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Abstract— We present a 192-channel 1D convolutional
neural network (1D CNN) based neural feature extractor
for Brain-Machine Interfaces (BMI) that achieves state-of-
the-art decoding stability at 1.8 µW and 12801 µm2 per
channel in 65nm CMOS technology. Our device is a fully
configurable, scalable, area and power efficient solution
that supports models with 2-8 feature layers and a to-
tal kernel length of up to 256. This architecture reduces
caching requirements by 5× over conventional computa-
tion schemes. Channels and layers are individually power-
switchable to further optimize power efficiency for a given
neural application. We introduce an on-chip model, FENet-
66, that achieves the highest cross-validated decoding per-
formance compared to all previously reported feature sets.
We show that this model maintains superior stability over
time using recorded data from tetraplegic human partici-
pants with spinal cord injury. Our features have 18% higher
overall average cross-validated R2 decoding performance
compared to Spiking Band Power (SBP), with 28% better
performance during the 4th year. Our proposed architec-
ture can also extract mean wavelet power features at low
power and latency. We show that custom 1D-CNN kernels
achieve 10% better performance compared to wavelet fea-
tures while compressing the neural data stream by 38×.
The models and hardware were validated in real time with
a human subject in online closed-loop center-out cursor
control experiments with micro-electrode arrays that were
implanted for 6 years. Decoders using features generated
with this work substantially improve the viability of long-
term neural implants compared to other feature extraction
methods currently present in low-power BMI hardware.

Index Terms— BMI, BCI, CNN, Feature Extraction,
Streaming Processor
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I. INTRODUCTION

K INEMATIC decoding with brain-machine interfaces
(BMIs) enables restoration of mobility and indepen-

dence for individuals with spinal cord injuries [1]. BMI tech-
nologies are rapidly evolving to require higher channel counts
to perform increasingly complex tasks with higher precision,
while fully implantable realizations are constrained by wireless
bandwidth and power budgets [2], [3]. Feature extraction aims
to reduce the data rate and distill information before data
transmission or decoding by transforming neural electrical
recordings into information-rich features. Long-term exposure
to the neural environment on Multi-Electrode Array (MEA)
implants can degrade spike Signal to Noise Ratio (SNR)
due to gliation and electrode degradation [4]–[7]. This signal
degradation undermines the accuracy and stability of many
state-of-the-art feature extraction methods [8]. Implementing
robust feature extraction methods that can operate reliably on
degraded neural signals with low area and power cost is critical
for the long-term viability of implanted BMI systems.

The current state of implantable feature extraction from
intracortical neural recordings can be categorized into three
main methods: Spike Detection (SD), Spike Sorting (SS), and
compression through Broadband Feature Extraction (BFE) [3].
SD identifies occurrences of neuronal spikes in broadband
data often through identifying a threshold crossing (TC) of
some quality of the electrical recording (e.g. amplitude, teager
energy, variance etc.). SS uses the output of SD algorithms by
first isolating a spike waveform using SD, then sorting and
clustering the spike based on various characteristics of the
waveform with the aim of discriminating real spikes in TC
from noise, or labeling each spike to a single neuron source.
SS generates firing rates as features in the form of single unit
activity when referring to well isolated spikes, and multi unit
activity (MUA) when spikes are delineated from noise, but not
each other. SS methods rely on high SNR to sort spikes and
struggle to extract meaningful information from noisy signals,
even with state-of-the-art algorithms [9].

BFE is distinct from SD and SS as it mitigates the SNR
dependence of the spike event detection operation by directly
transforming the entire sampled bandwidth of neural data into
lower-dimensional features without SD to avoid losing aggre-
gate neural information not associated with high-SNR spiking
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events [10], [11]. BFE techniques are able to aggregate spiking
activity from low-amplitude spikes that would otherwise be
lost to SD and SS. Spiking Band Power [12], [13] (SBP) is
an example of a BFE technique with very low power and
complexity, as it simply takes the mean of the magnitude of
neural recordings filtered at 1 kHz within a given time bin.
Software-based Wavelet Transform (WT) BFE demonstrated
in [14], which extracts the mean wavelet transform power of
neural data, also shows significant robustness in decoder per-
formance. Building on WT BFE, our previous work uses a 1D
CNN-based Feature Extraction Network (FENet) to process
broadband neural data into neural features that outperform
SBP and WT BFE in decoder performance and long-term
stability [11].

