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Functional ultrasound neuroimaging reveals
mesoscopic organization of saccades in the
lateral intraparietal area

Whitney S. Griggs 1,2,13 , Sumner L. Norman 1, Mickael Tanter3,4,
Charles Liu 1,5,6,7, Vasileios Christopoulos8,9, Mikhail G. Shapiro10,11,12 &
Richard A. Andersen1,8

The lateral intraparietal cortex (LIP), contained within the posterior parietal
cortex (PPC), is crucial for transforming spatial information into saccadic eye
movements, yet its functional organization for movement direction remains
unclear. Here, we used functional ultrasound imaging (fUSI), a technique with
high sensitivity, large spatial coverage, and good spatial resolution, to map
movement direction encoding across the PPC by recording local changes in
cerebral blood volume within PPC as two male monkeys performed memory-
guided saccades. Our analysis revealed a heterogeneous organization where
small patches of neighboring LIP cortex encoded different directions. These
subregions demonstrated consistent tuning across several months to years. A
rough topography emerged where anterior LIP represented more con-
tralateral downward movements and posterior LIP represented more con-
tralateral upward movements. These results address two fundamental gaps in
our understanding of LIP’s functional organization: the neighborhood orga-
nization of patches and the stability of these populations across long periods
of time. By tracking LIP populations over extended periods, we developed
mesoscopic maps of direction specificity previously unattainable with fMRI or
electrophysiology methods.

The posterior parietal cortex (PPC) integrates visual information
with other sensory modalities, represents possible action plans,
and decides upon the optimal action for downstream
execution1–3. Separate PPC regions preferentially encode different
movement types4,5, or effectors. The lateral intraparietal area

(LIP) preferentially encodes saccades6, the parietal reach region
(PRR) preferentially encodes limb reaches2, and the anterior
intraparietal area (AIP) preferentially encodes grasping
movements7. These areas reveal an effector-dependent functional
organization within PPC.
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The mesoscopic (~100–1mm scale;8–11) functional organization of
saccade direction within LIP remains poorly explored5,12, with most
studies focusing on spatial receptive field topography13–16 with differ-
ing results. The visual receptive fields and saccadic motor fields have
been shown to be largely overlapping17. While Savaki et al. 201018

provided evidence for topographic organization for saccade direction,
their single-axis saccade paradigm and quantitative [14C]deoxyglucose
method left unresolved how multiple saccade directions are repre-
sented in LIP. This debate12 continues in part due to the limited field of
view, sensitivity, and/or spatial resolution of existing recording tech-
niques (Fig. 1A). fMRI can record whole brain activity, but lacks the
spatial resolution and signal sensitivity to further refine our knowledge
of LIP’s spatial organization (Fig. 1B). Intracortical electrophysiology
with high-density microelectrode arrays (16–400μm inter-electrode
spacing), such as Neuropixels or Utah arrays, can measure single
neuron activity but cannot sufficiently sample or simultaneously
record from large brain volumes, such as primate PPC (Fig. 1D). Fur-
thermore, it is difficult to align and reconstruct data recorded over
many months, limiting our ability to observe anatomical patterns
across many recordings. Recent advances in distributed microelec-
trode arrays, such as the Gray Matter array19 or MePhys system20, now
allow simultaneous multi-region recordings across primate hemi-
spheres. While these distributed microelectrode array platforms
achieve unprecedented temporal resolution (<1ms) and volumetric
coverage, the spacing between electrode shafts (2–5mm) remains an
order of magnitude coarser than the ~100–500 µm functional organi-
zation observed in cortical columns and microcircuits21. This spacing
fundamentally limits continuous spatial sampling of fine-grained
population activity patterns. These trade-offs in existing recording
techniques highlight the need for a sensitive technique to bridge the
gap in spatial resolution between microscopic (e.g., single neurons)
and macroscopic (e.g., whole brain) views of the primate cortex.

Here, we use an emerging technique, functional ultrasound ima-
ging (fUSI), to determine the mesoscopic, i.e., between microscopic
and macroscopic, spatial organization of saccadic response fields
within LIP. fUSI’s large field of view, excellent sensitivity, and high
spatial resolution (Fig. 1A, C) are ideally suited to this task22–25. We
recorded fUSI while two rhesus macaque monkeys (Monkey L and P)
performed an oculomotor task. We found functionally distinct sub-
regions within (dorsal-ventral) and across (anterior-posterior) coronal
LIP planes where small mesoscopic patches of neighboring cortex

encoded differentmovement directions consistently acrossmonths to
years. These results fill a gap in our understanding of LIP’s functional
organization and demonstrate that fUSI is a powerful tool for eluci-
dating mesoscopic function in the brain.

Results
Using fUSI, we recorded high-resolution changes in cerebral blood
volume (CBV) from multiple PPC subregions as two rhesus macaque
monkeys (Monkey L and P) performed memory-guided saccades
(Fig. 2A). These areas included lateral intraparietal area (LIP), ventral
intraparietal area (VIP), medial intraparietal area (MIP, a subregion of
PRR), Area 5, Area 7, and medial parietal cortex (MP). During the task,
each monkey fixated on a center cue, was cued with one of eight
peripheral directions, remembered the cue location, and executed a
saccade to the remembered location once the central fixation point
extinguished.

We used a miniaturized linear ultrasound transducer array cap-
able of high spatial resolution (100μm× 100μm in-plane) and a large
field of view (12.8mm width, 128 elements, 100μm spatial pitch,
16mmdepth penetration, 400μmplane thickness)24,25, i.e., each voxel
is ~100 × 100 × 400μm. We recorded 1Hz fUS images by positioning
the transducer surface normal to the brain above the dura mater. We
recorded from multiple evenly-spaced coronal planes of the left PPC
(Fig. 2B, C). During each session (Table S1), we recorded from a single
coronal plane. We centered the recording chamber over the intrapar-
ietal sulcus to record from as much of the posterior parietal cortex as
possible, both medial-lateral, but also anterior-posterior (Fig. 2B, and
Supplementary Movie 1, 2).

Are theremesoscopic populations tuned todifferent directions?
To identify mesoscopic directional tuning patterns across PPC, we
used a general linear model (GLM) to identify voxels that responded
differently to the eight directions. In both monkeys, mesoscopic PPC
populations had clear directional tuning. In an example session from
Monkey P (Fig. 3A-C), most voxels within the anatomically-defined LIP
(>75%of voxels) showeddirectional tuningwhile regions outsideof the
LIP, such as VIP, MIP, Area, 5, Area 7, and MP, contained fewer voxels
with directional tuning (<10% of voxels within a given region) (Fig-
ure S1). All region boundaries were estimated based upon a histolo-
gical rhesus monkey atlas26. Within LIP, we observed heterogenous
response patterns in different subpopulations, where we define
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Fig. 1 | Functional ultrasound enables mesoscopic imaging of neural popula-
tions. A Spatial coverage, invasiveness, and spatial resolution for different large
animal recording technologies. Spatial coverage: Largest dimension of brain
volume sampling. MEA: multi-electrode array; Ca2+: calcium imaging; ECoG: elec-
trocorticography; EEG: electroencephalogram; fNIRS: functional near-infrared
spectroscopy; fMRI: functional magnetic resonance imaging; fUSI: functional
ultrasound imaging. Panelmodifiedwithpermission fromGriggs andNormanet al.
202425. B 1.5mm isotropic fMRI of intraparietal sulcus and adjacent cortex. Each

red box represents one voxel. C 15.6MHz 2D fUSI. Each red sheet represents one
coronal imaging plane. Inset shows 100μm× 100× 400 μm voxel size. D Utah
array and Neuropixel 1.0 recording methods for recording from intraparietal sul-
cus. Inset shows size of Neuropixel 1.0 electrodes (yellow). Panel a is adapted from
Griggs, W.S., Norman, S.L., Deffieux, T. et al. Decoding motor plans using a closed-
loop ultrasonic brain–machine interface. Nat Neurosci 27, 196–207 (2024).
(https://doi.org/10.1038/s41593-023-01500-7) under a CC BY license: (https://
creativecommons.org/licenses/by/4.0/).
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Fig. 2 | Monkeys performed memory-guided saccade task during fUSI acqui-
sition. AMemory-guided saccade task. A trial began with themonkey fixating on a
center blue diamond. After themonkey fixated, a white circular cue wasflashed for
400ms in one of 8 peripheral locations. Once the center fixation diamond extin-
guished, the monkey made a saccade to the remembered cue location and main-
tained fixation on the peripheral location. If the saccade was to the correct
location, the peripheral cue reappeared and the monkey received a liquid reward.
Example session median [IQR] saccade latency Monkey P-399 [363, 430] ms,
Monkey L-530 [500, 569]ms.B 3D vascularmaps forMonkey L andMonkey P. The

