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Abstract:

Action understanding requires internal models that link vision to motor goals. In monkeys, mirror
neurons demonstrate motor resonance during observation, but single-unit evidence in humans
is limited, leaving open whether such representations rely solely on motor resonance. We
recorded neural activity from motor cortex (MC) and superior parietal lobule (SPL) in two
tetraplegic participants implanted with Utah arrays while they intended or observed hand
actions. MC strongly encoded intention but showed only weak, feature-specific overlap during
observation, evident primarily at the population level. SPL, in contrast, supported shared models
across intended movement and observation formats at both single-unit and population levels. In
variants with incongruent instructed and observed actions, SPL encoded observed actions only
when behaviorally relevant, whereas MC remained intention-dominant. Our results identify a
context-dependent gating mechanism in SPL and suggest a hierarchical organization in which MC
maintains intention-specific codes while SPL flexibly links observed input with internal goals to
support action understanding.
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Introduction:

The ability to interpret the actions of others, to identify what is being done, by whom, and in what
context, is a fundamental feature of intelligent behavior. It relies on internal representations that
can flexibly map visual input onto motor knowledge, enabling the brain to simulate, predict, and
interpret observed movements. For decades, these processes have been framed through the lens
of mirror mechanisms: the idea that shared neural codes support both action execution and
observation'3. Yet the scope, structure, and cortical distribution of these representations remain
deeply debated®. Is action understanding underpinned by motor-constrained reactivations of
one’s own movements, or by more abstract, generalizable codes that transcend the observer’s
motor repertoire? And how are these representations organized across regions traditionally
implicated in sensory-motor control versus those thought to support higher-order cognitive
functions?

Mirror neurons, first identified in macaques, respond during both execution and observation,
supporting the motor simulation theory that action perception relies on covert motor reactivation
1258 While influential, this framework has been refined by evidence that mirror responses are
shaped by prior experience and task context (contextual flexibility), that individual units often
encode only subsets of action features (partial tuning), and that visuomotor congruence emerges
more robustly at the ensemble rather than single-cell level (population encoding). °. These
findings point to more complex and heterogeneous mechanisms than strict motor mirroring can
explain. Converging theoretical work suggests that cognitive flexibility emerges from internal
models that are compositional, building complex structures from separable and recombinable
elements, and generalizable capturing abstract structure that extends across contexts and tasks
to support adaptive behavior.1%12 Yet in humans, direct single-neuron evidence remains scarce,
and the broader principles underlying action representations, particularly their flexibility and
generalizability, are still not well defined.

These theoretical shifts, from rigid mirroring to flexible, predictive, and context-sensitive
encoding, highlight the need to reassess how action representations are structured in the human
brain. Action observation provides a unique lens into this flexibility. Unlike execution, it allows
testing whether neural populations encode actions disentangled from the specific motor
commands or output normally coupled to them This is particularly relevant in higher-order
regions such as the parietal cortex, where mixed selectivity is prevalent 3-'®and encoding may
reflect abstract and goal-directed representations rather than motor-specific plans!’19,
Assessing such generalizability requires moving beyond single-neuron selectivity towards the
structure of population codes. Recent advances in neural manifold analysis?® and representational
geometry 2! (the structure of neural population activity, often captured as trajectories) have
shown that population activity can reveal compositional and generalizable subspaces, but these
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69 approaches have rarely been applied to investigate action representations??. To date, only a
70  handful of studies have examined action observation responses at the single-neuron level in
71  humans?>7?4 and none have systematically characterized the geometry or cross-format
72  alignment, i.e. generalizatrion, of action representations in core regions of the motor system.

73  To investigate how intended and observed actions are represented in the human brain, we
74  recorded single- and multi-unit activity together with local field potentials from motor and
75  posterior parietal cortices in two tetraplegic participants implanted with Utah arrays. Using a
76  factorial design that manipulated hand, action type, and movement direction, we compared
77  neural representations across intention and observation. Our analyses revealed a gradient of
78  representational overlap, with posterior parietal cortex encoding action identity in a format-
79  general manner across intention and observation, whereas motor cortex representations were
80 predominantly intention-specific, with observation responses reflecting only a latent projection
81 of the intention-related structure. To test whether this overlap was modulated by behavioral
82 relevance, we introduced a dissociation task that decoupled instructed and observed actions. This
83 manipulation demonstrated that parietal representations of observed actions emerged only
84  when those actions were behaviorally relevant, consistent with a gating mechanism driven by
85 task demands, whereas motor cortex consistently reflected only the instructed movement.
86  Together, these findings provide direct human electrophysiological evidence that action
87 representations extend beyond motor mirroring, supporting a hierarchical and context-
88 dependent coding framework in the frontoparietal system.

89  Results:

90 We recorded single- and multi-unit activity as well as local field potentials (LFPs) from two
91  tetraplegic participants (JJ, RD) implanted with Utah arrays targeting motor and posterior parietal
92  cortices. Participant JJ had 96-channel arrays in the hand knob area of the primary motor cortex
93 (MC) and the superior parietal lobule (SPL). Participant RD had 64-channel arrays in two regions
94  of the hand knob in motor cortex, one positioned more medially (MCM) and one more laterally
95 (MCL), as well as an array in the superior parietal lobule (SPL). An additional array targeting the
96  supramarginal gyrus (SMG) in RD was excluded from all analyses, as it did not yield reliable task-
97  related responses across sessions or experimental variations.

98 To investigate action encoding across intention and observation, we designed a task with a fully

99 crossed 2 (hand: left/right) x 3 (action: lift, slide, rotate) x 2 (direction: left/right) structure (Fig.
100  1A). Direction refers to an abstract left/right factor, defined per action type (see Methods).In the
101 intention condition, participants intended the cued action; in observation, they passively viewed
102 a video of the same action. This structure allowed independent assessment of effector, action
103  type, and direction encoding across formats.
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104  We recorded 421 units in MC and 326 in SPL from JJ, and 441 (MCM), 479 (MCL), and 532 (SPL)
105  units from RD during the main task (Table S1). In RD, two further dissociation experiments yielded
106  an additional 885 (MCM), 794 (MCL), and 1020 (SPL) units (Tables S2-S3), which were analyzed
107  separately. Implant locations are shown in Figure 1B. Based on the quality factor classification
108 (see Methods), 81 units in RD-MCM, 109 in RD-MCL, and 92 in RD-SPL were well isolated (quality
109  1-2), with the remainder classified as multiunit activity (quality 3—4). For JJ, whose arrays had
110 beenimplanted for an extended period of time, the majority of signals were classified as multiunit
111 activity, yielding only 5 well-isolated MC units and 4 well-isolated SPL units. For the dissociation
112  tasks, the numbers of well-isolated units were 134 in RD-MCM, 107 in RD-MCL, and 254 in RD-
113  SPL.

114  Eye-tracking confirmed stable fixation across all conditions. Figure S1 shows the two-dimensional
115  distributions of gaze positions (in degrees of visual angle) aggregated across all trials. Across both
116  participants and formats, gaze remained consistently centered, confirming compliance with
117  fixation instructions throughout the experiment.

118
119  Distinct tuning profiles in parietal and motor cortices across action formats

120  We first examined condition-specific responses at the single-unit level across regions. Figure 2A
121 shows example units from RD: one in SPL tuned to action “lift”, and one in MCM tuned to right-
122  hand actions. Both showed consistent tuning across formats. The SPL unit exhibited peak
123  responses for lift at 2.1 s (159 spikes/s) during intention and at 2.0 s (82.5 spikes/s) during
124  observation. The MCM unit showed sustained right-hand selectivity, peaking at 2.0 s (83.2
125  spikes/s) during intention and 1.7 s (48.5 spikes/s) during observation. However, consistent cross-
126  format tuning was not ubiquitous; many neurons showed divergent selectivity across formats.

127  To compare temporal dynamics, we computed response latencies per condition and unit, defined
128  as the center of the first of three consecutive bins (100 ms each) significantly above baseline.
129  Figure 2B shows latency distributions across regions and formats. During intention, SPL responses
130 preceded those in motor cortex (median latencies: JJ/SPL: 1.2 s; RD/SPL: 1.4 s; MC/MCM/MCL:
131 1.9-2.1s; ANOVA p < 0.001). With the effector cue at 0 s, the action and direction cue at 0.5 s,
132 andthe go cue at 1.5 s, these latencies indicate that SPL activity emerged ~700-900 ms after the
133  action cue and ~100—300 ms before the go cue, whereas MC responses appeared ~400-600 ms
134  after the go cue. During observation, SPL also preceded MC in JJ (1.1 vs. 1.5 s, p = 0.02), but no
135  significant timing differences were found in RD. These results point to a leading role of SPL during
136  action intention, with less consistent dynamics during observation.

137  We quantified the number of units responsive to at least one condition in each format and brain
138 area. A unit was considered responsive if it showed three consecutive time bins significantly


https://doi.org/10.1101/2025.11.10.687245
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.10.687245; this version posted November 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

139 above baseline (see Methods). Figure 2C shows the distribution of responsive units per condition,
140  separately for intention (top row, green) and observation (bottom row, blue). In motor cortex,
141  substantially more units responded during intention than observation: JJ/MC: 220 vs. 50;
142  RD/MCM: 215 vs. 40; RD/MCL: 172 vs. 39. Notably, in JJ’'s MC, responses were strongest for right-
143  hand rotation, whereas MCM and MCL exhibited broader tuning, though with a right-hand bias.
144  In SPL, responses were widespread across both formats. During intention, 139 (JJ) and 256 (RD)
145  units were responsive; during observation, 88(JJ) and 137(RD). This exceeds the number observed
146  in any motor cortex array, indicating that SPL supports robust responsiveness across formats,
147  whereas motor cortex is primarily active during intention.