Hardware realizations of SD [15], [16], SS [17]–[20], and
neural data compression using deterministic transforms [21]–
[24] are rich in literature. With low complexity, SBP has
also been implemented in hardware with high area and power
efficiency [25]. WT BFE has yet to be implemented on a
low power and area system suitable for implantable devices.
Conversely, tailored transforms such as FENet, Principle Com-
ponent Analysis (PCA) [26], and Autoencoders (AE) [27]
are less common as they generally suffer from high memory
requirements and complexity [3]. These memory requirements
arise from the many independent channels of continuous data
and large sample bins used to generate each feature. We
mitigate this cost through the design of a streaming architec-
ture for 1D CNN computation which reduces neural caching
requirements by 5× over CNN processors that only begin
processing when a full bin of data is received. Furthermore,
through efficient hardware reuse, we reduced the hardware
requirements for each channel to obtain an area of 12801 µm.
We achieve a power cost of 1.8 µW per channel which is
comparable to state-of-the-art hardware realizations of neural
data transformers. Our power and stability was achieved
through architectural and algorithmic optimizations of FENet.

In this work, we re-trained and tuned the hyper-parameters
of the FENet algorithm to generate a low-complexity FENet
model (FENet-66), which is better suited for hardware im-
plementation, with similar stability and decoding capabilities
to the software-bound algorithms described in [11]. Fur-
ther analysis into the sampling frequency sensitivity of this
model shows model robustness to slower sampling-rates which
reduce the power costs while maintaining similar decoder
performance. We validated the model and system architecture
in closed-loop with a human subject implanted with two Utah
MEAs performing a center-out cursor control task.

To the best of our knowledge, this paper presents the
first hardware-validated 1D CNN ASIC for neural feature
extraction from broadband neural signals, achieving robust
kinematic decoding six years after being implanted when
single neuron activity is no longer separable. FENet-66 is
introduced as a low-power hardware-compatible model which
provides the best balance of feature quality and power cost.
We explore two other variants of the FENet model that define
a tunable solution space. The proposed 1D CNN architecture
is neural stream oriented, scalable, and validated with closed-
loop patient testing. This paper is organized in the following

manner: We first introduce the feature extraction algorithm
targeted in this work in Section II. This is followed by
Section III where we present our solution to optimize this
algorithm for hardware implementation. In Section IV we
give an overview of our hardware implementation, and in
Section V we present our methods for evaluating our solution.
Section VI presents the results of our solution, and finally
Section VII concludes the article with a brief discussion of
potential extended applications of our techniques and future
improvements to our methods.

II. FENET ALGORITHM

FENet [11] adopts a seven-layer architecture inspired by the
Daubechies-20 (db20) wavelet transform, with additional non-
linearity and accumulation components. The model weights
are initialized using db20 coefficients and are trained to opti-
mally extract neural information, producing 8 features per data
bin. Tailoring this transform to neural data allows the capture
of aggregate neural activity that is nominally lost in low SNR
signals. The resulting 8 features have demonstrated state-of-
the-art performance in high-noise recordings from chronically
implanted MEAs.

The full data processing pipeline is illustrated in Fig. 1.
The data conditioning steps preceding feature extraction follow
standard practices in BMIs and are already demonstrated in
existing hardware systems [25], [28], [29]. Common aver-
age referencing (CAR) and neural data normalization are
implemented for offline analysis, while the online system
only implements CAR to simplify the system. Our ASIC
implementation encompasses the feature extraction step in the
decoding pipelining. Partial Least Squares Regression (PLSR)
is used to reduce the number of output feature dimensions,
preventing decoder overfitting. PLSR is trained per channel on
data from a single day, then model parameters are averaged
across all channels to generate a single transform used for all
subsequent days, and is general to all channels.

The FENet algorithm is shown in Fig. 2. Each layer per-
forms two separate 1D convolutions on its input stream with
the traversal and feature-generating kernels. The traversal path
(left) generates an intermediate output passed to the next layer.
The feature-generating path (right) applies a Leaky Rectified
Linear Unit (LReLU) non-linearity followed by global average
pooling through accumulation and subsequent normalization
through division.

The output feature computation is defined in (1):

fl =

∑⌈ B
Sl

⌉
i=0 LReLU

[∑Kl

j=0 xSl∗i−j · wfj
]

D
(1)

where fl is the output feature from the lth layer. Each layer
receives a bin of B samples, which is convolved with kernel
weights wfj of width Kl and stride Sl. The LReLU output is
accumulated and quasi-normalized using a division factor D.
The traversal path computation, defined in (2):

XL+1 =

Kl∑
j=0

xSl∗i−j · wtj (2)
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Fig. 1: Feature extraction and decoding pipeline used with FENet models. ASIC targets the feature extraction step of the
decoding pipeline.

produces the intermediate activation XL+1 for the next layer,
using traversal weights wtj . Kernel sizes are matched across
both computation paths to reduce complexity.