field of view included the intraparietal sulci for both monkeys. White
scalebar–1mm.D dorsal. V ventral. L lateral.Mmedial.CCoronal imaging planes in
MonkeyL and P. Position relative to estimatedear-bar zero (EBZ)overlaid on aNHP
brain atlas91. Anatomical labels based upon Saleem et al. 26. LIP lateral intraparietal
area, VIP ventral intraparietal area, MIP medial intraparietal area, MP medial par-
ietal area, ls lateral sulcus, cis cingulate sulcus, ips intraparietal sulcus. Monkey
graphic in panel a was drawn by Krissta Passanante. Brain graphic in panel b gen-
erated through the Scalable Brain Atlas92 and a publicly available MRI rhesus
macaque atlas91.
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Fig. 3 | PPC contains multiple distinct directionally-tuned mesoscopic popu-
lations. A Statistical parametric maps showing the average activity during the
memory period. Voxel threshold determined by GLM F-test for voxels where
p <0.00001 (FDR-corrected). ROI size is 400 × 400μm. White scale bar–1mm.
Center arrows indicate the 8 directions tested. Cohen’s d is a standardizedmeasure
of response strength for each direction where positive (negative) values corre-
spond to increase (decrease) in CBV from the baseline. B Event-related average of
activity within each ROI. Each line represents one direction. The circular color scale

indicates the direction of each line. Error shading shows SEM. Green shading shows
timepoints used for calculatingbaseline andblue shading shows timepoint used for
analyzing memory response to the different directions. C Tuning curves. Each line
shows a cubic spline fit to the directional responses at the end of the memory
period within each ROI. Error bars show SEM. For A-C, plots based upon n = 468
trials. D–F Example session for Monkey L. Plots based upon n = 555 trials. Same
format as (A–C) Source data are provided as a Source Data file.
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‘subpopulation’ as a group of one or more adjacent voxels with highly
similar responses to the different directions, i.e., highly similar tuning
properties. Some LIP subpopulations exhibited substantial increases in
CBV from baseline (>20%), with the magnitude depending on move-
ment direction, while others showeddirection-dependent suppression
(Fig. 3B). To highlight this diversity of directional responses, we
defined several example 400× 400μm regions-of-interest (ROIs)
within LIP and MIP (Fig. 3A-white boxes, Fig. 3B) and averaged the
response to each of the directions in the last second of the memory
period (single timepoint within +/−0.5 sec of memory end) across all
the ROI’s voxels to create regional tuning curves (Fig. 3C). Different
populations within a single coronal plane had different preferred
directions and widths of their tuning curves. Some subpopulations
were broadly tuned to the entire contralateral hemifield (Fig. 3B, C –

ROI 1) while other subpopulations were tightly tuned to a narrow
window of directions (Fig. 3B, C – ROI 2). The example session from
Monkey L displayed similar phenomena (Fig. 3D–F).Most voxels (>70%
of voxels)within LIP displayeddirectionalmodulation and thesevoxels
were clumped into multiple LIP subpopulations with different tuning
curves. Regions outside of the LIP, such as VIP, MIP, and Area 7, con-
tained far fewer voxels with directional tuning (<10% of voxels within a
given region). Similar to Monkey L, the regional tuning curves within
LIP had different preferred directions and tuning curve widths. For
example, ROI 1 displayed broad tuning whereas ROI 2 displayed nar-
rower tuning to 45° and 90° (Fig. 3D–F). In Monkey L, the mid-MIP
directly adjacent to the sulcus had some directionally tuned vascular
response, but this activity did not penetrate deeper cortical layers.

To better understand the response fields at each voxel, we cal-
culated several measures of data distribution for each voxel (Fig-
ure S2). We first found the peak preferred direction for every voxel.
In both monkeys, these plots of peak tuned direction agree with our
findings from above where we found different small groups of voxels
tuned to different directions. We next visualized the response
(Cohen’s d) and statistical (F-score) strength of the response for the
peak movement direction and found a similar strength of peak
direction across all significant voxels. If tuning strength had been
strongest in the middle of patches encoding for the same direction
and weakest between patches, then it would indicate a smooth
transition in tuning across PPC. However, this high uniform magni-
tude observed across the tuned voxels in LIP suggests a rapid tran-
sition in tuning between adjacent voxel patches and supports a
patchy topography rather than a smooth gradient in tuning between
neighboring voxel patches. We next examined whether the voxel-
wise response fields were contralateral preferring27,28, i.e., more
active for saccades to the right because we recorded from the left
PPC. As expected, most of the voxels in LIP were contralateral pre-
ferring (Monkey P – 74%; Monkey L – 77%). In Monkey P, we also
observed a small patch in ventral LIP that was strongly ipsilateral
preferring. We finally calculated and plotted the circular standard
deviation, angular skewness, and angular kurtosis. These plots sup-
ported a similar patchy and heterogenous topography within LIP as
identified by the other plots.

Due to large variability between recording sessions in Monkey L,
we repeated the above analyses for an example session from a dif-
ferent coronal plane (Figure S3). We observed many of the same
patterns observed in the first two example sessions. Many voxels
within the anatomically-defined LIP (>30% voxels) showed direc-
tional tuning while few voxels in non-LIP regions (≤2% of voxels in any
given region) showed directionally-modulated activity (Figure S1,
S3A). In LIP, there were closely neighboring voxel patches with dif-
ferent tuning curves (Figure S3B, C). The statistical overlays (direc-
tion, response strength, statistical strength, circular standard
deviation, angular skewness, angular kurtosis, and laterality index)
showed a similar patchy topography identified in the other example
sessions (Figure S3D).

How consistent is this directional tuning within a session?
Having observed clear mesoscopic populations with directional pre-
ference in both monkeys, we aimed to better understand the infor-
mation contentwithin these voxel subpopulations and the consistency
of their responses from trial to trial. To this end, we performed
decoding analyses for each example session. We trained a model to
decode the intendedmovement direction on a subset of each example
session’s trials and then tested how well the model could predict the
intended movement direction on held-out test trials. If the model has
statistically significant decoding accuracy on the test trials, it would
demonstrate that the encoding of direction within the imaging field of
view is consistent from trial to trial. For this decoding analysis, weused
principal component analysis (PCA) to reduce the dimensionality of
the fUSI data and linear discriminant analysis (LDA) to predict one of
the eight movement directions using the PCA-transformed data. We
examined the ability to decode the intended movement direction
throughout the trial (Fig. 4) and found that we could begin decoding
the intendedmovement direction significantly above chance (p <0.01;
1-sided binomial test; leave-one-out cross-validation) within 3 sec of
the directional cue onset (Fig. 4A, D). In both monkeys, the percent
correct exceeded 50% (leave-one-out cross-validation; Monkey P –

59.6% correct, Monkey L – 54.1%). Missed predictions typically bor-
dered the true movement direction (Fig. 4B, E). To quantify this, we
present the mean absolute angular error between the predicted and
true movement direction. As with the percent correct, the mean
angular error reached significance (p <0.01; 1-sided permutation test)
within 3 sec of the directional cue. The mean angular error converged
to <35° for bothmonkeys (Monkey P – 23.7°,Monkey L – 32.8°, Fig. 4A-
bottom, D-bottom). The second example session in Monkey L (Fig-
ure S3) showed similar trends to the other example sessions but had
worse decoding performance. The decoding performance still reached
significancewithin 3 sec of the directional cue, but the percent correct
and angular error only reached 30% and 55° respectively (Figure S3E).
Missed predictions still bordered the truemovement directionbut had
higher spread (Figure S3F) than observed in the first example session
from Monkey L.

We used the entire image at each timepoint to decode the
intended movement direction on individual trials. One possibility is
that the prediction is being driven by a few voxels that stay consistent
while the other voxels fluctuated. To understandwhich portions of the
image, i.e., the vascular anatomy, contributed the most to the decod-
ing performance, we performed a searchlight analysis. We moved a
pillbox (200μm radius) across the entire image and assessed the
ability of each pillbox to decode the intended movement direction
(Fig. 4C, F, and S3G). In other words, we serially examine how each
unique group of voxels contained within a 200μm radius pillbox can
individually decode the intended movement direction. To separate
information containedwithin different brain regions,weonly analyzed
voxels on the same side of the sulcus for a given searchlight pillbox. As
an example, a pillbox centered on an LIP voxel only contained LIP
voxels whereas a pillbox centered on anMIP voxel only containedMIP
voxels.We found thatmany of these 200-μmradius pillboxes, or voxel
patches, could robustly decode the intended movement direction
(p < 0.01) with many of the voxel patches approaching 30° angular
error in our example sessions (Fig. 4C, F). In the supplemental example
session (Figure S3G), the searchlight still identified voxel patches that
could decode intended movement direction, but the angular error
only approached 75°. In other words, these searchlight results
demonstrated thatmany PPC voxels encoded the intendedmovement
direction and could drive accurate single-trial predictions. LIP con-
tained the greatest number of informative voxels and these informa-
tive voxels had high overlap with the same voxels identified with the
previous GLM analyses (Figs. 4G, and S3H) as measured by Dice-
Sørenson similarity. Additionally, voxels in all the example sessions
displayed a strong and significant correlation between F-score (GLM
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analysis) and angular error (searchlight analysis) (Figure S4). In both
animals, voxels in regions outside of LIP were within the 10% most
significant voxels (Fig. 4C, F). InMonkey P, these regions includedArea
7 (14% of the most significant voxels), MIP (11%), VIP (5%), andMP (2%).
In Monkey, these regions includedMIP (8%), VIP (5%), and Area 7 (4%).
The significant voxels within MIP were in the superficial cortical layers
along the sulcus and did not extend into deeper cortical layers,
matching the results from Monkey L’s GLM analysis. To understand
how these searchlight results evolved across trial time,we repeated the

searchlight analysis for each timepoint after fixation (Figure S5). Like
the decoder performance using the entire image, the searchlight plots
began showing significant voxels within LIP within three seconds after
fixation. Significant voxels appeared within other regions, including
Area 7, VIP, MIP, and MP, in later trial timepoints. The number of
significant voxels and decoder performance plateaued by the end of
the movement period.