148

149  To assess tuning to specific task features, we performed a three-way ANOVA on binned firing rates
150  with action type, effector (hand), and direction as factors (Fig. 2D). In motor cortex during
151 intention, tuning patterns differed by participant. In JJ’s MC, action tuning dominated (peak: 144
152  units at 2.75 s), while effector tuning was minimal (14 units). In RD, MCM showed strong effector
153  tuning (118 units at 2.25 s), with weaker action (28) and interaction tuning (e.g., actionxhand:
154  18). MCL showed tuning for both hand (45) and action (33), with hand remaining dominant. SPL
155  exhibited a distinct profile. In both participants, action was the most commonly tuned feature
156  during intention (JJ: 27; RD: 58), followed by effector (JJ: 16; RD: 37). This structure was largely
157  preserved during observation (JJ: 16; RD: 21 action-tuned units), whereas observation-related
158  tuning in motor cortex was minimal (<5 units for all features in RD; 5 action-tuned units in JJ’s
159  MOC). Across regions, effector tuning tended to emerge earlier than action, particularly during
160 intention suggesting a sequential encoding of task parameters. For example, hand tuning peaked
161 around 2.25 s in MCM and MCL, while action peaked at 2.75 s. SPL showed a similar temporal
162  shift. Interaction terms were rarely significant, suggesting that most units were modulated by
163  single task features. Overall, motor cortex was dominated by effector or action tuning during
164  intention, while SPL consistently encoded action type in both formats.

165

166  We next quantified format-specific responsiveness by counting units active for at least one
167 condition during intention only, observation only, or both (Fig. 2E, top row). In motor cortex, most
168  units were responsive exclusively during intention. In JJ)’s MC, 63 units were intention-only,
169 compared to 20 observation-only and 7 responsive in both formats. Similar distributions were
170 found in RD: MCM (48 intention-only, 34 observation-only, 18 both) and MCL (87, 25, and 16,
171 respectively). In contrast, SPL showed a higher proportion of units responsive across both
172  formats. In total, 76 units in JJ and 61 in RD responded in both formats, nearly matching or
173  exceeding the format-specific counts. This suggests that SPL encodes actions in a more format-
174  invariant manner than motor cortex.
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175 To characterize tuning structure and generalization, we applied a linear model framework
176  adapted from Chivukula et al. 2025 %2. For each unit, we fit a full factorial model using action,
177  hand, and direction (including all interactions), separately for intention and observation. Units
178  were assigned to the best-fitting model via stratified 5-fold cross-validation. Shared tuning
179 categories (consistent tuning to a given feature across both intention and observation formats)
180 included action, hand, direction, mixed (e.g., action xhand), or invariant (consistent across all 12
181 conditions). Units were labeled idiosyncratic if they were tuned in both formats but with
182  unrelated profiles, single-format if tuned in only one, and unselective if no model exceeded R? >
183  0.01 or reached significance after FDR correction. Figure 2E (bottom) shows the distribution of
184  model classifications across regions. In RD, MCM and MCL were dominated by single-format units
185 (83 and 64), followed by shared hand (43 and 35), consistent with effector-dominant tuning (Fig.
186  2D). JJ’s MC showed a strikingly different pattern: despite few observation-responsive units (Fig.
187  2E, top), the majority were best fit by a shared action model (112), with only 34 classified as
188  single-format. SPL in both participants exhibited consistent format-general structure. Shared
189  action was the most frequent model (JJ: 38; RD: 54), followed by shared hand (21; 44), invariant
190 (17; 20), and mixed models (13; 22). Single-format tuning was also present, particularly in RD (42
191 units). These findings further support the view that SPL contains a population of units that encode
192  action features in a consistent and generalizable format across observation and intention.

193  To ensure that collapsing leftward and rightward variants of each action did not inflate shared-
194  action fits, we repeated the model comparison using a 6-level action factor (action x direction;
195 Fig. S2). The overall distribution of model fits remained consistent. Across areas, the 3-action
196 model continued to dominate, particularly in PPC (JJ SPL: 52 action(3) vs 25 action(6) units; RD
197  SPL: 29 action(3) vs 12 action(6)). In motor cortex, a similar profile was observed (JJ MC: 96
198  action(3) vs 28 action(6); RD MCM: 8 action(3) vs 6 action(6), RD MCL: 9 action(3) vs 5 action(6)).
199 Thus, redefining actions as direction-specific variants revealed only a minor subset of additional
200 tuned units, confirming that the dominance of action(3) tuning (particularly in PPC) reflects
201  genuine encoding of action identity rather than conflation of directional movements.

202

203 At the single unit level SPL exhibited robust, format-general tuning across participants. In both JJ
204  and RD, many units responded in both formats (76 and 61, respectively; Fig. 2C—E), with action
205 tuningaligned in time and shared action emerging as the most frequent model. In contrast, motor
206  cortexresponses were predominantly intention specific. JJ’'s MC showed strong action tuning, and
207 RD’s MCM and MCL were dominated by effector tuning, but observation-related responses were
208  sparse. Most MC units were classified as single-format, except in JJ, where shared action tuning
209 was prevalent despite limited observation responsiveness. This apparent discrepancy reflects the
210  difference between the baseline test, which detects only strong increases in firing, and the model
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211 analysis, which can reveal shared tuning structure even when observation responses are weak.
212  Direction tuning was negligible across all regions. Overall, SPL supported consistent, format-
213  invariant encoding, while motor cortex tuning was more format-dependent.

214
215  Cross-format representational similarity is robust in SPL but conditional or absent in MC:

216  Single-unit analyses revealed strong format independent tuning in SPL and single format,
217  intention-dominant responses in motor cortex. We then examined whether this representational
218  structure was preserved across formats at the population level. To test this, we applied
219  representational similarity analysis (RSA) to quantify condition-specific similarities in population
220  activity within and across formats (see Methods). We included only task-relevant units, as defined
221 by the linear model analysis (see Methods), with the following counts per array: MC/JJ: 163,
222 SPL/JJ): 101, MCM/RD: 117, MCL/RD: 88, and SPL/RD: 165.

223 Figure 3A shows cross-format RSA matrices for each array and task variable (action, hand,
224  direction). Corresponding within-format matrices are shown in Figure S3, and analysis using
225  different time windows and including all recorded units are presented in Figure S4. In JJ’'s MC,
226  cross-format similarity was specific to rotation (R? = 0.31); lift and slide were near zero. In RD’s
227  MCM, correlations were strong for the right hand (0.71) and moderate for lift (0.53) and rotation
228  (0.52); left-hand and slide were weaker (<0.24). RD’s MCL showed no meaningful correlations (R?
229 < 0.12). These patterns reflect selective generalization in MC/JJ and MCM/RD, aligned with their
230 dominant intention-driven features (rotation and right-hand tuning; Fig. 2C-D), despite minimal
231 observation tuning at the unit level. In contrast, SPL showed robust, distributed cross-format
232  similarity across all task variables in both participants. Correlations were high for all actions (JJ:
233  0.59-0.72; RD:0.71-0.79), hands (JJ: 0.63-0.68; RD: 0.76—0.78), and directions (JJ: 0.63-0.64; RD:
234  0.73-0.79), consistent with stable representational structure.

235

236  Figure 3B shows RSA diagonal values for the 12 task conditions in intention, observation, and
237  cross-format analyses. During intention, diagonal values consistently exceeded the off-diagonal
238 mean across all arrays, reflecting strong condition-specific encoding, most pronounced in SPL,
239 MCL, and MCM, and weaker in MC/JJ. Observation responses showed similar but reduced
240  structure across arrays. Cross-format RSA revealed selective structure in MC/JJ and MCM/RD. In
241 MC/JJ, rotation actions showed elevated diagonal values and in MCM/RD, the highest values
242  corresponded to right-hand actions, consistent with effector-specific generalization. MCL showed
243  no meaningful cross-format structure, with all diagonals near the baseline. In contrast, SPLin both
244  participants showed consistently elevated diagonal values across nearly all conditions, reflecting
245  robust and generalizable cross-format representations.
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246  Llastly, to quantify structure, we compared the difference between mean diagonal and off-
247  diagonal RSA values against a null distribution generated via 1,000 label permutations (Fig. 3C).
248  InSPL, all formats showed significant structure in both participants (JJ: int = 0.35, obs =0.21, cross
249 =0.22; RD: int = 0.20, obs = 0.10, cross = 0.10; all p < 0.001). MC/JJ and MCM/RD also showed
250  significant structure in all formats (MC: 0.14, 0.08, 0.05; MCM: 0.47, 0.14, 0.15; all p < 0.05).
251 MCL/RD reached significance only during intention (0.25, p < 0.001); observation and cross-
252  format effects were nonsignificant (p > 0.05).

253  Together, these results demonstrate that SPL consistently encodes task structure across formats
254  at the population level, while in motor cortex, representational similarity is either absent or
255  limited to specific, strongly encoded features, highlighting the importance of population-level
256  analyses in revealing structure that may not be apparent from single-unit responses alone.

257  SPL supports robust cross-format decoding, while motor cortex shows asymmetric or absent
258 generalization

259  We assessed how reliably task features could be extracted from population activity over time, by
260 performing time-resolved decoding analyses for action type, effector, and movement direction,
261  separately for intention (Figure 4A) and observation (Figure 4B) trials. Figure S5 displays decoding
262  accuracy and confusion matrices for all 12 task conditions. During intention all arrays showed
263  robust decoding of action type and effector. Action decoding peaked above 90% in SPL for both
264  participants (JJ: 91.1%; RD: 95.8%) and ranged from ~74-83% in the motor cortex arrays (JJ/MC:
265  73.6%; RD/MCM: 77.9%, MCL: 83.2%). Effector decoding was similarly strong, peaking above 93%
266 inall of RD’s arrays (MCM: 93.7%, MCL: 93.8%, SPL: 93.0%), and above 75% in JJ (MC: 76.4%, SPL:
267  86.9%). Direction decoding remained weak across regions. Effector decoding consistently peaked
268  earlier than action, supporting a sequential encoding scheme. During observation, decoding was
269  strongestin SPL (action: JJ: 77.7%, RD: 77.1%), with moderate effector (JJ: 65.7%, RD: 67.4%) and
270 direction decoding. Motor cortex decoding during observation was weak, except for action in
271 MC/)) (72.2%). Thus, SPL reliably encoded action type across formats. Across sessions (Figure S6),
272  decoding performance remained stable: action and hand decoding were consistently above
273 chance for intention in all regions, with SPL showing the highest action decoding during
274  observation, while direction decoding remained uniformly poor.

