting location of the target and is not
visible once the target has been jumped to the periphery. The large
gray circles represent the visual obstacle. (C) Movement angle
space-time tuning function (STTF). The contour plot shows the
average firing rate of a cell that occurred for different movement

Neurons that are significantly tuned for goal angle persis-
tently encode the static direction to the target, independent
of the changing state of the cursor. These cells were consis-
tent with previous reports of target-sensitive tuning in area
5 (Ashe & Georgopoulos, 1994). Therefore, the intended
goal of the trajectory is maintained in PPC during on-line
control of movement. PPC neurons that are tuned for move-
ment angle encode dynamic information about the time-
varying state of the cursor. Figure 41.34 shows TEFs for the
movement angle population. The histogram in figure 41.3B
summarizes the distribution of OLTs for the movement
angle population, which was centered at 0 £ 90 ms and 30
+ 90 ms, for the center-out and obstacle tasks, respectively
(median % interquartile range (IQR)). These plots show that
movement angle neurons contained a temporal distribution
of information about the state of the ongoing movement;
some neurons best represented states in the near future
(positive-lag time), some best represented states in the recent
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angles measured over a range of lag times (=120 ms < T < 120 ms)
relative to the firing rate. (D) Movement angle temporal encoding
function (TEF) and corresponding goal angle TEF, where mutual
information between firing rate and movement angle is plotted as
a function of lag time. The firing rate contained the most informa-
tion about the movement angle at an optimal lag time of 0 ms. The
dashed lines denote surrogate TEFs, for both movement (black-
dashed) and goal (gray-dashed) angles, that were derived from
surrogate spike trains and actual angles. (Reprinted with permission
from Mulliken, Musallam, & Andersen, 2008a.)

past (negative-lag time), and many peaked around the
current state (zero-lag time).

It is helpful to interpret the OLT results in the context
of the observer framework. Passive sensory feedback
(e.g., » in equation 2) would require at least 30-90 ms
(proprioceptive-visual) to reach PPC; consistent with some
of the negative OLTs (<-30 ms) observed here (Decety
et al., 1994; Flanders & Cordo, 1989; Miall & Wolpert,
1996; Petersen et al., 1998; Raiguel et al., 1999). Conversely,
if PPC neurons were responsible for generating outgoing
motor commands (x in equation 1), subsequent stages of
processing and execution of the movement would require
at least 90-100 ms to produce the corresponding cursor
motion (Miall & Wolpert, 1996). For instance, similar analy-
ses for velocity have been performed in the primary motor
cortex and report average OLTs of approximately 90—
100 ms (Ashe & Georgopoulos, 1994; Paninski et al., 2004).
Therefore, it is unlikely that PPC is primarily driving motor
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Ficure 41.3 Population temporal encoding results. (4) Popula-
tion TEFs plotted for all movement angle neurons showing
cell-normalized mutual information as a function of lag time. (5)
Histogram summarizing the OLTs for movement angle neurons
for both center-out and obstacle tasks (summary statistic in upper-
left corner: median * interquartile range). Many of these neuron’s
OLTs were consistent with a forward estimate of the state of the
movement angle, which did not directly reflect delayed sensory
feedback to PPC, nor were they compatible with outgoing motor
commands from PPC. (Reprinted with permission from Mulliken,
Musallam, & Andersen, 2008a.) (See color plate 53.)