III. ALGORITHM-HARDWARE CO-DESIGN

Reducing model complexity while maintaining feature qual-
ity is essential for efficient hardware implementation. FENet
performance remains robust under variations in kernel size
(Kl) and stride (Sl) parameters [11]. A parameter sweep was
performed across all FENet hyperparameters using the wandb
[30] training framework with Bayesian optimization.

Models were chosen based on R2 performance and com-
plexity. Each model was trained on a 10-day dataset with
7-fold cross-validation. The selected models (Table I) span
a range of models suited to different power-performance
requirements. Three optimized models were evaluated:

FENet-240 -highest performance; highest complexity.
FENet-15 -highest efficiency with acceptable performance.
FENet-66 -balance between performance and complexity.
These three models demonstrate the architectural flexibility

to support a range of power-accuracy trade-offs depending on
system requirements. FENet-66 was chosen for its power effi-
ciency while maintaining the majority of the feature extraction
capabilities of larger models.

The number of multiply-accumulate operations (MACs)
is a rough measure of the complexity necessary for each
feature extraction. The total number of MACs, Non-Padding
MACs (NP-MACs), and pooling operations (which include the
LReLU activation, rounding, quantization, and accumulation
into the pooling register) for a given model is listed in Table
I and assumes a bin size of 150 samples, corresponding to
a 30 ms window at 5 kSps. Convolution padding mitigates
aliasing from fixed-length binning but adds extra multiply
operations and latency. For FENet-66 operating on 150-sample
bins, padding accounts for 12.6% of total MACs. These
computations were eliminated by trimming the convolution at
the edges of data bins.

FENet software was previously tested at 30 kSps [11],
consistent with other techniques in the literature [16], [17],
[31], [32]. This rate was originally used because it is the maxi-
mum sampling rate provided by the FDA-approved Blackrock
Cerebus system. To test robustness to lower sampling rates,
data sampled at 30 kSps were reduced by integer factors while
adjusting bin sizes to maintain an output feature rate of 33

Fig. 2: (Left) Multi-layer data flow for FENet on a single
neural channel. (Right) Internal computation within each layer.

Features-Per-Second (FPS). Downsampling was performed by
first filtering the data by 1

2 the downsampled rate with a low
pass anti-aliasing filter followed by decimation.

In Section VI-B, we explore the effect of sampling rate on
decoding performance. Even with aggressive down-sampling,
decoding performance remains stable. Based on this, 5 kSps
was selected for hardware comparison, reducing data volume
by 6× with minimal impact on feature quality.

IV. HARDWARE ARCHITECTURE

The proposed 1D-CNN stream-oriented processor is de-
signed to extract features from high-bandwidth neural data
streams in a scalable and configurable manner. The system is
a broadband feature extractor which outputs 2-8 values per
channel that represent the aggregate presence of learned fea-
ture kernels in the neural data. Like other BFE features, these
features are able to represent the presence of low amplitude
neural activity from highly noisy signals that would otherwise
be lost to SD and SS feature extractors. The architecture
is optimized for stream processing with minimal activation
caching since it schedules operations based on the availability
of input data and completes each convolution in a piecewise
manner between slowly arriving neural samples. This allows
scaling from very few, to hundreds of neural channels to
be processed in real-time with minimal control and memory
overhead.

The ASIC hardware components can be classified into two
main groups: the CNN solver hardware under test, and the
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TABLE I: Selected hardware-optimized models.

Model [11] FENet-240 FENet-66 FENet-15
K0 40 40 36 10
S0 2 2 2 3

LReLU Leak Slope -1 -1 -1 −1/2
K1 40 40 14 5
S1 2 2 2 3

LReLU Leak Slope -1 -1 -1 −1/64
K2 40 40 16
S2 2 2 2 -

LReLU Leak Slope -1 -1 -1
K3 40 40
S3 2 2 - -

LReLU Leak Slope -1 -1
K4 40 40
S4 2 2 - -

LReLU Leak Slope -1 -1
K5 40 40
S5 2 2 - -

LReLU Leak Slope -1 -1
K6 40
S6 2 - - -

LReLU Leak Slope -1
Total Weights 560 480 132 30
Total MACs 30240 27120 9136 1250
NP-MACs 19560 17960 7520 1176

Pooling OPs 417 379 210 91
SRAM Writes 528 489 327 222

PE Clock Multiplier - 21 21 26
Cycle Count/Feature - 11908 5449 1636

validation system. The former consists of the channel block
macro, algorithm control finite state machine (FSM), processor
control FSM, and configuration registers. The latter is the
custom serial data interface, which exchanges data with the
external validation system.