275

276  To assess generalization across formats, we performed cross-temporal decoding by training
277  classifiers on one format and testing on the other, across all time point pairs (Figs. 4C-D). Analyses
278  were run bidirectionally: Intention - Observation (Fig. 4C) and Observation - Intention (Fig. 4D),
279  for action and hand. Results for movement direction are shown in Figure S7. Decoding accuracy
280  matrices were statistically thresholded via permutation testing (see Methods). In the Intention -
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281 Observation direction, SPL showed robust cross-decoding of action in both participants (JJ: 77.1%
282 at 2.7->2.6 s; RD: 79.9% at 2.6>2.8 s), with strong hand decoding in JJ (78.5% at 1.1-2.1s). A
283  small number of additional significant effects were also observed in MC of JJ and MCM of RD,
284  with the strongest in MCM for hand (72.2% at 2.1->2.5 s). No significant generalization was
285 detected in MCL. In the Observation - Intention direction (Fig. 4D), SPL exhibited robust
286  generalization for both action (JJ: 77.0% at 2.5-2.5 s; RD: 92.4% at 2.9->2.8 s) and hand (RD:
287 86.1% at 1.8-2.1 s; JJ: 71.5% at 1.2->1.2 s), with tightly aligned timing across formats.
288 Interestingly, motor cortex also showed significant decoding: MC/JJ generalized action (62.5% at
289 1.5-2.1 s), and MCM/RD generalized both hand (88.2% at 2.5->1.9 s) and action (66.7% at
290 2.2->2.85). No effects were found in MCL. The unidirectional decoding observed in MC and MCM
291 is particularly notable given the weak or absent within-format decoding during observation in
292  theseregions. This suggests that, even in the absence of overt task selectivity, observation-related
293  activity may retain structured components aligned with intention representations. In contrast,
294  the robust and bidirectional decoding in SPL indicates the presence of a stable, format-invariant
295 code, particularly for action type, consistent with its generalized encoding across tasks and
296 formats.

297
298  SPL and motor cortex exhibit distinct representational geometries across action formats
299

300 A central question in understanding action encoding is whether population activity occupies
301  similar geometric structure across cognitive states. To address this, we examined the organization
302  of neural trajectories during intention and observation. Trial-averaged responses were projected
303 into a shared PCA space based on condition means (Fig. 5A; Fig. S8), providing a geometric
304  perspective on population structure. These trajectories provide a striking and intuitive geometric
305 perspective on the population structure underlying action encoding. Table S2 reports the variance
306 explained by the first three principal components for intention, observation, and the combined
307 dataset, separately for each array and task variable. These values confirm that the projections
308 capture sufficient variance to support meaningful trajectory analysis, with total explained
309 variance exceeding 60% in all cases. They also highlight format-specific differences: observation
310 variance was consistently lower than intention in motor cortex, while SPL showed comparable
311 variance across formats. In MC of JJ, trajectories appeared similar across formats only for the
312  rotation action, consistent with its selective generalization in RSA (Fig. 3A) and decoding (Fig. 4D).
313  In MCM of RD, responses were more similar for right-hand conditions, in line with effector-specific
314  cross-format structure. MCL showed clearly segregated trajectories across formats for all
315 conditions, matching the absence of generalization observed throughout prior analyses. In
316  contrast, SPL exhibited qualitatively similar trajectories for all actions across formats, consistent
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317  with its robust and generalized encoding. To quantify cross-format similarity, we applied
318  Procrustes analysis between observation and intention trajectories for each task variable and
319  condition (Fig. 5B—C). This method estimates the best-fitting linear transformation (translation,
320 rotation, scaling) to align observation trajectories onto their intention counterparts and returns a
321 distance metric reflecting residual dissimilarity. SPL showed low alignment distances across all
322  conditions (d < 0.1), indicating consistent geometric overlap. In MC of JJ, low distance was found
323  only for rotation (d = 0.25), with poor alignment for lift (0.89) and slide (0.64). In MCM of RD,
324  right-hand trajectories aligned more closely (d = 0.13) than left-hand ones (0.30). No condition in
325 MCL yielded meaningful alignment. These results confirm that SPL supports a shared
326 representational geometry across formats, while MC and MCM exhibit selective overlap, and MCL
327  none. Although Procrustes alignment does not mean that observation and intention trajectories
328  occupy the same neural space, the transformation removes differences in translation, rotation,
329 and scale to reveal their intrinsic geometry. Successful alignment therefore indicates that
330 observation and intention preserve a similar representational structure that can be linearly
331 mapped across formats despite global shifts in activity or response gain.

332 To further assess population structure across formats, we applied Uniform Manifold
333  Approximation and Projection (UMAP) to embed single-trial activity from both intention and
334  observation into a shared low-dimensional space (Fig. 5D; Fig. S9). Trials were color-coded by
335 condition, and ellipses were fit to the format-specific distributions to visualize condition clustering
336  and cross-format overlap. Figure 5D presents three representative UMAP embeddings (MCM/RD
337 (effector), MCL/RD (effector), and SPL/JJ (action type). Three distinct regimes emerged. In MCM
338 of RD, responses for right-hand trials formed overlapping clusters across formats, whereas left-
339 hand trials remained separated, mirroring the effector-specific generalization seen in RSA,
340 decoding, and PCA. In MCL, intention and observation trials occupied distinct, non-overlapping
341 regions, consistent with the complete absence of cross-format generalization. In contrast, SPL of
342 JJ showed strong cross-format overlap for all action types, with well-separated but aligned
343  clusters, particularly for rotation. These embeddings reinforce the dissociation across regions: SPL
344  supports robust, format-general population codes; MCM exhibits conditional overlap; and MCL
345  remains format-specific.

346

347  High-gamma LFP responses reveal format-consistent population encoding at the single channel
348  level

349  To evaluate neural population structure beyond spiking activity, we analyzed high-gamma (60—
350 120 Hz) LFP power as a complementary population-level metric (Fig. 6). Across all arrays and
351 participants, all channels showed significant modulation for at least one condition in both
352 intention and observation. Strikingly, all motor cortex arrays exhibited robust observation-related
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353  responses, in contrast to the sparse or absent observation tuning in the SUA/MUA data. Figure
354  6A illustrates these effects via time—frequency plots, showing consistent condition-specific
355  activations across formats e.g., rotation tuning in JJ’'s MC, and right-hand selectivity in MCM and
356 MCL of RD. Figure 6B quantifies the distribution of significantly modulated channels across
357 conditions, highlighting that format-specific tuning was preserved: rotation tuning in JJ MC and
358 effector tuning in MCM/MCL of RD appeared in both formats. SPL again exhibited widespread
359 modulation across all conditions in both participants. Figure 6C shows the evolution of tuning
360 over time. In motor cortex, tuning profiles were nearly identical between intention and
361  observation: action-selectivity in JJ’s MC and hand-selectivity in MCM and MCL of RD. SPL showed
362  consistent tuning for action during observation in both participants; during intention, tuning was
363 action-dominant in JJ and hand-dominant in RD. Decoding from LFPs was weaker than from SUA
364  but followed similar trends (Fig. 6D, S10). During intention, both action and hand could be
365 decoded above chance in all arrays (action: JJ/MC: 57.6%, SPL: 70.4%; RD/MCM: 47.8%, MCL:
366  47.4%, SPL: 60.8%; hand: JJ/MC: 63.3%, SPL: 70.7%; RD/MCM: 73.2%, MCL: 64.4%, SPL: 67.7%).
367  During observation, only SPL supported above-chance decoding for action (JJ: 60.1%; RD: 48.9%).
368  Cross-format decoding (Fig. S11) recapitulated key spiking results: SPL showed robust
369 Dbidirectional generalization; MCM exhibited unidirectional hand generalization; and MC of JJ
370 showed a weak action effect. These findings indicate that high-gamma activity captures
371  structured population level encoding even when single-unit selectivity appears sparse. This
372  pattern should not be interpreted as evidence for a distinct representational format in the LFPs.
373  Rather, the discrepancy reflects differences in sampling: our spike recordings capture a limited
374  subset of neurons, whereas high-gamma signals pool over a much broader local population.
375 Consistent with this view, spike-based population analyses (RSA, cross-decoding, trajectory
376 analyses) already uncovered latent representational geometry despite weak tuning at the single-
377  unit level. High-gamma activity expressed this geometry more robustly, underscoring how
378  population-level signals can expose consistent representational structure that is only partially
379 evident in sparsely sampled units. In SPL, the convergence of SUA, LFP, and population metrics
380 reinforces its role as a stable, format-general hub for action representation.

381
382  SPL Flexibly Represents Observed Actions Only When They Are Behaviorally Relevant

383 To determine whether neural representations of instructed and observed actions are encoded in
384  parallel or selectively modulated by task demands, we designed two dissociation tasks that
385  explicitly separated intention from observation (Fig. 7A). On every trial, participant RD was
386  presented with both an instruction cue (specifying which hand and action to perform) and a
387  concurrent video (showing a hand performing an action). The instruction and video could be
388  either congruent or incongruent, but task demands determined which source of information was
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389  behaviorally relevant. In the no-probe variant, task blocks defined the relevant source: during the
390 intention block, RD executed the instructed action while the concurrent video was present but
391 not relevant to the task; during the observation block, RD passively viewed the video while the
392 instruction cue was present but not relevant. In the probe variant, RD again executed the
393 instructed action while a video played, but after movement completion was required to report a
394 feature of the video (action or hand) with a saccade, making both the instruction and the video
395  behaviorally relevant. This design enabled us to dissociate intention-related and observation-
396 related activity and to test how behavioral relevance affects neural representations across
397 regions. Session-level unit counts for both experiments are reported in Tables S3, S4. In the no-
398 probe intention block, all areas encoded the instructed action, with strong hand tuning in MCM
399 (163 units at 1.75 s) and MCL (90 at 1.25 s), and stronger action tuning in SPL (60 units at 2.25 s)
400 (Fig. 7B, green). However, none of the areas encoded the concurrent video action while intention
401  was underway. In the no-probe observation block, where no movement was intended, tuning for
402 the instructed (now irrelevant) action dropped to baseline in all areas, while SPL selectively
403 represented features of the video, with 23 units tuned at 2.25, predominantly to action identity
404  ratherthan hand orinteraction terms (Fig. 7B, blue). In the probe variant, tuning for the instructed
405 action remained strong in motor cortex (MCM: 122 hand-tuned units at 2.25 s; MCL: 74 at 1.25
406 s)and SPL (96 action-tuned at 1.25 s) (Fig 7B, gray).Crucially, SPL exhibited robust selectivity for
407  the video features (29 units at 2.25 s), in sharp contrast to the no-probe variant where the same
408  visual input was present but elicited no selectivity. Motor cortex, by comparison, again showed
409 <5 tuned units for the video features (Fig. 7b, gray).