cortex with feedforward commands, since it would be
expected that PPC should lead the movement state by
more than motor cortex does, on average (ie., OLT
> 90 ms). Neither passive sensory feedback nor efferent
motor explanations best account for the responses of
neurons whose OLTs fall between —30 and 60 ms. Instead,
these cells appear to encode a forward-state estimate,
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which allows PPC to monitor the current and upcoming
states of the movement angle prior to the arrival of delayed
sensory feedback. It does not appear that this current-
state estimate is merely a blend of incoming sensory and
outgoing motor representations (i.e., a simple summation
of two modal distributions centered at negative and positive
lag times should result in a bimodal or potentially “flat”
distribution), since our OLT distributions appear to show
a pronounced unimodal peak around 0 ms. Furthermore,
the peak information (mutual information at the OLT)
encoded by neurons that were most clearly forward-
estimating (0 £ OLT < 60 ms) was significantly larger than
the peak information encoded by the remaining population
of movement angle neurons (OLT < —30 ms, or OLT 2
90 ms). Therefore not only does PPC have a central ten-
dency to encode the current state of the movement angle,
but forward-estimating neurons also contained significantly
more information about the movement state than did
neurons with other OLTs, suggesting that these state esti-
mates are generated by some active computational process
(i.e., a forward model).

While it is likely that PPC relies upon a forward model
to estimate the current state of the cursor (ie., a priori
estimate), it is also possible that sensory information is
integrated by PPC to update this estimate. As mentioned
above, it has been suggested that the a priori state estimate
is generated by the cerebellum and then sent to PPC
(Shadmehr & Krakauer, 2008). In this situation, these
authors suggested that PPC is responsible only for processing
afferent signals (i.e., matrix A in equation 2), specifying
the Kalman gain to optimally incorporate sensory infor-
mation into a refined, a posteriori state estimate. Given
known afferent projections to PPC (both visual and pro-
prioceptive) as well as evidence from our data demonstrating
that some movement angle neurons appear to encode
a passive sensory representation of the state (i.e., OLT <=
—30 ms), it seems likely that PPC does integrate delayed
sensory information. However, on the basis of our data and
evidence from the mental simulation literature (discussed
above), we suggest that PPC is also involved directly in
performing forward model computations, perhaps within a
reciprocal, functional loop that includes the cerebellum
(Blakemore & Sirigu, 2003). That is, the forward state
estimates found in PPC most likely reflect the output of
an observer, which is involved in both performing the com-
putations of the forward model and integrating sensory
feedback into the state estimate.

Dy~namic TUNING AND SEPARABILITY OF MOVEMENT ANGLE
STTF Further support for state estimation in PPC was
obtained from analyzing the spatiotemporal encoding
properties of movement angle STTFs. We measured changes
in the preferred direction of a neuron, 8,, over a range of



lag times. 6,,is the movement angle at which a neuron fired
maximally for a particular lag time. We reasoned that if 6,,
did not vary significantly as a function of lag time compared
to changes that occurred in the movement angle itself, then
that neuron encoded a mostly straight trajectory. Across the
population of movement angle neurons, most neurons’
STTFs exhibited small changes in 6, as a function of lag
time, which were significantly less than changes observed in
the actual movement angle in the trajectories themselves
(figure 41.44B).

We performed an additional separability analysis to
further characterize the relationship between angle and lag
time encoded by a neuron’s STTF. A perfectly separable
STTF indicates that the lag time and angle were encoded
independently of one another. We determined that the pop-
ulation of movement angle neurons was largely separable in
the angle-time plane by using singular value decomposition
(SVD) (Mazer, Vinje, McDermott, Schiller, & Gallant, 2002;
Pena & Konishi, 2001). We calculated the fractional energy
contained in the singular values for each cell’s movement
angle STTF; 92.0 £ 14.7% and 78.9 + 25.8% of energy
(median + IQR) was contained in the first singular value, for
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Ficure 41.4 Curvature and separability of STTFs. (4) Example
STTF containing slight curvature. The ), of this cell (dashed line)
changed smoothly but slightly as a function of lag time. (B) Stan-
dard deviation of the population’s distribution of 8,, changes (0y),
plotted as a function of time relative to the OLT. For both center-
out and obstacle tasks, the population Oy (neural, solid lines) was
significantly less than the Oy for the actual movement angle (behav-
ior, dashed lines) over the same time range. (C) Population summary
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® Center-out

the center-out and obstacle tasks, respectively (figure 41.4C).
The distribution of fractional energies contained in the first
singular value is shown in figure 41.4D.