The searchlight analyses identified voxels contributing to
decoding performance but did not specify which voxels were critical

Fig. 4 | Single-trial decoding of eight intendedmovement directions with high
accuracy. A Decoding performance as a function of time. Top plot shows percent
correct. Bottom plot shows mean angular error. Shaded error bars around mean
angular area shows standard error across the folds of the leave-one-out analysis.
Dashed lines show chance level performance. Color of the line shows statistical
significance (1-sided binomial test or permutation test). B Confusion matrix of
decoding from last timepoint in trial. Performance represented as percentage
(rows adds to 100%). The circle predicted class corresponds to the ‘center’ position
that emerges from the multicoder approach. C Searchlight analysis at end of trial.

Top 10% of voxels with the lowest mean angular error. White circle – 200 μm
searchlight radius. White line – 1mm scalebar. Masked voxels correspond to
threshold of p < 10−5 (1-sided binomial test with FDR correction) For (A–C), plots
based upon n = 468 trials. D–F Decoding performance for Monkey L. Same format
as (A–C). Masked voxels corresponds to threshold of p <0.005 (1-sided binomial
test with FDR correction). Plots based upon n = 555 trials. G Overlap of GLM and
searchlight analysis statisticalmasks (p <0.001, FDR-corrected). Overlap calculated
using Dice-Sørenson similarity. Source data are provided as a Source Data file.
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for distinguishing specific movement directions. To address this, we
examined the weights of the PCA-LDA decoder trained on full fUSI
images (Figure S6). LDA weights represent boundaries between pair-
wise movement directions (e.g., 0°–45°, 45°–315°) and define the fea-
tures that best discriminate between them. Since we trained the LDA
model on PCA-transformed data, we projected the LDA weights back
into the original vascular image space using the inverse PCA transform
to visualize the importance of different voxels in the LDA model
(Figure S6). Voxels with stronger weights were more important for
distinguishing specific directional pairs, while those with near-zero
weights were less relevant. We found that different PPC subregions
specialized in discriminating specific directional pairs rather than
uniformly contributing to all pairs. For instance,mid-LIP voxels in both
monkeys showed the strongest weights for neighboring directions
(e.g., ipsilateral upwards in Direction 1 vs. other directions in Direction
2; Figure S6). This pattern demonstrates distinct populations within
PPC with strong tuning for specific directions. Additionally, the voxels
with the strongest LDA weights aligned closely with GLM-identified
voxels (Figure S6 – Dice-Sørenson plots), further supporting that
mesoscopic LIP subpopulations robustly encode movement direc-
tions. These findings highlight the synergy between the PCA + LDA
decoder and GLM at revealing specialized subregions within PPC for
movement direction encoding.

Are these mesoscopic populations stable across multiple days?
In the example sessions, PPC subpopulations were robustly tuned to
individualmovement directions, but is the function in each population
stable across time? In a previous paper, we showed that populations in
PPC could be used to control an ultrasonic brain-machine interface
even after 60+ days since training the decoder model, suggesting that
PPC populations are stable across 1-2 months25. To extend this result
and better understand the stability across many months to years, we
collected data from the same coronal plane across 4–30 months. We
then trained our decoder on one session’s data and tested its perfor-
mance on other sessions from the same plane without retraining the
model. We tested all combinations of sessions. If the subpopulations’
functions were constant across time, a decoder trained on one session
would accurately predict intended movement directions on another
session’s data from the same coronal imaging plane.

In Monkey P, the decoder performed above chance level for over
100 days (Fig. 5A) and across all pairs of training and testing sessions
(p < 10−5; 36/36 pairs) (Fig. 5B). In Monkey L, the decoder performed
above chance level for more than 900 days between the training and
testing sessions (Fig. 5D), an effect that persisted across nearly all pairs
of training and testing sessions (p <0.01; 117/121 pairs) (Fig. 5E). Cross-
validated decoding performance varied within each training session
(diagonal of performance matrices; Fig. 5B, E), so we also present
cross-session decoding accuracy normalized to each training session’s
cross-validated accuracy. We did not observe any clear differences
between the absolute and normalized accuracy measures. Interest-
ingly, in Monkey L, the decoder trained on the Day 119 session per-
formed the best for three directions (contralateral up, contralateral
down, and ipsilateral down) in the training set and continued to
decode these same three directions the best consistently throughout
the test sessions (Fig. 5D). We saw this pattern where the decoder
could best predict certain directions, even when the training session
had poor cross-validated performance by itself (Figure S7). We also
observed in bothmonkeys that temporally adjacent sessions exhibited
better performance (Figs. 5C, F, and S8).

In Monkey L, the performance was clumped into two temporal
groups (before and after Day 900). Was this change in performance
due to physical changes in the imaging plane or due to changes in
subpopulation function? Although we did our best to align our
recordings to the exact same imaging plane from day to day, occa-
sionally our alignment was imperfect and out-of-plane compared to

previous sessions. Visual inspection revealed consistent macro-
vasculature, e.g., arterioles, but inconsistent mesovasculature (Fig-
ure S9A, D). Importantly, the physical changes would suggest that (a)
we were decoding from slightly different neural populations and (b)
small neighboring neural populations encode different directional
information. To test our hypothesis that physical differences in ima-
ging plane (and therefore differences in vascular anatomy) led to the
decrease in decoder performance, we measured the similarity of
the vascular anatomy across time using an image similarity metric: the
complex-wavelet structural similarity indexmeasure (CW-SSIM)29. The
CW-SSIM clumped the vascular images into discrete groups (Fig-
ure S9B, E), matching our qualitative assessment of image similarity.
The similarity grouping also matched the pairwise decoding perfor-
mance grouping in Monkey L (Fig. 5E). The decoder performance and
image similarity were correlated (Figure S9C, F). As image similarity
decreased between the training session and each test session, so too
did decoder performance. This supports our hypothesis that the
decrease in decoder performance resulted from changes in the ima-
ging plane rather than drift in each subpopulation’s tuning.

Together, these longitudinal decoding results demonstrate sub-
regions tuned to specific movement directions remain consistent
acrossmanymonths to years. Our analysis revealed three key findings.
First, the whole image decoder relies upon the LIP subregions most
strongly tuned to specific movement directions (Figure S5). Second,
voxels identified by the searchlight and GLM analyses showed sub-
stantial overlap (Fig. 4G, and S5H). Third, the whole-image decoder
maintained stability across extended time periods, indicating that the
voxels supporting decoder performance are similarly stable over time.

Howdoesmesoscopic population tuning change across anterior
and posterior portions of PPC?
Having demonstrated that, within an imaging plane, there are PPC
subpopulations robustly tuned to individualmovement directions and
these subpopulations’ tunings are consistent across many months to
years, we next asked how direction tuning varied across different
anterior to posterior coronal imaging planes. We repeated the same
GLM analysis for data acquired from coronal planes evenly spaced
throughout the PPC (Fig. 2B, C, and Supplementary Movie 1, 2) and
found the peak preferred direction for every voxel (Fig. 6A). Several
patterns appeared. First, each coronal plane contained LIP voxels with
directional modulation. Second, each anatomical plane in both mon-
keys contained multiple LIP subpopulations with different tuning
properties. Third, posterior planes encoded more contralateral
upwardmovements while anterior planes encodedmore contralateral
downward movements. Fourth, in both monkeys, regions outside of
the LIP contained directionally modulated voxels. In Monkey P, these
regions included Area 7, MIP, MP, and Area 5 cortex. In Monkey L, we
observed a small region in ventral Area 7a. We did not observe any
activity within Area 5 of Monkey L and only observed very superficial
activity within MIP of a single coronal plane (−3.33mm of EBZ).
Unfortunately, Monkey L’s recording chamber was more lateral and
did not contain the same posterior portion of MP where we observed
activity in Monkey P.