410 Decoding results mirrored the tuning patterns (Fig. 8A). During the no-probe intention block,
411 instructed actions were decoded with high accuracy across all regions (peak accuracy: MCM:
412  99.4%, MCL: 97.5% SPL: 91.9%; Fig. 8A, green), but decoding of the concurrent video action
413 remained near chance (<37% in all areas). In the observation block, decoding of the instructed
414  (irrelevant) action dropped below 42% in all regions, while decoding of the video action rose
415  sharply in SPL (66.3% at 2.5 s) but remained weak in motor cortex (<45%) (Fig. 8A, blue). In the
416  probe variant, decoding of the instructed action remained robust across all regions (MCM: 97.9%,
417  MCL: 94.2%, SPL: 97.5%). Notably, the video action could now also be decoded from SPL with
418  above-chance accuracy (52.9% at 2.3 s), whereas decoding from motor cortex remained at chance
419  levels (Fig. 8A, gray). This contrasts with the no-probe variant, where the same visual input was
420 present during intention but yielded no decodable information in any area, including SPL.

421  To rule out the possibility that decoding results were influenced by visual-motor congruency, we
422  repeated all analyses in both the no-probe (intention and observation) and probe tasks using only
423  incongruent trials. Decoding performance was virtually identical to that obtained when including
424  all trials (Fig. S12A), indicating that population activity reflected genuine task-related
425  representations rather than shared visual overlap. We also tested whether any units explicitly


https://doi.org/10.1101/2025.11.10.687245
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.10.687245; this version posted November 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

426  encoded the congruency between instructed and observed actions. Neither tuning nor decoding
427  analyses revealed significant selectivity for conflict type across arrays, and decoding accuracy
428 remained at chance in both task variants (Fig. S12B).

429  We next examined the temporal stability of the instructed and video action representations
430  within the probe task using cross-time decoding (Fig. 8B). For the instructed action, all regions
431 showed a strong and sustained diagonal, indicating stable decoding over time. The lack of broad
432  off-diagonal generalization suggests that these representations were maintained but gradually
433  reconfigured rather than held in a fixed subspace. SPL exhibited a slightly broader diagonal
434  confined to the Go epoch, indicating that representations of the executed action were more
435  temporally sustained during movement intention. In contrast, decoding of the video action was
436  temporally restricted. Above-chance decoding emerged only in SPL and only within a short time
437  window during the video presentation, indicating that SPL’s visual representations were brief and
438  time-locked to sensory input, while motor cortex showed no reliable decoding.

439

440  To further characterize the structure of task representations, we trained classifiers to decode all
441 16 trial types from the dissociation task (2 actions x 2 hands x 4 conflict types; Fig. S13). In the
442  no-probe intention block (Fig. S13A), decoding in MCM, MCL, and SPL revealed distinct clusters
443  corresponding to the instructed action, consistent with selective encoding of executed
444  movements. In the observation block (Fig. S13B), decoding accuracy dropped across all areas, and
445  confusion matrices lacked systematic structure. In the probe task (Fig. S13C), motor cortex again
446  showed clustered decoding alighed with the instructed action. In contrast, SPL exhibited a
447  diagonal structure in the confusion matrix, indicating that it captured the full trial identity across
448 all 16 conditions (peak accuracy: 49.6%), including both instructed and video features. This
449  parallel representation emerged despite the fact that the task structure was nearly identical to
450 the intention block of the no-probe version, differing only by the presence of a post-trial probe.

451  Together, these results reveal a gating mechanism in SPL. While motor cortex consistently
452  reflected the instructed movement, SPL encoded observed (video) actions only when they were
453  behaviorally relevant. This selective engagement occurred despite identical visual input across
454  task variants, indicating that SPL’s visual selectivity was context-dependent rather than stimulus-
455  driven. The absence of congruency or conflict effects confirms that decoding reflected genuine
456  task-specific representations. In contrast, motor cortex maintained stable motor codes
457  throughout. Overall, SPL dynamically allocated its representational resources according to
458  behavioral relevance, supporting transient, task-dependent encoding of visual actions alongside
459  stable motor representations.

460
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461 Discussion:

462  We conducted the first systematic comparison of intended and observed actions using single-unit
463  recordings in the human motor and posterior parietal cortex. In motor cortex, intended actions
464  were robustly encoded, but passive observation failed to elicit mirror-like responses at the single-
465 unit level. Still, population analyses revealed a weak but structured geometry during observation,
466  partially aligned with the execution format and centered on the most strongly tuned features. In
467  the superior parietal lobule, observed actions were reliably encoded, with most selective units
468 maintaining shared tuning for action type across formats. These representations generalized
469  across the population and were sensitive to behavioral relevance: when observed actions were
470  not task-relevant, their encoding was suppressed. Our findings suggest that action observation
471  engages distinct encoding schemes across cortical regions, reflecting a flexible, context-
472  dependent system rather than a fixed mirror mechanism.

473 In motor cortex, the absence of mirror-like tuning at the single-unit level during passive
474  observation contrasts with prior reports in nonhuman primates, where neurons in M1 and
475  premotor areas exhibit consistent observation-driven responses?>~2’. However, population-level
476  analyses revealed a more nuanced structure: neural activity projected into low-dimensional space
477  revealed partially aligned trajectories between execution and observation, successful cross-
478  decoding from observation to execution, and localized overlap in UMAP space, specifically for
479  intention-tuned features (Figures 3-5). These results suggest that while single units do not overtly
480 mirror observed actions, MC maintains a latent representational geometry during observation
481  that reflects core aspects of the execution structure.

482  Jiang et al. (2020) %2 reported that executed and observed movements in monkey M1 and PMd
483  occupy a shared subspace, with closely aligned population trajectories. In our recordings from
484  human motor cortex, population overlap was more limited, confined to specific subregions and
485 features strongly represented during intention. We also did not observe strong single-unit
486  responses during passive observation, in contrast to reports in monkeys?®, suggesting that human
487  motor cortex may contribute less directly to action observation. Consistent with this, Rastogi et
488  al.(2023)?° found that activity in human motor cortex was primarily structured by volitional state,
489  with observation responses substantially weaker than those during attempted movement.
490 Differences between species may partly reflect that our participants could not reproduce
491 observed actions with matching kinematics, which could reduce overlap, but across human data
492  the absence of robust single-unit mirroring appears to be a general finding. Our results extend
493  this view by showing that, even without overt motor output, observation engages a small but
494  structured latent representation in motor cortex, aligned with features strongly encoded during
495 intention.
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496  Our population-level findings are further supported by high-gamma LFP signals, which revealed
497  robust and condition-congruent responses in both areas during observation fulfilling the classical
498  criteria for mirroring (Fig. 6) and closely paralleling human fMRI results, that consistently report
499  motor cortical activation during passive action viewing 3° The convergence across methods points
500 to a representational gradient: while single units in motor cortex showed minimal tuning during
501  observation, the population exhibited a weak but structured geometry that became more
502 apparent at broader spatial scales. LFP, and by extension fMRI, may reflect subthreshold or
503  spatially distributed synaptic activity. This interpretation is supported by evidence that the BOLD
504  contrast mechanism correlates most strongly with LFPs (more so than with multi-unit activity)
505 and primarily reflects synaptic input and intracortical processing rather than spiking output 3.
506  Our results highlight a critical distinction: population-level metrics can reveal shared
507 representational frameworks between formats even when overt mirror responses are absent at
508 the single-neuron level.

509 In contrast to motor cortex, SPL exhibited robust encoding of observed actions, with a large
510 proportion of selective units showing shared tuning to the same action across execution and
511 observation (Fig 2E). The cross-format encoding was strongest for action type pointing to a higher-
512  order representation of action identity. Such structure was also evident across the population.
513 Neural trajectories were aligned across formats for matching actions; cross-decoding from
514  execution to observation and vice versa was successful for action type; and UMAP projections
515 revealed spatial overlap (Figures 4-6). These results suggest that SPL encodes a conceptual
516 representation of action, generalizable across sensory format and resilient to contextual
517  mismatch (e.g., when participants do not precisely reproduce the observed movement) not tied
518  to specific motor output. Our findings converge with a growing body of work suggesting that PPC
519  supports abstract action encoding. Aflalo et al. (2020)?* demonstrated shared population codes
520 in human PPC for action verbs and visual action stimuli. Lanzillotto et al. (2020)3? showed that AIP
521 neurons do not encode actions invariantly, but population activity allows reliable decoding across
522  viewpoints and formats. Similarly, Chivukula et al. (2025)*> showed that somatosensory
523 representations in PPC generalize across both experienced and observed touch. Across these
524  studies, as in ours, PPC appears to encode not the physical parameters of an event, but the
525  concept of the action itself. Our results extend this literature by showing that such conceptual
526  generalization is supported by both single-unit tuning and aligned population geometry.

527  The dissociation paradigms allowed us to determine whether these abstract action
528 representations in SPL are fixed or dynamically modulated. In the no-probe variant, SPL encoded
529  only the instructed action, with no detectable representation of the concurrent videostream (Fig
530 7C, 7E). This dissociation confirms that the motor responses observed in our main task were not
531 visually driven, ruling out the possibility that SPL activity merely reflects responses to visual input.
532 Inthe probe variant (identical in sensory input but requiring participants to recall the video action
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533 on every trial) SPL encoded both the instructed and video actions (Fig 7D, 7F), whereas MC
534  encoded only the instructed action in both task variants. To our knowledge, this is the first single-
535  neuron evidence in humans of gating between motor and visual encoding in SPL. We show that
536  observed features are not represented by default; their encoding emerges only when they are
537  task-relevant. When motor and visual goals conflict, internally generated actions suppress
538 irrelevant sensory input. The dissociation between motor output and visual input demonstrates
539 that observed actions are not mirrored automatically but are flexibly gated by task demands.