The system diagram is shown in Fig. 3, which illustrates the
data flow of the system and channel architectures. Processors
that share a common SRAM memory are grouped into channel
blocks, and channel blocks that share a buffer chain and activa-
tion bus are further organized into streets. The data interface
serves as the primary access point for configuring registers,
loading weight memory, and streaming neural activations into
the system. Multiple clock and voltage domains, as well as
channel and layer level power gating are used to minimize
power.

We enable a high degree of parallelism without excessive
area overhead by utilizing word-serial processing between
each system clock cycle. The use of separate clock networks
allows the high speed processing element clock (MAC clk in
Fig. 4) to be constrained to a lower VDD domain, reducing
switching power. The PE control FSM synchronizes control
signals to the rising edge of each system cycle, and does not
begin a new control sequence until the next rising edge of the
system clock, preventing control misalignment. The frequency
ratio is adjusted for model parameters that require more MAC
cycles.

The system utilizes a third asynchronous interface clock
for IO to emulate data from independently timed sources.
Neural data is distributed to each channel via the data interface
by a shared bus. Although the data interface is utilized to
compensate for the limited off-chip IO of the validation
ASIC, the interface data bus is intended to be replaced by

Fig. 3: (Top) Single channel Architecture. Two arithmetic units
simultaneously process the traversal and feature generating
data paths. Intermediate values are passed to pooling accu-
mulation register blocks, selected by a multiplexer. (Bottom)
System architecture with channels arranged in blocks, and
blocks sequenced into streets. Various busses are color coded:
Interface data bus and channel enable (red), algorithm and mac
control (black), data available (blue), and feature out (green).

parallel data sources within a full chip BMI decoding system.
For this reason, each channel is equipped with a 4 element
Asynchronous Queue (AQ in Fig. 3), to allow for neural data
caching while the SRAM is in use for computation.

The presence of data in all enabled channels signals the
central FSM to trigger the load operation of the first layer.
This operation transfers neural data from the AQ into the
first layer’s SRAM space. Once a stride of data is loaded
within a layer’s memory space, higher-order dependencies are
satisfied, and the processing element becomes available, data
within a layer’s SRAM space is read back and presented to
the processing element for computation.

At the completion of feature generation, the pooling register
value is reduced to 9 bits, rounded, and added to the feature
shifting register (Feature SR). At this point, the processor
begins a new computation, while the feature is shifted out
of the processing element. Each channel is equipped with
an always-on skip multiplexer that allows its position in the
feature scan chain to be skipped in the event the channel is
powered down. The features are shifted out, and returned to
the data interface for exporting off the chip.

The proposed architecture is designed to efficiently map a
wide range of FENet models. Kernel size, stride, LReLU leak
slope, and pooling parameters are all configurable through the
CNN control FSM sequence. Up to 8 features can be generated
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from 7 feature-generating layers and one terminal traversal
layer. Kernel size is limited only by the depth of the weight
SRAM (256 elements) such that the sum total of traversal
kernel weights must be less than 256 (the total number of
kernel weights is 2× traversal weights). Bin sizes are defined
by multiplying the first layer stride with a programmable
cycle counter, allowing maximum bin lengths up to 2048
strides. These options provide a wide hyperparameter space
for optimizing power, performance, and decoding stability.

To support system scalability, the processing hardware and
activation/feature caching are integrated into a modular chan-
nel block macro. Each channel block contains 8 processing
elements (PEs), each with their own asynchronous data queue,
gated control-signal buffers, and power-domain level shifters.
All PEs share a customized TSMC 72-bit × 256-element low-
leakage single-port SRAM macro. To accommodate the higher
voltage headroom requirements of the proprietary SRAM,
we separate the memory and processing element VDD do-
mains. Single-port SRAM macros are used for compactness
and power efficiency, with write access multiplexed between
asynchronous activation queues and processing elements.

A. Channel Architecture

Each channel is designed to minimize hardware complexity
while maintaining full configurability of the FENet algorithm
and enabling fine-grained power optimization. Control signals
and weight data are broadcast globally by a centralized FSM,
orchestrating synchronized computation across all processing
elements. We introduce a multi-modal data path design to
enable the simultaneous computation of output features and
intermediate activations unique to the FENet algorithmic
architecture. Each channel contains two fused data paths
operating on the same input activations; the feature path,
which writes partial sums to one of the first seven pooling
blocks, and the traversal path, which handles intermediate
feature computation between layers. For lower-order layers,
traversal partial sums are written back to SRAM to serve as
inputs for higher-order layers. For the highest-order layer, the
traversal output is instead accumulated into the final pooling
block, producing the last feature output.