To further understand the directional encoding across different
coronal planes, we extracted the directional-modulated voxels within
LIP and created a beeswarm chart containing each voxel’s directional
preference (Fig. 6B). As expected, certain directions within a given
plane were over-represented, i.e., clumps of similarly tuned neurons in
the beeswarm plot. For both monkeys, we found a statistically sig-
nificant relationship between anterior-posterior location and pre-
ferred direction (p < 1e-40) where more anterior planes had more LIP
voxels tuned for downwards directions while posterior planes had
more LIP voxels tuned for upwards directions. Most LIP voxels enco-
ded for contralateral movements (−90° to +90°) although there were
some voxels that responded most strongly, i.e., a CBV increase, for
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Fig. 5 | PPC stably encodes movement direction across many months to years.
A Example decoder stability for Monkey P. Trained the decoder on Day 0 data and
tested the trained decoder on other sessions from the same imaging plane without
any retraining. B Decoder stability for training and testing on each session for
Monkey P. ns – nonsignificant decoding performance (α =0.01). Bold text repre-
sents example session shown in Figure 5A. C Mean angular error as a function of
days between the training and testing session (absolute difference in time) for

Monkey P. Dashed line – Linear fit to data. *p =0.0079, **p = 1.76e-5 (2-sided t-test).
D Example decoder stability forMonkeyL. Trained thedecoder onDay 119 data and
tested the trained decoder on other sessions from the same imaging plane without
any retraining. E Decoder stability for training and testing on each session for
MonkeyL. Same formatas Figure 5B.FDecoder stability forMonkeyL. Same format
as Figure 5C. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-63826-z

Nature Communications |         (2025) 16:8752 8

www.nature.com/naturecommunications


ipsilateral movements. Each of the planes had broad and overlapping
representation of contralateral movements. To better quantify these
observations, we collapsed the voxels across planes (Fig. 6C) and
found that >85% of tuned LIP voxels were contralateral preferring
(Monkey P – 87.7%; Monkey L – 89.4%). We next examined the data

distribution across each coronal plane (Figures S10, S11). Similar to the
example sessions (Figures S2, S3), the tuning and statistical strength
metrics (Figure S10A, B) displayed a high uniform magnitude across
tuned voxels, suggesting a rapid transition in tuning between adjacent
voxel patches and supporting a patchy topography rather than a

Fig. 6 | Polar direction is topographically organized along anterior-posterior
axis of LIP. A Color overlays showing preferred direction for voxels with statisti-
cally significant difference in response for different movement directions.
Threshold based upon GLM 2-sided F-test where p <0.01 (FDR-corrected).
B Preferred direction for all significant voxels within each coronal plane. Color
represents depth from brain surface. Gray shaded area shows contralateral angles.

Black line = Line of best fit with equation shown. *p < 1e-40 (2-sided F-test with FDR
correction). C Angular distribution of response fields within LIP. Gray shaded area
shows contralateral angles. D Depth of tuned LIP voxels. Gray shaded area shows
approximate LIPd. Source data are provided as a Source Data file. Brain graphic in
panel a generated through the Scalable Brain Atlas92 and a publicly available MRI
rhesus macaque atlas91.
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smooth gradient in tuning between neighboring voxel patches. As the
main analyses showed, most voxels were contralateral preferring
(Figure S10C). As with the example sessions (Figures S2, S3), the cir-
cular standard deviation, angular skewness, and angular kurtosis
supported a patchy and heterogenous topography within LIP.

Certain anterior/posterior coronal planes had better representa-
tion of specific directions, so we asked whether there would be any
performance difference in fUSI decoders trained on the different
anatomical planes. This would have translational implications if spe-
cific anterior/posterior regions were better for directional decoding.
We applied our decoding analysis to every recorded session (Fig. 7). In
Monkey P, all sessions reached statistical significance (18/18 sessions).
In Monkey L, all but one session reached statistical significance (19/
20 sessions). In Monkey P, the peak angular error within a session
ranged from 17° to 55° (29.97° ± 2.32° mean± SEM). In Monkey L, the
angular error ranged from 33° to 85° (57.98° ± 3.35° mean± SEM).
There was no statistical difference (1-way ANOVA, α =0.01) between
the percent correct or angular error depending on the plane (Fig. 7C).
These results suggest that all anatomical PPC planes we sampled
contained sufficient information to accurately decode at least eight
intended movement directions on a single-trial basis.

We next compared the similarity between the significant voxels
identified by the GLM and searchlight analyses (Fig. 7D). As with the
example sessions, there was a high degree of similarity between the
voxels identified in the two analyses. In Monkey L, the median [IQR]
Dice-Sørenson similarity was 0.40 [0.19, 0.65]. In Monkey P, the
median [IQR] Dice-Sørenson similarity was 0.56 [0.44, 0.69]. This

further demonstrates how the decoder and GLM analyses effectively
complement each other in revealing specialized subregionswithin PPC
for movement direction encoding.

Do dorsal and ventral LIP display different tuning properties?
Dorsal (LIPd) and ventral (LIPv) LIP are believed to have different
functions with LIPd being involved in visual processing while LIPv
is involved in both attentional and visual-saccadic processing30,31.
According to theories of topographic encoding12, we would
expect separate representations of movement directions within
LIPd and LIPv. We observed no clear split in function at the
middle portion of LIP, so we relied upon a previous definition of
53% sulcal depth to compare activity within LIPd and LIPv30. We
found that anterior LIPd was more active than posterior LIPd.
Middle LIP, i.e., junction of defined LIPd and LIPv, consistently
demonstrated the most activity across all planes. To quantify this
observation, we labeled the beeswarm chart with the depth of
each LIP voxel from the brain surface (Fig. 6B). We did not
observe any clear trends in the data to clearly distinguish func-
tional differences between LIPd and LIPv. We additionally col-
lapsed all the tuned voxels across planes and looked at their
percent depth within the sulcus (Fig. 6D). Instead of observing a
clear separation between LIPd and LIPv, we observed one
homogenous group with the most activity peaking at the
boundary between LIPd and LIPv, suggesting that LIPd and LIPv
may share a topographic representation and/or that they receive
common shared inputs.

Fig. 7 | Linear decoders can decode intended movement direction from most
fUSI sessions, regardless of PPC plane. Percent correct for each session. Solid
black line with gray envelope showmean± SEM. Each gray line shows performance
on single session. Dashed line shows chance level. B Mean angular error for each
session. Same format as in (A). C Mean angular error as function of coronal plane.
*=two closely overlapping points (D). Summary of overlap of GLM and searchlight

analysis across all sessions. Each dot represents 1 session. Box shows 25th-75th

quartiles with red line showing median Dice-Sørenson value. Whiskers extend to
furthest non-outlier point ( ± 1.5*IQR beyond the 25th or 75th quartiles). Minima
[maxima] are -1.5*IQR [ + 1.5*IQR] beyond the 25th [75th] percentile. One session from
Monkey L excluded due to no significant voxels in GLM or searchlight analysis.
Source data are provided as a Source Data file.
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Discussion
Our results demonstrate that PPC contains subregions tuned to dif-
ferent directions. These tuned voxels were predominately within LIP
and grouped into contiguous mesoscopic subpopulations. Multiple
subpopulations existed within a given coronal plane, i.e., there were
multiple preferred directions in each plane. A rough topography exists
where anterior LIP had more voxels tuned to contralateral downwards
saccades and posterior LIP had more voxels tuned to contralateral
upwards saccades. These populations remained stable across more
than 100–900 days.

fUSI-specific features
Sensitivity of fUSI. We observed large effect sizes with changes inCBV
on the order of 10–30% from baseline activity (Fig. 3). This is much
larger than observed with BOLD fMRI where the effect size was
~0.4–2% on similar saccade-based event-related tasks27,32. Our results
support a growing evidence base that establishes fUSI as a sensitive
neuroimaging technique for detecting mesoscopic functional activity
in a diversity of model organisms, including pigeons, rats, mice, non-
human primates, ferrets, and infant and adult humans23–25,33–40.

Mesoscopic functional imaging–balancing spatial resolution and
field-of-view. Several studies have reported a patchiness in direction
selectivity withmany neighboring neurons tuned to approximately the
same direction followed by an abrupt transition to a patch of a dif-
ferent preferred direction13,14,41. These results match very closely with
the results observed in this study where we found clusters within LIP
tightly tuned to one direction with differently tuned clusters in close
proximity within a given plane. These results further emphasize the
high spatial resolution of fUSI for functional mapping of neuronal
activity. These results also closely match a previous study that used
fUSI to identify the tonotopic mapping of the auditory cortex and
inferior colliculus in awake ferrets where the authors found a func-
tional resolution of 100 µm for voxel responsiveness and 300 µm for
voxel frequency tuning34.