540 Such task-dependent gating aligns with prior findings in nonhuman primates and human fMRI
541 studies showing that sensory responses in PPC are modulated by cognitive context and behavioral
542  relevance 33 and extends them by demonstrating flexible population-level reconfiguration at the
543 level of individual neurons in human SPL. The role of SPL in this process is consistent with its
544  proposed function within the frontoparietal multiple-demand (MD) network, a domain-general
545  system implicated in cognitive control, goal-directed behavior, and adaptive task management
546 3435 Rather than serving as a static relay of sensorimotor signals, PPC is increasingly viewed as a
547  dynamic integrator whose representational structure is shaped by task goals. Models of
548  attentional control further support this view, proposing that the dorsal frontoparietal network
549 (including the intraparietal sulcus and superior parietal regions) allocates top-down attention and
550 formulates predictions about incoming stimuli, while the ventral attention network centered on
551 the temporoparietal junction and ventral frontal cortex) detects salient or unexpected events
552  and redirects attention accordingly 3¢. These dynamics are closely related to the principle of mixed
553  selectivity, whereby neurons encode combinations of task-relevant features across domains, a
554  mechanism proposed to enable flexible and high-capacity representation in cognitive systems 13~
555 15,

556  Our findings suggest that action understanding does not rely on automatic mirroring, but on a
557  hierarchical organization in which motor cortex encodes intention-dominant signals and posterior
558 parietal cortex flexibly integrates observed input with internal goals. This geometry-based
559  dissociation points to context-sensitive transformations rather than reflexive resonance as the
560 basis for linking perception to action. These conclusions are drawn from small cortical regions in
561 two individuals with tetraplegia, raising the broader question of whether intact motor systems or
562  other frontoparietal areas would reveal similar balances between intention and observation.
563  Addressing such questions will be essential for testing whether the gating and geometric
564  principles identified here reflect local properties or a general cortical strategy. In either case, our
565 results highlight a framework in which human action representations emerge as flexible, context-
566 dependent geometries embedded within the broader architecture of cognitive control.

567

568
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569 Methods:
570  Participants

571 Participants JJ and RD are right-handed males (ages 55 and 40) enrolled in a brain—machine
572 interface (BMI) clinical trial (clinicaltrials.gov identifier: NCT01958086), approved by the
573 institutional review boards of Caltech, Casa Colina Hospital, and UCLA. Participant JJ sustained a
574  C4-C5 level spinal cord injury that occurred approximately 10 years prior to enrollment. He
575 retains voluntary control of the eyes, head, and shoulders. Participant RD sustained a C3—C4 level
576  spinal cord injury approximately 3 years prior to enrollment. He retains similar control of the eyes,
577 head, and shoulders, and shows weak residual movements of the wrists and thumbs. Both
578 participants were clinically stable at the time of participation. Presurgical functional MRI
579  confirmed task-related activation in regions near the planned implant sites.

580
581 Neural Recordings

582  Participant J) was implanted in 2018 with two 96-channel Utah arrays targeting the left precentral
583  gyrus (denoted JJ-MC) and superior parietal lobule (SPL) (denoted JJ-SPL). Participant RD was
584  implanted in 2023 with four 64-channel Utah arrays targeting the left precentral gyrus (denoted
585 RD-MCM, RD-MCL), SPL (denoted RD-SPL), and supramarginal gyrus (SMG). The SMG array in RD
586  did not exhibit reliable task-related activity across sessions and was therefore excluded from all
587  analyses. All arrays were 4 x 4 mm with 400 um interelectrode spacing (Blackrock Microsystems).
588 Neural signals were recorded using a 128-channel neural signal processor (NeuroPort System,
589  Blackrock Neurotech). Multiunit activity (MUA) was sampled at 30 kHz and high-pass filtered at
590 750 Hz. Action potentials were detected using a threshold of —3.5 times the root mean square
591 (RMS) of the high-pass filtered (250 Hz full bandwidth signal). Local field potentials (LFPs) were
592  recorded continuously at a sampling rate of 1 kHz.

593 Experimental setup: Experiments were conducted at Casa Colina Hospital and Centers for
594  Healthcare for Participant RD, and at home for Participant JJ. In all sessions, participants remained
595 seated in their motorized wheelchairs with their hands resting prone on a flat surface, in a well-
596 lit room. A 30-inch LCD monitor was positioned directly in front of them. Stimulus presentation
597  was controlled using the Psychophysics Toolbox38 for MATLAB (MathWorks).

598
599  Action Intention and Observation Task

600 The experimental design consisted of a primary task performed under two cognitive conditions:
601 intention and observation. In both conditions, participants viewed identical visual stimuli—a
602 virtual hand performing actions—on a monitor positioned directly in front of them. Stimulus
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603 timing and content were matched across conditions. Eye position was continuously monitored
604  using a Tobii eye tracker to confirm that participants attended to the stimuli, although no fixation
605 requirement was imposed.

606 In the intention block, participants were instructed to internally generate the cued action using
607 the specified hand while looking at the screen. Participant JJ remained physically still but
608 volitionally intended the instructed action. Participant RD, who retained partial motor function,
609  was instructed to overtly perform the cued action. Although his movements did not always
610 replicate the precise kinematics of the video stimuli due to physical limitations, we allowed
611 naturalistic execution and instructed him to maintain consistency in the type of response across
612  trials and sessions. In the observation block, participants passively viewed the same videos while
613  remaining still. They were instructed to observe the actions without intending any movement.

614  Each trial began with a 0.5-second inter-trial interval (ITl), followed by a 0.5-second hand cue. The
615 hand cue consisted of a static image of a virtual left or right hand holding a small parallelogram
616  object between the thumb and index finger, indicating the instructed effector. This was followed
617 by a l-second symbolic action cue, presented as an overlaid arrow indicating both the action type
618 and direction. Arrow shape specified the action: straight for sliding, curved for lifting, and circular
619 for rotating. The endpoint of the arrow indicated the direction of movement (leftward or
620 rightward). For sliding and lifting, this corresponded to a horizontal displacement of the object to
621 the left or right, while for rotation it corresponded to a clockwise or counterclockwise turn. For
622  consistency, we refer to this factor abstractly as left/right direction throughout the manuscript.
623  The disappearance of the symbol served as the go cue. Immediately afterward, the static frame
624  of the hand transitioned into a 1-second video showing the hand performing the cued action in
625 the indicated direction. The task followed a fully crossed 2 (hand) x 3 (action) x 2 (direction)
626  design, resulting in 12 unique conditions. Each participant completed 12 repetitions per
627  condition, per block, in each session. Participant JJ completed five sessions, yielding a total of 421
628  units in MC and 326 units in SPL, aggregated across sessions. Participant RD completed six
629  sessions, yielding 441 units in MCM, 479 units in MCL, and 532 units in SPL.

630 Dissociation Task Variants

631 To examine how task demands and cue congruency shape action representations, Participant RD
632 completed two additional experiments with an observation phase that is dissociated from the
633 instruction phase. These experiments were performed only with RD, who retained partial motor
634  function and was able to overtly execute the instructed actions. This was essential to ensure
635  correct task performance in the dissociation paradigm, where precise execution of the cued
636  action—despite incongruent visual input—was required. To reduce complexity, we fixed the
637 direction of movement to rightward and used only two action types: slide and rotate, performed
638  with either the left or right hand. This yielded a 2 (action) x 2 (hand) design. For rotation, the
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639 rightward direction corresponded to a clockwise turn, while for sliding it corresponded to a
640 rightward displacement.

641 Each trial began with a 0.5-second inter-trial interval (ITl) displaying a fixation cross. This was
642  followed by:

643 e a0.5-second hand instruction screen, indicating the instructed effector (left or right hand),
644 e a l-second symbolic cue, showing an overlaid arrow that specified the instructed action
645 type (slide or rotate),

646 e and a 1-second go phase, during which a video of a hand performing an action was
647 displayed.

648 The action in the video could be congruent or incongruent with the instructed action. Specifically,
649  the trial could present one of four cue—video pairings:

650 1. Fully congruent (same action and hand),

651 2. Action incongruent (same hand, different action),

652 3. Hand incongruent (same action, different hand), or

653 4. Action and hand incongruent (different action and hand).

654  The participant was instructed to perform the cued action with the specified hand concurrently
655  with the video playback, regardless of what was shown.

656
657  Dissociation—No-Probe Task

658  This version included two blocks: an intention block and an observation block. In the intention
659  block, the participant executed the instructed action while watching the video. In the observation
660 block, the participant passively viewed the same videos, with no movement or intention. No
661 response was required after the trial. This allowed us to dissociate encoding of instructed versus
662  observed actions.

663
664  Dissociation—Probe Task

665  This version was identical in structure but added a 1-second probe screen immediately after the
666 video. On each trial, the probe queried either the hand or the action shown in the video. Two
667 icons were presented (left vs. right hand, or slide vs. rotate), and the participant was required to
668 make a saccade to the correcticon to report what they had observed. This response was recorded
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669 using the eye-tracking system. By forcing explicit recall of the observed action or effector, while
670 the participant simultaneously performed the instructed action, this task ensured that both
671  streams of information were behaviorally relevant.

672

673  Spatial Distribution of Gaze: To visualize spatial gaze patterns during the experiment, we
674 computed two-dimensional heatmaps of gaze position separately for the intention and
675 observation blocks, combining data across all runs and sessions. Gaze coordinates from all trials
676 were concatenated, and two-dimensional histograms were computed using a fixed grid
677 (100 x 100 bins) spanning the full range of observed horizontal and vertical gaze values. The
678  resulting gaze density distributions were smoothed using interpolation for visualization, yielding
679  continuous heatmaps that reflect the spatial concentration of gaze over the course of the
680  experiment.

681
682  Data Preprocessing:

683  Single Unit Activity (SUA) and Multiunit Activity (MUA): Each detected waveform consisted of
684 48 samples (1.6 ms total), including 10 samples before threshold crossing and 38 samples after.
685  Single-unit and multiunit activity were sorted using Gaussian mixture modeling applied to the
686 first three principal components of the waveform shapes'®. In addition to spike assignments, the
687  sorting procedure provided a quality factor ranging from 1 to 4, determined by (1) the percentage
688  of interspike intervals shorter than 3 ms, (2) the signal-to-noise ratio of the mean waveform, (3)
689 the projection distance between clusters, (4) the modified coefficient of variation of the interspike
690 intervals (CV2), and (5) the isolation distance of each cluster. Units with a quality factor of 1 or 2
691 were considered well-isolated, whereas those with a factor of 3 or 4 were classified as multiunit
692  activity. 1* After spike sorting, net average responses were computed in 100 ms bins by subtracting
693  baseline activity (-500 to 0 ms before stimulus onset) from the post-stimulus activity (0 to
694 3000 ms after stimulus onset) on a trial-by-trial basis.