These results suggest that dynamic sensorimotor control
mechanisms in PPC encode mostly straight and instanta-
neous trajectories, with a less substantial component of the
neurons’ firing rates arising because of nonlinear encoding
mechanisms that may reflect the slight curvature we observed
in the STTFs. This interpretation is consistent with PPC
neurons encoding a state estimate of the movement direc-
tion, such that the majority of information is encoded at a
cell’s OLT, with decreasing information encoded away from
the OLT. (Note that a perfectly instantaneous state estimate,
that is, a delta function, should not be expected due to auto-
correlation present in continuous motor variables such as
movement angle.)

Reading out the dynamic state of a cursor_from PPC

It would be interesting to test whether a dynamic state esti-
mate in PPC, presumably reflecting the operation of an
observer, could be used to causally control an external device
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of fractional energy (FE) accounted for by each singular vector in
the singular vector decomposition (SVD) analysis. The majority of
energy in movement angles STTFs was captured by the first sin-
gular vectors for the center-out and obstacle tasks, respectively. (D)
Population histogram showing distribution of FE of the first singu-
lar value for all movement angle cells. (Reprinted with permission
from Mulliken, Musallam, & Andersen, 2008a.)
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besides our own limbs. During recent years, several groups
have leveraged the findings from decades of primate neuro-
physiology toward the development of an important medical
application: a neural prosthesis to assist paralyzed individu-
als. A neural prosthesis would directly read out the desired
movement intentions of a patient from regions of the brain
that are not affected by injury or disease.

Several groups have successfully extracted continuous
movement information (i.e., trajectories) from motor corti-
ces, such as M1 and dorsal premotor cortex (PMd) (Carmena
etal., 2003; Kennedy, Bakay, Moore, Adams, & Goldwaithe,
2000; Musallam et al., 2004; Patil, Carmena, Nicolelis,
& Turner, 2004; Santhanam, Ryu, Yu, Afshar, & Shenoy,
2006; Serruya, Hatsopoulos, Paninski, Fellows, &
Donoghue, 2002; Shenoy et al., 2003; Taylor, Tillery, &
Schwartz, 2002; Wessberg et al., 2000; Wolpaw & McFar-
land, 2004). In contrast to signals extracted from M1, which
are more likely to encode movement execution signals that
are represented in a musculoskeletal reference frame, high-
level visuomotor signals can be found in earlier stages of
the dorsal visual pathway, such as in PPC or PMd. For
example, the goal of a reach in visual coordinates has been
decoded successfully from both PPC and PMd neurons

(Musallam, Corneil, Greger, Scherberger, & Andersen,
2004; Santhanam et al., 2006). Sensorimotor areas of cortex,
particularly those that are strongly innervated by visual feed-
back projections (e.g., PPC) represent candidate regions that
are potentially useful for driving a neural prosthesis since a
primary source of input, visual information, is typically
uncompromised after paralysis (figure 41.5).

OrrLINE DEcopINng oF TrajecTORIES We recently built
upon the work of Musallam and colleagues and demonstrated
that a PPC prosthesis can also be used to perform continuous
control of a computer cursor (Mulliken, Musallam, &
Anderson, 2008b). First, we showed that we could reliably
reconstruct monkeys’ trajectories off-line using a small
ensemble of PPC cells. For example, decoding from just five
single neurons using a Kalman filter, we demonstrated that
we could account for more than 70% of the variance in the
cursor position. Interestingly, by extracting information
about the goal of a trajectory (i.e., target information that is
also known to be encoded in PPC) and incorporating it into
the Kalman filter framework, we were able to significantly
improve the accuracy of the decoded estimate (on average
by 17% over a standard Kalman filter).