Stability of directional tuning across time
fUSI allows for repeated, longitudinal imaging of the same brain
regions across months to years, facilitating studies of the stability of
functional populations over time. Here, we used this feature to
demonstrate that we could decode intended movement direction
using a decoder trained on data from a different sessionmanymonths
to years apart. This strongly suggests that the directional preference
for the LIP subpopulations remains stable at the mesoscale. The
decoder performed best when the training and testing sessions were
close in time. We have three possible interpretations for this. First, the
representations of direction within subpopulations drift in difficult-to-
predict ways across time. Under this interpretation, we would expect
that the decoders’ predicted movement directions would become
increasingly random asmore time elapses as the tuned voxels used for
the model decorrelate. A second interpretation is that the sub-
populations drift, but they drift at the same rate and in the same
directions. This would lead to the tuned voxels staying correlated but
encoding for different directions. Under this interpretation, we would
expect to see the decoder make increasingly more mistakes, but in a
consistent manner. For example, the decoder might develop an error
bias where instead of predicting the correct class, it consistently pre-
dicts a different direction in its place. A third interpretation is that the
vascular placement relative to our recording plane changed across
time (consistent with changes in the imaging plane) and that we are
decoding from slightly different neural populations. Under this inter-
pretation, the decoding errors should increase for neighboring direc-
tions because the tuned mesoscopic populations observed in this
study extend in both anterior-posterior directions and smoothly
transition to encoding different directions rather than having sharp

transitions where neighboring voxels encode for completely different
directions. This smooth transitionmeans that the populations used for
decoding will still be similar to the original populations being mea-
sured, consistent with changes in the imaging plane.

Our data best supports the third interpretation: the recording
plane physically shifted over time. Rather than the errors becoming
increasingly random as time progresses, the confusion matrices still
had strong diagonal components, i.e., correct predictions, but with
higher variance about that diagonal. Additionally, image similarity
metrics drifted across time, confirming that the imaging plane chan-
ged despite our best attempts at acquiring the exact same imaging
plane during each session (Figure S9). Finally, the decoder perfor-
mance and image similarity were positively correlated. This supports
the interpretation that the subpopulations are stable across time with
our decoder performance decreasing because of our imaging plane
changing.

Preference for contralateral space
Previous studies found that LIP responds strongest to contralateral
stimuli and movements. At the single neuron level, ~80–90% of LIP
neurons are tuned to contralateral directions13,14. Of note, Platt and
Glimcher 199842 reported no bias towards contralateral or ipsilateral in
their recorded LIP neurons. At the macroscopic population level, the
BOLD response in LIP is also almost exclusively contralateral
preferring15,16,27. In the present study, we also found that LIP has
strongly lateralized responses with ~88% of LIP voxels preferred con-
tralateral directions. The reasons for the apparent discrepancy with
Platt and Glimcher 199842 remain unclear.

Anatomical considerations
Anterior-posterior gradient. Our results extend previous studies’
evidence of topography within LIP12. Two previous fMRI15,16 and one
electrophysiology14 studies found an anterior-posterior gradient for
encoding of visual field where visual objects in the lower visual field
evoked activity within anterior LIP and visual objects in the upper
visual field evoked activity within posterior LIP. Our fUSI data (Fig. 6)
found a similar anterior-posterior gradient but for the planning and
execution of eye movements instead of for the location of visual
objects. However, visual receptive fields and saccadic motor fields
have been shown to overlap43, suggesting a similar anterior-posterior
gradient for saccade directions.

Two studies13,18 found different patterns. Blatt et al. 199013 exam-
ined visual receptive fields for both direction and distance from the
fovea and sampled mostly regions within the lateral bank of the
intraparietal sulcus that was more posterior to the current study with
only a small range of overlapwithmonkey P (overlap of approximately
4mm, −4 to −8 mm of EBZ). Savaki et al. 201118 found that the upper
part of oculomotor space is represented in dorsal-anterior LIP while
the lower part of oculomotor space is represented within ventral-
posterior LIP. In this range, Blatt et al. 199013 found visual receptive
fields in the upper and lower visual field evoked activity within anterior
LIP with lower visual fields more dorsal. Visual receptive fields in the
upper visual field were found ventrally and lower visual field dorsally
within posterior LIP. Savaki et al. 201118 found that the upper part of
oculomotor space is represented in dorsal-anterior LIP while the lower
part of oculomotor space is represented within ventral-posterior LIP.
Arcaro et al. 201116 reconciled their fMRI data with the two electro-
physiology studies by suggesting that the differences result solely
because of differences in recording site location, i.e., the two electro-
physiology papers recorded from different overlapping anterior-
posterior ranges of LIP. Our combined range of recording agreed
with the results that Arcaro et al. 2011 showed for visuotopic LIP (LIPvt)
and caudal intraparietal cortex (CIP-2). Over the range of overlap
with Blatt et al. 1990, we observed a similar tuning of ventral LIP for
contralateral upward. Taken together, our results support the
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interpretation that differences in recording site location explain the
difference in anterior-posterior gradients.

Differences between dorsal and ventral LIP. Previous studies found
that peripheral targets were represented within the LIPv while foveal
and parafoveal targets were represented within the LIPd13–16. In our
study, we focused on movement preparation to a single eccentricity
(20°) and observed activity within both LIPd and LIPv. In both
monkeys, we observed less LIPd activity in the more posterior planes
(<−3.33mm of EBZ). The overall distribution of tuned LIP voxels did
not demonstrate a clear separation between LIPd and LIPv. Our study
was not designed to interrogate the encoding of eccentricity, so future
fUSI studies with foveal, parafoveal, and peripheral targets will be
needed to explore the mesoscopic representation of saccade eccen-
tricity within LIP and PPC.

Previous studies have found that LIPd was primarily involved in
processing vision-related information while LIPv contributed to
attentional, vision, and oculomotor processes30,31. Our task was aimed
at understanding the oculomotor representation of different direc-
tions within LIP but was not designed to separate the effects of
attention from oculomotor planning. In our study, we did not
demonstrate a separation in directional representation between LIPd
and LIPv with the most activity peaking at the boundary between LIPd
and LIPv. This suggests that LIPd and LIPv may share a common
topographic representation rather than having separate duplicated
representations of angular direction.

Directional saccadic activity outside of LIP. In both monkeys, we
observed directionally-modulated activity outside of the LIP in the
example sessions and aggregated data in VIP, MIP, and Area 7. In
MonkeyP,weadditionally observeddirectionallymodulated activity in
MP. MP has been previously identified as a saccade-related area in
single-unit electrophysiology and fUSI studies24,44. Monkey L’s
recording chamber was located lateral of MP areas. Nevertheless, our
results in Monkey P, combined with observations in previous studies,
support that MP may be an underexplored oculomotor planning
region. The MP voxels preferred contralateral directions and did not
display any clear organization of their response fields.

The posterior-medial MIP also contained directionally tuned
activity. Someof this activity (−8mmof EBZ,Monkey P) is in superficial
cortical layers, perhaps reflecting inputs to MIP that relay directional
information from upstream brain regions. We also observed activity
within the deeper layers of posterior-ventral MIP in both monkeys,
agreeingwith previous literature that found visual and saccade-related
activity within MIP45,46. However, previous work also found the
functionally-defined parietal reach region (PRR), overlapping with the
anatomically-defined MIP, responds predominately to reach
movements2,4,45. Our task was a memory-guided saccade task with no
reach component. Monkey P sat in an open chair with his hands and
arms free while Monkey L sat in an enclosed chair with his hands and
arms confined. Despite Monkey P being free to move his arms, we did
not observe any armmovements related to the task itself. Future fUSI
studies where we use a task with intermingled reaches and saccades
will be useful in elucidating the contributionof visual stimuli, saccades,
and reaches to the observed directionally-modulated activity
within MIP.

Different subregionswithin VIP also contained directionally tuned
activity in both monkeys with no consistent pattern of which VIP
subregions showed directionally-modulated activity across coronal
planes or betweenmonkeys. Previous research has shown that VIP has
a high degree of selectivity for the direction of a moving stimulus with
minimal, if any, activity to a static stimulus presented within its
receptive field47. Additionally, VIP is selective for smooth pursuit eye
movements rather than saccadic eye movements48. Future work with

moving stimuli and smooth pursuit eye movements will be necessary
to elucidate what components of our task elicited activity within VIP.

In our experiments, putative Area 7a displayed directionally tuned
activity to contralateral movement directions in bothmonkeys. This is
consistent with previous literature that found Area 7a neurons have
visual receptive fields and display saccade-related activity49–52. We do
not know why only a small region of Area 7 A in Monkey P showed
directional tuning or why fewer coronal planes in Monkey L displayed
directionally tuned activity in Area 7a. One possibility is that the neu-
rons within individual voxels of Area 7a display high heterogeneity in
their response fields such that no consistent tuning appears at the
mesoscopic population level.

Applications to ultrasonic brain-machine interfaces
We previously showed that we could decode movement timing
(memory/not-memory), direction (contralateral/ipsilateral), and
effector (hand/eye) simultaneously on a single-trial basis with high
accuracy24. We recently also demonstrated that we could train mon-
keys to use a real-time fUSI brain-machine interface (BMI) for up to
eight directions of eye movements25. Here, we extended these papers’
results in several aspects.