695 Local Field Potential (LFP): Line noise was suppressed using a combined spectral and spatial
696 filtering approach that preserves underlying neural signals while attenuating non-neural
697 components®®. The data were then high-pass filtered above 2 Hz using a zero-phase infinite
698 impulse response (lIR) filter. Trials in which the broadband signal amplitude exceeded two
699 standard deviations from the session mean were excluded from further analysis. High-gamma
700  (60-120 Hz) power was estimated using Morlet wavelet convolution with a 7-cycle resolution®.
701  To minimize edge artifacts introduced by filtering and wavelet convolution, the first and last
702 100 ms of each trial were discarded. Power was normalized within each trial by dividing the time—
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703  frequency power at each frequency by the mean power at that frequency during the 500 ms pre-
704  stimulus baseline.

705  Quantification and Statistical Analysis:

706  Statistical Comparison to Baseline: To identify task-modulated activity, we compared post-
707  stimulus responses to baseline on a per-condition basis. For high-gamma analyses, this was
708 performed at the channel level, for spiking activity, at the unit level. Neural responses (spike rates
709  or high-gamma power) were binned into overlapping 200 ms windows with a 100 ms step size,
710  starting at stimulus onset. For each bin, a paired t-test compared the binned activity to the mean
711 activity during the 500 ms pre-stimulus baseline across trials. Statistical significance was assessed
712  using a Bonferroni-corrected threshold (a = 0.05 / number of bins). A channel or unit was
713  classified as significantly responsive to a condition if it exhibited at least three consecutive time
714  bins with significant deviation from baseline. This analysis was performed separately for each
715  brain region, condition, and signal type.

716  Latency: For each condition and each significantly responsive unit, response latency was defined
717  as the center of the first time bin within the earliest sequence of three consecutive bins showing
718  significant modulation relative to baseline. This latency reflects the earliest consistent deviation
719  from baseline activity. To assess regional differences in response timing, we compared latency
720  distributions across brain areas using one-way ANOVAs, conducted separately for each participant
721  and for each task format (intention and observation). Each unit contributed a single latency value
722  per condition, and group-level comparisons tested for significant differences in peak response
723  timing between motor and parietal regions.

724  Tuning Analysis: To quantify selectivity for task variables, we performed a time-resolved three-
725  way ANOVA separately for spiking activity (multi- and single-unit) and high-gamma (HG) power.
726  For each unit or channel and for each 500 ms time bin, we computed the mean response across
727  time. A three-way ANOVA was then used to test for main effects of action type (rotate, slide, lift),
728  effector (left vs. right hand), and movement direction (leftward vs. rightward), as well as their
729  three-way interaction. For the dissociation tasks, in which movement direction was held constant,
730  atwo-way ANOVA was performed with action and hand as factors. Trial labels were parsed from
731 condition names into categorical variables corresponding to each factor. Significance was
732  assessed using a Bonferroni-corrected threshold (o = 0.05 / number of units or channels). A unit
733  or channel was classified as selectively tuned to a main effect (e.g., action type) if the
734  corresponding factor reached significance in the absence of a significant interaction. Tuning to a
735 combination of factors was labeled as an interaction effect. This analysis was performed
736  independently for each time bin and brain region, and the number of significantly tuned units or
737  channels was tracked across time for each tuning category.
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738  Overlap of Task-Relevant Units Across Formats: To assess the distribution of task-related neural
739  responses across formats, we identified task-responsive units independently for the intention and
740  observation blocks. A unit was classified as task-responsive if it exhibited a significant increase in
741 activity relative to baseline for at least one task condition (see Statistical Comparison to Baseline).
742  This analysis was performed separately for each brain region and format. We then quantified the
743  degree of overlap between formats by computing, for each region, the number of units
744  responsive exclusively during intention, exclusively during observation, or during both. These
745  distributions were used to evaluate the extent to which task-related neural activity was shared or
746  format-specific across the two conditions.

747  Linear Model Analysis: We classified units based on their selectivity to task variables across
748  observation and intention conditions. We implemented a structured model comparison
749  framework similar to that described by Chivukula et al., 202522, For each neuron, firing rates were
750 averaged over a fixed task window (1-2 s after trial onset) for each of the 12 observation and 12
751 intention conditions. These 24 condition-averaged responses were then combined into a single
752  dataset for that unit, and a series of linear regression models was fit to predict neural responses
753 based on different combinations of experimental factors (hand used, action type, movement
754  direction) and format-specific terms (intention vs. observation).

755 (1) a null model including only a constant term (Unselective)

756  (2) afully shared model including action, hand, and direction as predictors with the same weights
757  across formats (/Invariant)

758  (3-5) models with shared tuning to a specific task variable: action, hand, or direction (Action,
759  Hand, or Direction)

760 (6) an additional model in which “action” was redefined as six distinct action x direction
761  combinations (Action (6));

762  (7) a fully shared model with all main effects and interactions (Mixed)
763  (8) a format-specific model with separate parameters for intention and observation (/diosyncratic)

764  (9-10) models including task features only for intention or only for observation trials (Single
765  format)

766  Model performance was assessed using five-fold stratified cross-validation based on condition
767  labels, and each unit was assigned to the model with the highest cross-validated R? value. To
768  determine whether the observed R? exceeded chance, we implemented a permutation test in
769  which the neural responses were randomly shuffled across trials while keeping the design matrix
770  fixed. For each unit, we computed a null distribution of R? values (1,000 permutations) and
771 derived a one-tailed p-value based on the proportion of null R? values exceeding the true R2. P-
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772  values were corrected for multiple comparisons across units using the Benjamini—Hochberg false
773  discovery rate (FDR) procedure (q = 0.05). Units were considered selective if they met all of the
774  following criteria: (1) cross-validated R? > 0.01, (2) permutation-derived p-value < 0.05 after FDR
775  correction, and (3) the best-fitting model was not the null model. Units that did not meet all three
776  criteria were classified as unselective.

777  Population Analysis:

778  Representational Similarity Analysis: To evaluate the structure of neural representations across
779 intention and observation, we performed a cross-validated representational similarity analysis
780  (RSA), separately for each task variable: action type (3 levels), effector/hand (2 levels), and
781 movement direction (2 levels). Trial labels were regrouped accordingly, and only task-relevant
782  units in both formats, defined as those that were neither unselective nor best fit by single-format
783  models in the linear model-based tuning analysis (see Linear Model Analysis), were included. All
784  analyses were conducted independently per brain region. RSA was computed both within format
785 (intention—intention and observation—observation) and across format (intention—observation),
786  using the same framework across all comparisons. Neural responses were extracted from a fixed
787  1-2s post-stimulus window, and each trial was reshaped into a single feature vector by
788  concatenating the time and unit dimensions. For each of 500 random splits, trials were divided
789 into halves within each condition. Condition-averaged activity vectors were computed
790 independently for intention and observation trials, and Pearson correlations were calculated
791 between all pairs of vectors across formats, resulting in a condition-by-condition cross-format RSA
792  matrix per split. These matrices were averaged to obtain a final similarity matrix. To test whether
793  the observed structure reflected meaningful condition-specific information, we compared the
794  similarity between matched and unmatched conditions by computing the mean diagonal and off-
795  diagonal values of each RSA matrix. The difference between these values (diagonal — off-diagonal)
796  served as a measure of structure strength. To generate null distributions, we repeated the same
797  procedure after shuffling condition labels independently within each format prior to trial splitting.
798  Statistical significance was assessed by comparing the observed difference to the empirical null
799  distribution from shuffled data, separately for the cross-format matrix and for each within-format
800 matrix (intention and observation). In addition, we computed the full RSA matrices and
801 permutation-matched nulls for each format and task variable. Mean diagonal values were
802  extracted as a measure of within-condition reliability and representational consistency.

803  To assess the robustness of the RSA results, we conducted control analyses using four alternative
804 time windows (0-1 s, 0.5-1 s, 1.5-2.5 s, and 2-3 s). For each window, we recomputed RSA
805 matrices for intention, observation, and cross-format comparisons, and then quantified similarity
806 to the main analysis (1-2 s window) by computing the Pearson correlation between the lower
807  triangles (excluding the diagonal) of each matrix and the corresponding 1-2 s RSA matrix. This
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808 analysis provided a direct measure of how stable the representational structure was across
809  different temporal windows.

810 We also repeated the RSA using all recorded units, rather than only task-relevant ones, and
811  computed matrix correlations between the RSA results from all units and those from relevant
812  units only for each comparison type (intention, observation, and cross-format).

813

814  Linear Discriminant Analysis (LDA) Within Format: We assessed whether neural population
815  activity encoded task-relevant information within each format, by training LDA classifiers using a
816  time-resolved, cross-validated decoding framework. The analysis was performed separately for
817  each brain area and each classification level. For the main task, classifiers were trained to
818  distinguish among: (1) the 12 fully crossed task conditions (hand x action x direction), and (2)
819 individual task variables: action type (3 levels), effector/hand (2 levels), and movement direction
820 (2 levels). Trials were relabeled accordingly, and each classification problem was evaluated
821 independently. For the dissociation tasks, decoding was performed in two complementary ways.
822  First, classifiers were trained to distinguish among all 16 trial types, defined by the 2 (action) x 2
823 (hand) x 4 (conflict type) design. Second, to separately assess encoding of the instructed and
824  observed actions, trials were relabeled based on the 2 (action) x 2 (hand) combinations
825  corresponding to either the instructed cues or the observed video, and decoding was performed
826 independently for each. For all analyses, neural responses were binned in 100 ms steps, and
827  decoding was performed using non-overlapping 200 ms windows by averaging adjacent bins. Ten-
828 fold cross-validation was used. Within each fold, principal component analysis (PCA) was applied
829 tothe training data across all time bins to reduce dimensionality. The number of components was
830  selected to capture 95% of the variance, with an upper limit of 50 components. Both training and
831 test data were projected into this reduced-dimensional space. LDA classifiers were trained on the
832 reduced training data and evaluated on the held-out test set for each time window. Classification
833  accuracy was computed per fold and averaged across folds to yield time-resolved performance
834  curves for each brain region and classification level. For each region, the time window with the
835 highest decoding accuracy was identified, and confusion matrices were computed at that time
836  point. Confusion matrices were normalized by row and visualized as percent classification
837  accuracy. To evaluate the consistency of decoding performance across sessions, we additionally
838 ran the same decoding analysis separately within each session. This was done for each of the
839 three individual task variables (action, hand, direction), and the maximum decoding accuracy per
840 session was extracted. This allowed us to assess whether the results observed in the
841 concatenated analysis were driven by any session-specific peaks or drops in performance.