Decoding Trajectories Using a PPC Prosthesis

Decode

Dynamic State

from

~

PPC (Observer)

Guide
Trajectory of
External Effector

Ficure 41.5 A neural prosthesis using PPC for trajectory control.
A spinal cord injury can render communication (afferent and effer-
ent) between somatosensory and motor areas of cortex and the
limbs useless. However, the integrity of the “vision for action”
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pathway may still be largely intact, which includes PPC. Decoding
algorithms are designed to optimally estimate the state of the
effector from the measurement of neural activity from PPC
ensembles.



In these decoding experiments, we presumably were
decoding from the output of an observer, thereby harness-
ing a forward estimate of the expected (e.g., current)
sensorimotor state of the cursor. To verify this, we also
decoded the state (in this situation, the position and
velocity) of the cursor shifted in time relative to the instan-
taneous firing rate measurement, with lag times ranging
from —300 ms to 300 ms, in 30-ms steps (where negative
lag times correspond to past movement states and positive
lag times correspond to future movement states). The optimal
lag time (OLT) for decoding velocity using the G-Kalman
filter was 10 ms in the future, consistent with previous
claims that PPC best represents the current state of the
velocity (Mulliken, Musallam, & Andersen, 2008a). The
position of the cursor was best decoded slightly further
into the future, at an OLT of approximately 40 ms. These
temporal decoding results suggest that the current or
upcoming state of the cursor could be best extracted from
the PPC population by using the Kalman filter. These
results are by and large similar to the encoding analyses
reported above, and they suggest that PPC is involved
in maintaining an estimate of the current and upcoming
state of the cursor, consistent with the output of a forward
model.

Crosep Loop Bramn ConTtroL DEcoping In addition to
off-line decoding, we demonstrated that we could decode
trajectories during closed loop brain control sessions, in
which the real-time position of the cursor was determined
solely by a monkey’s thoughts. Initially, the monkey
performed brain trajectories at approximately a 30% success
rate (for eight targets), but he quickly improved his
performance to an 80% success rate after just four to five
sessions. This increase in behavioral performance was
accompanied by a corresponding enhancement in neural
tuning properties, showing that learning effects occurred in
the PPC ensemble. For instance, off-line analyses showed
that the neurons’ average tuning depth increased by more
than 70%, the average coverage of two-dimensional space
of the population increased by 35%, and the off-line decoding
performance (i.e., R? of the PPC ensemble increased by
more than twofold. These data show that PPC ensembles
can be harnessed independently for real-time continuous
control of a cursor. In addition, the ability of PPC to causally
control a cursor indicates that the state representation
in PPC does not rely entirely on visual/proprioceptive
information but instead may reflect current and future state
estimates generated by a forward model. Last, we expect, on
the basis of our findings here and PPC’s known functional
role in combining visual and motor representations, that
PPC will be particularly well suited to serve as a target for
a prosthesis that relies upon visually guided feedback for
continuous control and error-driven learning.

The ability to extract both trajectory and goal information
from neural activity makes this brain area an attractive
target for a neural prosthesis. For example, a continuous
decoder that estimates the dynamic state of the cursor could
be improved by using target information to constrain the
decoded trajectory on the basis of its inferred endpoint
(Srinivasan & Brown, 2007). The observation that these
neurons appear to encode mostly straight lines in visual
space may prove to be more straightforward to decode. For
instance, PPC neurons may be more flexible for controlling
a variety of end effectors, including but not limited to the
human arm. Finally, when training a prosthetic in a clinical
setting, the operator must rely on a patient’s ability to
imagine moving an effector in space. Motor imagery studies
suggest that PPC is a critical node for maintaining an accu-
rate estimate of the state of the hand during mental simula-
tion of movement. Therefore, we expect that PPC will be a -
useful site for extracting time-varying trajectory information
that accurately matches the desired, real-time sensory
outcome of an intended movement trajectory. These find-
ings mark an important step forward in the development of
a neural prosthesis using signals from PPC.
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