First, we demonstrated that we could achieve better decoding
performance using offline recorded data (50–60% correct) than the
accuracy reported for the online real-time fUSI-BMI data (~38% cor-
rect). One explanation for this performance increase is motion cor-
rection. In the present study, we used post hoc motion-correction to
minimize movement of the imaging plane across a session. In the real-
time fUSI-BMI study, we did not implement motion correction. In the
present study, we showedwhymesoscopic populations are tolerant to
a small amount of motion: similarly tuned voxels are more often spa-
tially contiguous. However, even modest amounts of motion would
alter the information available to the decoder, decreasing perfor-
mance. One future method that may be well-suited to this problem is
convolutional neural networks that can utilize local structure in images
to maintain high performance rather than our existing decoder algo-
rithms that assume features do not move across time.

Second, we demonstrated that we could decode above chance
levelwith a static decodermodel even after several years. InGriggs and
Norman et al. 202425, we collected data over 79 days, far fewer than the
900 days reported here. This suggests that future ultrasonic BMIs can
constantly update an existing model rather than needing to be reca-
librated daily. This is one current advantage of imaging-based BMIs
over intracortical electrode-based BMIs. Intracortical electrode-based
BMIs typically require frequent calibration or retraining due to their
inability to record from the same neurons across multiple days53. By
simply combining imaging-basedBMIswith image alignment (2Dplane
and potentially 3D volume) to a previous session’s field of view, we can
stabilize BMIs over long periods of time.

InMonkey L,weobservedhigh variability in decoder performance
across sessions (Fig. 7). We explored several factors including anato-
mical plane, number of error trials in a given session as a proxy for
motivation, day of the week, and amount of brain movement within a
session, but never identified any factors that explained the day-to-day
variability in Monkey L. Future work will be needed to identify the
causes of this across session variability, such as whether differences in
fixational eyemovements between the twomonkeysmight explain the
decoder variability.

Limitations of study
Anatomical labeling of PPC subregions. Our anatomical labeling
relied on a standardized NHP atlas and prior literature26,30 rather than
subject-specific histology. Subtle boundary variations (e.g., LIPd-LIPv
transitions) may exist and future studies combining histology and
functional connectivity could refine these parcellations.
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Effect of contrast changes. LIP in monkeys is known to be driven by
motor as well as contrast-based changes over time16 and visual
changes in LIP are known to be organized topographically, i.e., LIP is
retinotopically arranged16. In our task design, when the monkeys
move their eyes toward the periphery of their visual field, the visual
input changes dramatically, especially close to the border of the
screen. To address the potential influence of contrast-based changes
onCBV signals, we focused ourGLManalyses on a timewindow at the
end of the memory period, prior to saccade onset. This timing
minimizes contamination from visual input changes associated with
saccades, as saccade latencies were typically ~500ms after the go
cue. Additionally, significant decoding was observed prior to move-
ment initiation (Fig. 4A, D), and similar decoding performance was
reported in conditionswithout saccades in a previous study25, further
supporting that contrast changes are unlikely to be the primary dri-
ver of the observed CBV patterns. However, we cannot eliminate the
effect of contrast changes on our observed results and this warrants
investigation in future studies.

Visual versus motor planning. While our task design temporally
separated visual cue processing and saccade preparation phases by
having a cue that is short (400ms) and a memory period that is long
( > 4 sec), fUSI faces inherent constraints in fully dissociating
these components. Neurovascular coupling introduces an ~2–4 sec
smoothing effect on CBV signals54–56, creating a temporal overlap
between the visual and motor components. We saw the CBV increase
early after the visual stimuli and then stay elevated throughout the
memory period suggesting that we may have both an early
visual response and a sustained movement preparation response.
Future experiments with modified tasks or simultaneous electro-
physiology will be needed to better disentangle the visual and motor
components.

Future studies
Record along intraparietal sulcus axis. In our study and most of the
previous studies of LIP response fields, the topography changed along
an anterior-posterior axis. Future studies could use 3D fUSI or align a
2D fUSI imaging plane along the intraparietal sulcus to acquire a larger
anterior-posterior slice of LIP. This was not possible in the current
animals due to the size of the ultrasound transducer and how our
chamber was positioned off-axis relative to the intraparietal sulcus.
This future study could significantly increase the longitudinal resolu-
tion compared to the current study and simultaneously improve effect
sizes thanks to the ability to record anterior-posterior populations
synchronously (in contrast to the current study that reconstructed
these data over many sessions).

Spatial autocorrelation of fUSI voxels. Each voxel ( ~ 100μm
x ~ 100μm x ~ 400μm) contains ~65 neurons and 130 glia57, whereas
each 1–1.5 mm3 fMRI voxel contains ~16,000–24,000 neurons and
32,000–48,000 glia. This suggests that fUSI can detect very local
activity within neural circuits, including from within different cortical
layers. However, fUSI measures changes in CBV and neurovascular
coupling is complex58–60. Although every neuron within the brain is
positioned within 15μm of a blood vessel61, the contributions of dif-
ferent cell types are not sufficiently well understood to disentangle
their contribution to the CBV signal. Additionally, neighboring voxels
are supplied oxygen and nutrients by the same neurovasculature. This
could contribute to an unknown extent to spatial autocorrelation of
fUSI encoding (Figure S12), confounding our ability to precisely iden-
tify the size and spatial separation of tuned populations.Motion of our
imaging plane and spatial smoothing further increases this spatial
autocorrelation. There have been a variety of methods proposed for
fMRI to handle the statistical consequences of spatial autocorrelation
and calculate accurate statistical thresholds for cluster-wise

inference62–65. However, to the best of our knowledge, no methods
have been devised to separate the various contributors to the spatial
autocorrelation, including correlated neuronal activity. Future
experiments are required to disambiguate the contribution of corre-
lated neurons versus other contributors to the size of neurovascular
patches with similar tuning. Each voxel most likely contains neurons
with a mixture of response fields with a bias towards specific response
fields. Simultaneously recording fUSI signals, localfield potentials, and
single neurons will be crucial for understanding the response prop-
erties within individual voxels and patches of similarly tuned voxels.
Recently, there has been development of new electrophysiology
methods19,20 designed to accessmesoscale organization thatwould aid
greatly in understanding the relationship between the mesoscopic
neurovascular populations identified in this paper and the underlying
neuronal activity of neurons distributed across the PPC.

Cluster-wise inference. In this paper, we employed voxel-wise FDR
correction, but cluster-wise inference methods would likely offer
improved control for false positives63,66, especially given the spatial
autocorrelation present in fUSI data andmanyother similarities of fUSI
data to fMRI data. For example, the smaller dispersed clusters in
Fig. 3A, Dor Fig. 6Amaybe falsepositives. Future studies exploring the
adaptation and validation of existing cluster-wise inference
techniques67–70 for fUSI, taking into account the unique characteristics
of this modality, will be invaluable.

Eccentricity axis. Many studies have found a topography along an
eccentricity axis with foveal and parafoveal targets being anterior of
the peripheral targets representation13–16,18. In the current study, we
presented our stimuli at a single eccentricity. Future studies could
compare the representation of foveal, parafoveal, and peripheral tar-
gets within the LIP, potentially improving the field’s understanding of
how angular direction and eccentricity are spatially organized.
Exploring foveal representation of saccades may also require a dif-
ferent experimental task than used in this study due to the difficulties
associatedwith tracking andmeasuring small saccades71. Furthermore,
implementing continuous fUSI decoding (as opposed to predicting
discrete directions or eccentricities) could extend our findings by
examining whether trial-to-trial variations in mesoscopic LIP activity
predicts endpoint error distributions in saccadic eye movements. This
would enable investigation of howmesoscopic LIPpopulations encode
movement precision in addition to categorical direction or
eccentricity.

Directional tuning of cortical layers. Ultra-high field (UHF) fMRI has
enabled sub-millimeter voxel resolution and allowed researchers to
study cortical layer-specific activity72–74, especially with CBV-based
fMRI75,76. Similar laminar analyses are possible with fUSI because it
measures CBV and has higher spatiotemporal resolution and sensi-
tivity thanUHF fMRI. Todate, only one fUSI study hasbegun to explore
this possibility. Blaize et al. 202077 inferred cortical layer based upon
cortical depth from the sulcus and found layer-specific ocular dom-
inancewithin the deep visual cortex. In the present study, we observed
broad activity within LIP that did not appear to respect any laminar
boundaries within the cortex. In both monkeys, we detected some
directionally specific activity within the shallower layers of MIP
(Figs. 3D, 4C, F, 6A). This may reflect activity within superficial input
layers. We could qualitatively estimate the boundary between white
matter and gray matter based on the amount of organized meso-
vasculature observed in our vascular maps. However, the thickness of
cortex varied within and across imaging planes, which prevented
reliable estimates of cell layer based upon cortical depth. Future stu-
dies will be needed to better understand how to define cortical layers
with fUSI, including studies to identify layer-specific properties
detectable by ultrasound.