842 Cross — Time Decoding: To evaluate the temporal stability of neural representations, we
843 performed cross-time decoding within the probe variant of the dissociation task, separately for
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844  each brain area and for classifiers trained on the instructed or video actions. The analysis followed
845  the same preprocessing and cross-validation procedures described above. For each array, neural
846  activity was binned in 100 ms steps, and non-overlapping 200 ms windows were created by
847  averaging adjacent bins. Within each fold of a ten-fold cross-validation, principal component
848  analysis (PCA) was computed on the training data across all time bins, and both training and test
849  data were projected into the same reduced-dimensional space using the coefficients derived from
850 the training set (95% cumulative variance threshold, maximum 50 components). LDA classifiers
851  were then trained to discriminate either the instructed or the video actions at each time window
852  and tested on all other time windows, generating a two-dimensional matrix of decoding accuracy
853  (train x test time). This procedure was repeated for all folds, and decoding accuracies were
854  averaged across folds to yield cross-temporal generalization matrices for each array. The diagonal
855  of the matrix reflects standard within-time decoding, while off-diagonal values quantify the
856  degree to which representations generalize across time. Sustained off-diagonal accuracy indicates
857 temporally stable population codes, whereas narrow, diagonal patterns correspond to dynamic,
858 time-specific encoding.

859

860 LDA Within Format — LFP: To decode task variables from LFP, we extracted high-gamma (HG)
861 power following the methodology described in Bouchard et al. 201341, Raw LFP signals were re-
862 referenced using common average referencing (CAR) and filtered using eight Gaussian-like
863  bandpass filters, with logarithmically spaced center frequencies between 73 and 144 Hz. The
864  bandwidth for each filter was scaled semi-logarithmically at 20% of the center frequency. The
865  analytic amplitude for each filtered signal was computed using the Hilbert transform, and the
866  resulting envelopes were downsampled to 100 Hz. Amplitude envelopes were then z-scored per
867  channel across all timepoints and trials, and outlier suppression was applied using a hyperbolic
868  tangent function. To reduce dimensionality across the eight frequency bands, we performed
869 singular value decomposition (SVD) on the concatenated envelope matrix (channels x time x
870 frequency) and retained the first singular vector as the unified HG estimate per channel. We
871 identified task-relevant channels by comparing HG power during a task window (1-2s post-
872  stimulus) against a baseline window (0-0.5 s) using paired t-tests per channel and included only
873 those with significant differences (p < 0.05). LDA decoding was then performed separately for
874  each brain area and task variable (action type, effector/hand, movement direction), as well as for
875  the full 12-condition design. Decoding was performed in 500 ms non-overlapping windows across
876  the trial duration (-0.5 to 3s), using 10-fold cross-validation. Classification accuracy was
877  computed per time bin, and peak decoding performance was visualized alongside confusion
878  matrices derived from the best-performing time window.
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879  Cross — Format Decoding: We evaluated whether neural population representations generalized
880  across formats, by training LDA classifiers on trials from one format (intention or observation) and
881  testing them on the other. This analysis was performed separately for each brain region and each
882  task variable: action type (3 levels), effector/hand (2 levels), and movement direction (2 levels).
883  Decoding was conducted in both directions: training on intention and testing on observation, and
884  vice versa. Neural activity was binned in 100 ms steps, and decoding was performed per time bin.
885  For each time bin in the training format, PCA was applied to the full training dataset (all time bins
886  and trials), and the top 50 components were retained. Training and test data were projected into
887  this common PCA space. An LDA classifier trained on each individual training time bin was then
888  evaluated on all test time bins, yielding a full train x test time bin decoding accuracy matrix. This
889  matrix captures temporal generalization and reveals whether neural representations aligned
890 across different time points between formats. To assess statistical significance, we performed
891 permutation testing by randomly shuffling test set labels across 1000 iterations and recomputing
892 decoding accuracy. For each train—test pair, a p-value was computed as the proportion of
893 permuted accuracies greater than or equal to the observed accuracy. Significance thresholds
894  were corrected for multiple comparisons using Bonferroni adjustment.

895 Cross — Format Decoding LFP: To evaluate whether HG activity encoded similar task-related
896 information across formats, we performed cross-format decoding using the same HG signal
897  described in the within-format LFP decoding analysis (see LDA Within Format — LFP). For each
898  brain area and task variable (action type, effector, direction), a linear discriminant analysis (LDA)
899 classifier was trained on single-trial HG activity from one format (e.g., intention) and tested on
900 data from the other (e.g., observation), and vice versa. HG power was averaged within non-
901  overlapping 500 ms windows spanning -0.5 to 3 s, yielding one feature vector per trial per time
902  bin. Decoding accuracy was computed for all train x test time bin combinations, resulting in a
903 time-resolved decoding matrix for each direction. Statistical significance was assessed by
904  generating null distributions through 1000 permutations of the test labels. Empirical p-values
905 were computed for each timepoint pair and corrected for multiple comparisons using a
906 Bonferroni threshold.

907

908 PCA Trajectory Analysis: To visualize the temporal evolution of neural population activity during
909 each task, we performed PCA separately for each brain region and task variable (action type,
910 effector/hand, or movement direction). Only units classified as task-relevant in both formats
911 based on the linear model analysis (i.e., not unselective or single format) were included. Neural
912 responses were extracted from a time window spanning —0.5 to 2.5 s relative to trial onset, using
913 100 ms binning. The PCA was applied jointly to intention and observation data. For each trial,
914  neural activity was grouped by condition (e.g., action identity) and format (intention or
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915 observation). Trials were averaged within each condition and format, resulting in a set of
916  condition-averaged response matrices of size time x units with the number of matrices equal to
917  the number of task levels (e.g., 3 for action, 2 for hand) multiplied by 2 formats. These matrices
918  were concatenated across time and condition, and the resulting (conditions x time) x units matrix
919 was used as input to PCA. The top three principal components were retained, and each
920 condition’s time series was projected into this low-dimensional space. The resulting trajectories
921 were plotted separately for intention and observation to compare their temporal geometry. In
922  addition, we quantified the variance explained by the top three components in three ways: based
923  onthe PCA decomposition of the combined dataset, and separately for intention and observation
924 by computing the variance captured within each format after projection into the shared PCA
925  space.

926  Procrustes Analysis: To compare the geometry of neural trajectories between formats, we
927  applied Procrustes analysis to the condition-averaged neural trajectories in PCA space. This
928 analysis was performed separately for each brain region and task variable (action type,
929 effector/hand, or movement direction). For each condition within a task variable (e.g., “lift” or
930 “right hand”), we extracted one trajectory from the intention format and one from the
931  observation format, both represented in the space defined by the top three principal components
932 computed from the combined dataset. Procrustes alignment was then used to align the 3D
933 trajectories of the two formats. This transformation computes the optimal translation, rotation,
934  and isotropic scaling that minimizes the Frobenius norm between the two trajectories. A
935  Procrustes distance was computed for each condition, providing a measure of geometric
936  dissimilarity between formats. Lower values indicate greater similarity in the temporal structure
937  of neural activity between intention and observation for that condition. As a control, we repeated
938 the PCA and alignment procedure using all recorded units, and computed Procrustes distances
939 for all brain regions and task variables.

940

941 UMAP Visualization of Neural Representations: To visualize the structure of trial-level neural
942  activity in a low-dimensional space, we applied Uniform Manifold Approximation and Projection
943  (UMAP) separately for each brain region. Only task-relevant units (identified via linear model
944  analysis) were included. Neural responses were averaged over a 1-2 s window following stimulus
945  onset. Trials from the intention and observation formats were concatenated and projected jointly.
946  UMAP was performed using the cosine distance metric with 15 nearest neighbors and a minimum
947  distance of 0.1. The resulting two-dimensional embeddings were used to visualize the structure
948  of population activity across task conditions and formats. To visualize the spatial distribution of
949  each condition in the UMAP space, we computed a separate 2D ellipse for each condition and
950 format combination. The center of each ellipse was defined as the empirical centroid of the UMAP
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coordinates for that group (i.e., the mean across all trials). The shape and orientation of the ellipse
were derived from the empirical 2D covariance matrix of the points. We used the eigenvectors
and eigenvalues of this matrix to construct an ellipse representing the major and minor axes of
the group’s spread. This approach provides an interpretable summary of the distribution of trials
in the reduced space, allowing visual assessment of separation or alignment between formats.

Figures:

Figure 1: Experimental design and implant locations.
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(A) Action Intention and Observation Task. Each trial began with a 0.5 s inter-trial interval,
followed by a 0.5 s hand cue and a 1 s symbolic action cue. The hand cue indicated the instructed
effector (left or right), and the overlaid arrow specified the action type (slide, lift, rotate) and
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direction (leftward or rightward). The disappearance of the cue served as the go signal, followed
by a 1 s video of the corresponding action. Participants either intended (intention block) or
passively viewed (observation block) the instructed movement. The design yielded 12 fully
crossed conditions (2 hands x 3 actions x 2 directions). (B) Implant locations. Participant JJ had
96-channel arrays in motor cortex (MC) and superior parietal lobule (SPL). Participant RD had four
64-channel arrays: medial and lateral motor cortex (MCM, MCL) and posterior parietal cortex
(SPL, SMG).