Article https://doi.org/10.1038/s41467-025-63826-z

Nature Communications |         (2025) 16:8752 13

www.nature.com/naturecommunications


Discussion summary
Here, we used fUSI to demonstrate that the posterior parietal cortex
(PPC) contains mesoscopic populations of neurons tuned to different
movement directions. This organization changed along an anterior-
posterior gradient and remained stable across many months to years.
These results unify previous findings that examined the topographic
organization of LIP at the macroscopic (fMRI) and microscopic (elec-
trophysiology) levels. In one monkey, we additionally found robust
saccade-related activity within the medial parietal (MP) cortex, a par-
ietal area that warrants further investigation. Using the methods
established here for tracking the same populations across many
months to years, it will be possible to apply brain-machine interfaces
and other technologies that are advantaged by stable recordings
across time.

Methods
Experimental model and subject details
All training, recording, surgical, and animal care procedures were
approved by the California Institute of Technology Institutional Ani-
mal Care and Use Committee and complied with the Public Health
Service Policy on the Humane Care and Use of Laboratory Animals.We
worked with two rhesus macaque monkeys (Macaca mulatta; 14-years
old, male, 14–17 kg). Monkey L participated in two previous fUSI
experiments24,25. Monkey P participated in one previous fUSI
experiment25.

General
Animal preparation and implant. We implanted a titanium headpost
and custom square recording chamber on each monkey’s skull under
general anesthesia and sterile surgical conditions. We printed or
machined a 24 × 24mm (inner dimension) chamber using Onyx fila-
ment (Markforged) for Monkey L and a similar chamber made of PEEK
for Monkey P. We placed the recording chamber over a craniectomy
centered above the left intraparietal sulcus.

Behavioral setup and task. Each monkey sat head-fixed in a dark
enclosed recording booth in custom-designedprimate chairs facing an
LCD screen ~30 cm away (HP L2025; 250 nits; 350:1 contrast ratio). We
used a custom Python 2.7 software based upon PsychoPy78 to control
thebehavioral task and visual stimuli.We tracked their left eye position
using an infrared eyetracker at 500Hz (EyeLink 1000, Ottawa,
Canada). Eye position was recorded simultaneously with stimulus
information for offline analysis.

Monkeys performed a memory-guided saccade task (Fig. 2A)
where they fixated on a center dot of radius 2° (fixation state), main-
tained fixation while a peripheral cue (2° radius) was flashed for
400ms in one of eight locations (20° eccentricity, equally spaced
around a circle), continued to maintain fixation on the center dot
(memory state), and finally made a saccade to the remembered cue
location (movement state). If they correctly made a saccade to the
cued location, the peripheral cue was redisplayed and the monkey
maintained fixation on the peripheral target until the liquid reward
(30% juice; 0.35mL monkey L and 0.75mL monkey P) was delivered.
During each task state, the monkey had to keep their eyes within 6° of
the fixation or target, i.e., the tolerance window was 6°. To avoid the
monkeys predicting state transitions, we used variable durations
sampled from a uniform distribution for each task state. In Monkey L,
thefixation andmemory phasewere 4 ±0.25 sec, the target holdphase
was 0.75 ± 0.15 sec, and the intertrial interval (ITI) was 5 ± 1 sec. For
Monkey P, the fixation and memory phase were 5 ± 1 sec, the target
hold phase was 1 ± 0.5 sec, and the ITI was 8 ± 2 sec. Both monkeys
were allowed up to 10 sec to make the saccade following the memory
phase. For each task state, the duration was randomly drawn from the
respective uniform distribution, meaning that the fixation and

memory lengths might be different in the same trial, e.g., fixation
length of 4.15 sec and memory length of 3.9 sec for one trial in
Monkey L.

Functional ultrasound imaging
Weused a programmable high-framerate ultrasound scanner (Vantage
256; Verasonics, Kirkland, WA) to drive the ultrasound transducer and
collect pulse echo radiofrequency data. We used a custom plane-wave
imaging sequence to acquire the 1 Hz Power Doppler images. We used
a pulse repetition frequency of 7500Hz with 5 evenly spaced tilted
angles (−6° to 6°) with 3 accumulations to create one high-contrast
compounded ultrasound image. We acquired the high-contrast com-
pound images at 500Hz and saved the images for offline construction
of Power Doppler images. We constructed each Power Doppler image
using 250 compound images acquired over 0.5 sec. To separate the
blood echoes from background tissue motion, we used an SVD clutter
filter79. For more details on the functional ultrasound imaging
sequence and Power Doppler image formation, please see previous
literature24,80.

We used a 15.6MHz ultrasound transducer (128-element minia-
turized linear array probe, 100μm pitch, Vermon, France). This
transducer and imaging sequence provided us with a 12.8mm (width)
and 13–20mm (height) field of view. The in-plane resolution was
~100μm× 100 μm with a plane thickness of ~400μm. During each
recording session (Table S1), we placed the ultrasound transducer on
the dura with sterile ultrasound gel and acquired images from a single
imaging plane. We held the transducer using a 3D-printed slotted
chamber plug that minimized motion of the transducer relative to the
brain. The slots were spaced 1.66mm apart. This slotted chamber plug
allowed us to acquire specific imaging planes consistently across ses-
sions. To help with later offline data concatenation, we acquired vas-
cular maps using a single Power Doppler image and adjusted the
transducer until the acquired vascular map closely matched a pre-
viously acquired vascular image for that chamber slot.

Across session alignment and concatenation
Weconcatenateddata acrossmultiple sessions for each imagingplane.
We first performed a semi-automated intensity-based rigid-body
registration to align the vascular anatomy between sessions. As
described above, during the acquisition, we minimized out-of-plane
movementbetween sessionsbymatching each session’s imagingplane
to a previously acquired template image for each chamber slot. See
Griggs and Norman et al. 202425 for more details. After aligning the
anatomy,weconcatenated all data together fromagiven coronal plane
in temporal order, i.e., sessions recorded on later days are later in the
concatenated dataset. No rescaling of data was performed during
concatenation.

3D visualization
We used MATLAB to export the vascular images to NIFTI format. We
used Napari81, the ‘napari-nifti‘ plugin82, and custom Python code to
visualize the 3D reconstruction and save as images. The images were
combined to form a video using Da Vinci Resolve 17.4.4 Build 7
(Blackmagic Design). For Fig. 1B–D, we used Blender v3.5.0 on MacOS
and v2.92.0 on Microsoft Windows to create representations of the
cortex and different recording technologies.

Quantification and statistical analysis
Unless reported otherwise, summary statistics are reported as
mean± SEM.

Anatomy. All labels for PPC subregions, such as LIP, VIP, MIP, Area 5,
Area 7, and MP, were anatomically defined based upon a rhesus
macaque neuroanatomy atlas26. This avoided circular logic in using
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functionally defined boundaries to assess how much activity was
within a region.

General linearmodel (GLM). We applied several pre-processing steps
before creating the GLM to explain the data. We first applied a Gaus-
sian spatialfilter (FWHM – 100μm).We then applied a voxel-wise high-
pass temporal filter (1/128Hz) to remove low-frequency drift. We
finally used grand mean scaling to scale each voxel’s intensity to a
common scale83,84. To build the general linearmodel, we convolved the
regressors of interest with a hemodynamic response function (HRF).
We used a single gamma function with a time constant (τ) of 1 sec, a
pure delay (δ) of 1 sec, and a phase delay (n) of 3 sec based upon a
previousmonkey event-related fMRI study27. The regressors of interest
were fixation period, memory period, movement period, and reward
delivery. For the memory and movement periods, we used separate
regressors for each direction. We then fit the GLM model using the
convolved regressors and scaled fUSI data. We used an F-test to
identify voxels that had a statistically significant difference to the eight
directions during the memory period.

Multiple comparison correction. For all voxel-wise p-values used and
reported, we used false-discovery rate correction (FDR) to correct for
the simultaneous multiple comparisons. This was implemented using
MATLAB’s ‘mafdr‘ function.

Preferred direction. We used a center-of-mass approach to find the
preferred tuning of each voxel. For each voxel, we first calculated the
Cohen’s dmeasure of effect size by comparing the response in the last
second of the memory period (single timepoint within ±0.5 sec of
memory end) to the baseline (−1 to 1 sec relative to cue onset). Positive
(negative) values correspond to increase (decrease) in CBV from the
baseline. This gave us a standardizedmeasure of response strength for
each direction.We then scaled the peak response at each voxel to be 1.
We then found the centroid for each voxel, which provided both a
direction and magnitude. The direction represents the peak tuning
directionwhile themagnitude represents the strength of that tuning. A
value close to zero means no tuning while a value close to 1 means
highly tuned to a specific direction. This method minimizes assump-
tions about shape of the response field, such as whether it is Gaussian.
We then smoothed the resulting statistical map using a pillbox spatial
filter (1-voxel radius).

Statistical measures of data distribution. We calculated the laterality
index based upon the formula used in previous papers27,28.

Laterality index =
Responsecontra � Responseipsi
jResponsecontraj+ jResponseipsij

ð1Þ

We calculated the circular standard deviation, angular kurtosis,
and angular skewness using the Circular Statistics Toolbox85 (available
at https://github.com/circstat/circstat-matlab).

Across-session statistical analyses. For each coronal plane,wewould
concatenate all sessions recorded from that plane.We then performed
the same methods for statistical analyses as described above. We
examined the last timepointwhen calculating the preferred tuning and
other statistical measures of data distribution at each voxel. For the
multiple comparison correction using FDR, we applied the correction
across all voxels in all coronal planes simultaneously rather than just
applying within a single coronal plane.

Within-session decoding analysis
Decoding intendedmovement direction on a single trial basis had five
steps: 1) aligning the fUSI data andbehavioral data, 2) preprocessing, 3)

selecting data to analyze, 4) dimensionality reduction and class
separation, and 5) cross-validation.

First, we created the behavioral labels by temporally aligning the
fUSI data with the behavioral data. We could then label each
fUSI timepoint with its corresponding task state and movement
direction.

Second, we preprocessed the data by applying several operations.
The first operation was motion correction. We used NoRMCorre to
perform rigid registration between all the Power Doppler images in a
session86. We then applied temporal detrending (50 timepoints) and a
pillbox spatial filter (2-voxel radius) to each Power Doppler image.

Third, wewould then select what spatial and temporal portions of
the data to use in the decodermodel. We always used the entire image
where each voxel is a single feature. We used the entire image rather
than decoding from specific anatomically-defined subregions to avoid
introducing any bias by our approximation of anatomical boundaries.
By including the entire image, we did not actively bias the decoder to
rely upon specific regions but rather let the data itself tell us the most
important features. We used a dynamic time window. At each time-
point before the cue, we used all timepoints since the start of the trial.
For example, to test our ability to decode at 3 sec after the trial start,
we used the fUS images at 0, 1, 2, and 3 sec. At each timepoint after the
cue, we used all previous timepoints after the cue in the trial. For
example, to test our ability to decode at 2 sec after cue onset, we
concatenated the data from 0, 1, and 2 sec after the cue. We treated
these timepoints as additional features in the decoder model. In other
words, the input to our decodermodel hadN*T features, whereN is the
number of voxels in a single Power Doppler image and T is the number
of timepoints.

Fourth, we split the data into train and test folds according to a
leave-one-out or 10-fold cross-validation scheme. For the test sets, we
stripped the behavioral labels. We then scaled the train and test splits
by applying a z-score operation fit to the train data. We used the entire
image for our features, i.e., each voxel’s activitywas a single feature. To
train the linear decoder on the training data, we used principal com-
ponent analysis (PCA) for dimensionality reduction and linear dis-
criminant analysis (LDA) for class separation. For the PCA, we kept 95%
of the variance. The number of components kept depended on the
training dataset, typically varying between 330–450 components
(Figure S13). For the LDA, we used MATLAB’s ‘fitcdiscr‘ function with
default parameters. We used a multicoder approach where the hor-
izontal (left, center, or right) and vertical components (down, center,
or up) were separately predicted and combined to form the final
prediction. As a result of this separate decoding of horizontal and
vertical movement components, center predictions are possible
(horizontal—center and vertical—center) despite this not being one of
the eight possible peripheral target locations. We then calculated the
percent correct and absolute angular error for each sample in the
test data.

Fifth, we then repeated the model training and testing for each
consecutive fold of data. We finally found the mean accuracy metrics
across all the folds, i.e., mean accuracy and mean angular error. To
correct for testing the performance at every trial timepoint, we used a
Bonferroni correction.

We used a 1-sided binomial test to calculate the p-values asso-
ciated with the percent correct results and used a permutation test
with 100,000 replicates to calculate the p-values associated with the
angular error results. Although the multi-coder architecture can gen-
erate 9 possible classes, due to class imbalances in the training sets, the
empiric chance level of the decoder accuracy was between [1/8, 1/9].
We therefore picked the more conservative threshold of 1/8 chance
level for the binomial test. For the permutation test, each replicate was
created by sequentially drawing X directional guesses from a uniform
distribution of the eight possible directions, where X is the number of
trials in the session. We then calculated the 1-sided p-value of each of
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our results by finding how many of the replicates were less than our
observed mean angular error.

See Norman and Maresca et al. 202124 and Griggs and Norman
et al. 202425 for more details on these methods.

Visualization of LDA weights. To visualize the LDA boundaries
between pairwise classes, we projected the boundaries for the hor-
izontal and vertical LDA decoders through the inverse PCA transform.
For each class-class pair, we obtained the LDA boundary weights
(constant and linear components) which has a single weight for each
principal component. We discarded the constant components and
weighted each principal component by the linear component of the
LDA weights and added all the principal components together. We
then multiplied the resulting horizontal and vertical decoder weight
images together. To keep a similar scale between all pairwise class
combinations, we took the square root of the resulting absolute value
for pairwise classes where the vertical or horizontal class was different
for both classes and thenmultiplied by the sign of the original value to
preserve the sign prior to the square root. We performed this square
root operation because otherwise pairwise classes where the vertical
or horizontal classes were both identical would be approximately a
square root larger. We finally applied a threshold to each image where
we kept the 10% most extreme values (positive or negative).

Across-session decoding analysis
To test whether we could use a decoder trained on a separate session’s
data to decode movement intent in a different session, we applied the
same steps as for the within-session decoding analysis with two dif-
ferences. First, the training set was all the data from a specific session
and the testing set was all the data from a different specific session.
Second, to assess performance within the same train and test session,
we used 10-fold cross-validation instead of leave-one-out cross-
validation. The later sessions’ data (after March 25, 2022; Table S2)
were used in a previous publication and were acquired at a 2Hz ima-
ging rate with slightly different acquisition parameters. See Griggs and
Norman et al. 202425 for more details about the acquisition of these
data. For the across-session decoding analysis, we down-sampled this
2Hzdata to 1 Hz to allowus to easily compare the same trial timepoints
between the two sets of data.

Image similarity
We compared the pairwise similarity of vascular images from different
sessions by using the complex wavelet structural similarity index
measure (CW-SSIM). The CW-SSIM quantifies the similarity of two
images, where 0 is dissimilar and 1 is the same image29. We used the
CW-SSIM over other forms of SSIM because it is more flexible in
incorporating variations in image resolution, luminance change, con-
trast change, rotations, and translations. We used an implementation
freely available from the MATLAB Central File Exchange87 with 4 levels
and 16 orientations.

Searchlight analysis
Wedefined a circular regionof interest (ROI) and, using only the voxels
within the ROI, we performed the within-session decoding analysis
using 10-fold cross-validation. We assigned that ROI’s percent correct
and angular error metrics to the center voxel. We then repeated this
across the entire image, such that each image voxel is the center of one
ROI. To visualize the results, we overlaid the performance metric
(angular error or percent correct) onto a vascular map and kept up to
the 10%most significant voxels. As part of this searchlight analysis, we
ignored activity within the sulcal fold or activity on the other side of
the sulcal fold. To do this, we defined the boundaries of the sulcal folds
using a custom GUI in MATLAB and only used voxels on the same side
of the sulcal fold as the searchlight center. This is similar in principle to
the cortical surface-based searchlight decoding developed for fMRI88.

GLM and searchlight similarity
To assess the similarity between the GLM and searchlight results, we
computed the overlap of the statistical masks for both analyses. To
maintain similarity with the GLM analysis, we used a modified
searchlight analysis where analyzed the decoding performance at the
end of the movement period (as opposed to end of trial), did not
ignore activity within the sulcal folds, and allowed activity on both
sides of the sulcal folds to be in the same searchlightwindow.After this
modified searchlight analysis, we created thresholdmasks for both the
GLM and searchlight results using FDR-corrected p-values and a
threshold of p ≤0.001. We then computed the Dice-Sørenson coeffi-
cient (DSC) to measure the similarity between the two threshold
masks, where A and B are the two masks.

DSC =
2jA \ Bj
jAj+ jBj ð2Þ

We performed this analysis for every session. We excluded one
session where there were no voxels in either the GLM or searchlight
masks, i.e., no voxels showed significant directional encoding in the
GLM or searchlight analyses.

Spatial autocorrelation
For every voxel in the image, we examined voxels at different distances
from the seed voxel. For each distance tested, we identified voxels that
were between [max(0, i-0.1) mm, i mm] away. We then performed
Pearson linear correlation between these identified voxels and the
seed voxel. We then assigned the mean correlation to the seed voxel.
To calculate themean correlation for each distance, we took themean
and standard deviation across the entire image.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed functional ultrasound neuroimaging data generated in
this study have beendeposited in theCaltechDATAdatabaseunder the
accession code (https://doi.org/10.22002/p5jan-02r60)89. Source data
for figures are provided with this paper. Source data are provided with
this paper.

Code availability
Code used to generate key figures and results is available at (https://
github.com/wsgriggs2/PPC_directional_tuning) and archived90 on
Zenodo at (https://doi.org/10.5281/zenodo.15122174).
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