Figure 2: Single-unit selectivity across intention and observation.
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(A) Example neurons from RD in SPL (left) and MCM (right). Top: intention; bottom: observation.
Trials are color-coded by action for SPL (yellow: slide, green: rotate, purple: lift) and by hand for
MCM (yellow: right, purple: left). Below each raster, the corresponding PSTHs are shown using
the same color scheme. Vertical lines indicate task events: the black line (time 0) marks the hand
cue, the green line at 0.5 s the action cue, and the red line at 1.25 s the go cue. The SPL neuron
exhibits clear selectivity for the lift action across both formats, while the MCM neuron responds
selectively to the right hand. Both neurons show format-general responses. (B) Violin plots of
onset latencies across all arrays for intention (top) and observation (bottom). Asterisks indicate
statistically significant differences. In JJ, SPL units show significantly earlier responses than MC
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983  units in both formats. In RD, SPL responses are earlier than those in both MCM and MCL during
984 intention, but not during observation. (C) Number of significantly responsive units per condition
985 (Bonferroni-corrected t-test against baseline, 23 consecutive bins). Green and blue outlines
986  correspond to intention and observation blocks, respectively. MC and MCM arrays show robust
987 responses during intention but few during observation. In contrast, SPL arrays show substantial
988  responses in both formats. (D) Three-way ANOVA tuning profiles over time (factors: action, hand,
989 direction). Top: intention (green outline); bottom: observation (blue outline). Lines represent
990 main effects and all two- and three-way interactions. In JJ, MC is strongly tuned to action. MCM
991 and MCL (RD) are predominantly tuned to hand, followed by action. SPL in both participants
992  shows dominant action tuning and secondary hand tuning. Interaction terms are rare. During
993 observation, only SPL arrays preserve action tuning. (E) Format selectivity (top row): number of
994  units with significant responses in intention only (green), observation only (blue), or both
995 (orange). These counts reflect response presence but not tuning congruency. Linear model
996 classification (bottom row): units are assigned to their best-fitting model based on cross-validated
997  R2 Categories include shared action (green), shared hand (orange), shared direction (purple),
998 invariant (blue), mixed (yellow), idiosyncratic (dark gray), and single-format (light gray).
999  Unselective units are not shown. SPL arrays in both participants contain the fewest single-format
1000 units and the highest proportion of shared action models.
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1014  Figure 3: Representational similarity analysis (RSA) within and between formats
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1016  (A) Cross-format RSA heatmaps for each array, computed separately for action (left column), hand
1017 (middle), and direction (right). Each matrix shows the correlation between condition-specific
1018  population vectors from intention and observation formats. MC (JJ) and MCM (RD) show elevated
1019  cross-format correlations for specific features only, rotation and right hand, respectively. MCL
1020 shows no cross-format similarity. SPL arrays in both participants exhibit clear diagonal structure
1021 across all three variables, indicating preserved population representations between intention and
1022  observation. (B) Diagonal values of 12-condition RSA matrices for each array and format. Top row:
1023  within-format intention; middle: within-format observation; bottom: cross-format. Each dot
1024  represents one of the 12 conditions; dashed lines indicate the average off-diagonal value. Within-
1025 format diagonals are consistently above the off-diagonal mean, confirming meaningful condition
1026  structure. Cross-format results reveal isolated high values in JJ/MC (rotation) and RD/MCM (right
1027  hand), matching the heatmaps in A. In MCL, all diagonal values are near the off-diagonal mean,
1028 confirming a lack of structure. SPL arrays again show consistently elevated diagonals in both
1029  participants, indicating generalizable encoding across formats. (C) Permutation test results for
1030 each array and format. Each panel shows the real diagonal-off-diagonal difference (bold marker)
1031  against a null distribution from label-shuffled permutations (transparent dots). Colors indicate
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1032 format: green for intention, blue for observation, orange for cross. Asterisks denote significance
1033 compared to the null distribution (*p < 0.05; ***p < 0.001). In MCL, only intention responses
1034  differ significantly from the null.

1035  Figure 4: Decoding task variables within and across formats
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1037 (A) Time-resolved decoding accuracy for action type (left), hand (middle), and direction (right)
1038  duringintention. Top row: JJ (MC, SPL); bottom row: RD (MCM, MCL, SPL). All arrays decode action
1039 and hand well above chance. Vertical lines mark the action cue (green) and go cue (red). Shaded
1040 regions denote SEM across cross validations. The dashed horizontal line marks chance level (B)
1041  Same analysis for the observation format. Decoding performance is generally reduced compared
1042  tointention. SPL continues to show robust decoding, particularly for action type. (C) Cross-format
1043  decoding: classifiers trained on intention data and tested on observation. Each heatmap shows
1044  decoding accuracy across all combinations of training (y-axis) and testing (x-axis) time bins. Green
1045 and red dashed lines indicate the onset of the symbolic action cue and the go cue, respectively.
1046  Significant decoding time points (permutation test, p<0.05) are marked with dots. SPL exhibits
1047  strong generalization of action representations in both participants. MCL shows no evidence of
1048  generalization. (D) Reverse cross-format decoding: classifiers trained on observation data and
1049 tested on intention. SPL again supports robust generalization for action type and, to a lesser


https://doi.org/10.1101/2025.11.10.687245
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.10.687245; this version posted November 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1050
1051

1052

1053

A

1054

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

~—

JJISPL RD/MCL RD/MCM JJIMC

RD/SPL

available under aCC-BY 4.0 International license.

extent, hand. RD/MCM shows strong decoding for action and weaker generalization for hand,
while JJ/MC also decodes action. MCL does not support generalization in either direction.

Figure 5: Representational geometry of neural representations across formats.
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A) Example PCA trajectories for intention (left column) and observation (right column, blue
outline), plotted in the first three principal components for different task variables: action (JJ/MC,
JJ/SPL, RD/SPL) and hand (RD/MCL, RD/MCM). In JJ/MC and RD/MCM, single trajectories
(rotation and right hand, respectively) show similar geometry across formats, while other
trajectories diverge. In RD/MCL, trajectories are completely dissociated between formats. In
contrast, in SPL (both JJ and RD), all action trajectories appear nearly identical across formats. B)
Procrustes-aligned trajectories from the same examples in A, with intention shown as solid lines
and observation as dashed lines. C) Distances (d) quantify dissimilarity after alignment. In JJ/MC
and RD/MCM, only one specific condition (rotation and right hand, respectively) aligns well across
formats (d < 0.3). In SPL (JJ and RD), all action trajectories align tightly with d < 0.1, indicating
nearly identical representational geometry across formats. C) Summary of alignment distances
for all arrays and task variables (action, hand, direction). SPL clearly stands out, with alignment
distances below 0.2 across all task features, in contrast to MC and MCM where only selective
geometries generalize, and MCL where alignment fails entirely. D) UMAP embeddings illustrating
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1069 three representative cases of cross-format geometry. Triangles represent observation trials and
1070 circles represent intention. Colors denote task conditions, and ellipses enclose clusters (solid:
1071 intention, dashed: observation). Top left (RD/MCM, hand): Right-hand trials from both formats
1072  cluster together, while left-hand trials form separate clusters, indicating conditional overlap. Top
1073  right (RD/MCL, hand): Intention and observation clusters are completely segregated, indicating
1074  no shared geometry. Bottom (JJ/SPL, action): Clusters for all three actions overlap across formats,
1075 indicating a fully shared representational geometry.

1076

1077  Figure 6: High-frequency LFP activity across formats and cortical regions.
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1078

1079 (A) Example spectrograms showing event-related changes in LFP power for selected conditions:
1080  action (JJ/MC, JJ/SPL, RD/SPL) and hand (RD/MCM, RD/MCL). Colors indicate percentage power
1081 change relative to baseline. Within each array, the left column (green outline) shows intention
1082 and the right column (blue outline) shows observation. In MC arrays, gamma-band activity is
1083  highly selective: e.g., rotation in JJ and right-hand responses in RD. Notably, similar selectivity
1084  patterns are also visible during observation. SPL arrays respond broadly to all actions in both
1085 formats. (B) Number of channels with significant power increases (t-test vs. baseline, Bonferroni-
1086 corrected, p < 0.05 for 23 consecutive 100 ms bins). Green and blue outlines correspond to
1087 intention and observation, respectively. As seen in the spectrograms, MC/MCM arrays show
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1088  selectivity for specific conditions (rotation in JJ/MC, right hand in RD/MCM) during intention,
1089  which is preserved during observation. SPL channels exhibit widespread activation across both
1090 formats and multiple conditions. (C) Three-way ANOVA tuning profiles over time (factors: action,
1091 hand, direction). Top: intention (green outline); bottom: observation (blue outline). Lines indicate
1092  the number of channels significantly tuned to each main effect and interaction. MC/MCM arrays
1093  show clear tuning for specific task variables (e.g., action in JJ, hand in RD) during intention, and
1094  these patterns are preserved during observation. SPL shows broad tuning to action (JJ) and hand
1095 (RD) during intention, and action type during observation. (D) Within-format decoding of action,
1096  hand, and direction during intention. Top: JJ; bottom: RD. Each line shows the average decoding
1097  accuracy across cross-validation folds; shaded regions indicate SEM. The dashed horizontal line
1098 marks chance level. Vertical green and red dashed lines indicate the onset of the symbolic action
1099 cue and the go cue, respectively. All arrays show above-chance decoding for action and hand,
1100 though peak accuracy remains modest (<75%). (E) Same as D, for observation. Only SPL shows
1101 above-chance decoding, limited to action type in JJ and weakly in RD. Other regions fail to decode
1102  task features reliably during observation.

1103  Figure 7: Dissociation tasks: neural tuning for instructed and observed actions.
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1104  (A) Experimental design. Each trial began with hand and action instructions, followed by a video
1105  that could be congruent or incongruent with the instructed action. In the probe variant, a post-
1106  trial cue required a saccade to report either the video action or the video hand. In the no-probe
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1107  variant, participants executed the instructed action while ignoring the video (intention block) or
1108  passively viewed the video while ignoring the instruction (observation block). (B) Time-resolved
1109  tuning. Green outline: no probe variant — instruction block; blue outline: no probe variant —
1110  observation block; gray outline: probe variant. Each plot shows the number of units tuned to the

1111 instructed (top row) or video (bottom row) action, hand, or their interaction in MCM, MCL, and
1112  SPL.

1113

1114  Figure 8: Dissociation tasks: decoding of instructed and observed actions.
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1115

1116  (A) Decoding of instructed (left) and video (right) actions. Green outline: no probe variant —
1117  instruction block; blue outline: no probe variant — observation block; gray outline: probe variant.
1118  For all decoding plots, colored lines show accuracy over time for MCM (purple), MCL (teal), and
1119  SPL (orange); shaded regions indicate +SEM across cross-validation folds, and the dashed
1120  horizontal line marks chance level. In all plots, vertical lines indicate the hand cue (black), action
1121  cue (green), video onset (red), and probe onset (orange). (B) Heatmaps of LDA decoding accuracy
1122  across all train x test time windows for a given brain area (MCM, MCL, SPL). Top row: decoders
1123  trained on the instructed action; bottom row: decoders trained on the video action. Color
1124  indicates mean decoding accuracy across folds. The diagonal represents within-time decoding,
1125  whereas off-diagonal values reflect temporal generalization.
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