A block diagram of the MAC architecture is shown in
Fig. 4. To minimize the hardware footprint, the 8-bit adder
is reused across multiplication, leaky ReLU application,
rounding, overflow clamping, and pooling accumulation.
Pooling division and leaky ReLU are efficiently implemented
through bit-shift operations. This design choice reduces the
area cost and enables scalable integration of hundreds of
channels, at the cost of switching power.

Analysis of bit resolution on the broadband neural data
determined that 9-bit sign-magnitude fixed-point format
with a 6-bit fractional component for activations and
weights minimizes hardware cost while maximizing decoder
performance by preserving sufficient dynamic range for
neural feature extraction. The sign-magnitude data format
reduces SRAM switching activity [33], [34] compared to
two’s complement during write operations. We determined
that the pooling register accumulator required a size of 22-bits

Fig. 4: Architecture of single data path processor.

to avoid loss of decoder accuracy. This register is rounded
at the end of computation to reduce each feature to 9-bits
to minimize output bandwidth while maintaining decoder
performance. During convolution, intermediate results are
accumulated in a 16-bit two’s complement register to simplify
arithmetic operations, then converted back to sign-magnitude
format for SRAM storage. To ensure robustness during long
accumulation sequences, overflow clamping is implemented.

Following the convolution, the accumulation register is
rounded and reduced to 9 bits and accumulated in one of 7
pooling registers. The traversal path rounds and latches its
value to the intermediate feature register. This value is written
in the SRAM space of a higher-order layer. If the final layer
is active, the traversal path instead accumulates its value in
its own pooling register.

B. Control FSMs

For streaming neural interfaces, caching full neural data
bins is impractical due to memory costs, necessitating
real-time data processing. We implemented a streaming-
oriented CNN control FSM to generate SRAM addresses
and sequence layer operations so that higher-order layers
only compute once sufficient data (one stride) is available
and processing element resources are free. The algorithm
also manages efficient zero-padding by dynamically adjusting
kernel width: growing at startup, maintaining a constant size
during steady-state processing, and shrinking at completion
as the active window exits the kernel. Fig. 5 illustrates this
control across three layers during startup, steady-state, and
completion phases. It also depicts the interaction between
states of each layer. These interactions include the triggering
of the loading state of higher-order layers by the completion
of a lower-order layer’s convolution and higher-order layer’s
priority over MAC resources to free up their memory spaces
for new intermediate activations from lower-order layers.
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The stall data signal in Fig. 5 indicates when the AQ
is full and to apply back-pressure on the data sources.
During the conclusional padding state (Fig. 5 C), memory
resources become busy, preventing the loading of new data.
By optimizing the system frequency to consume data at the
optimal rate for a given model, back pressure is minimized
or eliminated altogether.

The CNN sequence is directed by a group of centralized
FSMs (one for each layer), which ensure that the states of
each layer are compatible with each other to prevent resource
contention. Each layer will wait in the IDLE state while
higher order layers complete their computations, which frees
up memory within the higher order layer’s partition. The
LOAD DATA state writes activations to a layer’s partition,
and is triggered either by partition space becoming available
(layer 0), or a lower order layer finishing a convolution (layers
1-6). On the completion of loading a full stride of activations
into a layer’s partition, the layer enters the CONVOLVE
state, on the condition that memory space is available in the
higher-order layer and PE resources are available. If neither
one of those two criteria are met, this layer is stalled by
waiting in the WAIT MULT state. Following the convolution,
the UPDATE state adjusts the convolution pointers for the
next convolution. In the WAIT FOR RESULT state, LReLU
is applied and partial sums are either added to the pooling
register (when generating an output feature), or to the higher
order layer’s SRAM partition (traversal path for layers lower
than the last layer). Finally, the WAIT FOR FORMAT state
normalizes and rounds the feature in the pooling register to
9 bits. The FINISH state waits for higher order layers to
finish their padding computations before commencing a new
sequence.

During each system clock cycle, the processing element
modifies its objective depending on the current state of
the CNN control hardware as shown in Fig. 6. During the
CONVOLVE CNN state, the blue path is taken, where the PE
word-serially multiplies and accumulates activations in the
accumulation register within the ADD MAC state. During the
Update CNN state, the partial sum is added to the pooling
register of the current active layer. The pooling accumulation
and LReLU occur simultaneously by first rectifying the
accumulation register in the LReLU MAC state, then shifting
and adding this value to the pooling register. If the LReLU
parameter is greater than 0, the pooling register of channels
with negative accumulation values are stalled during shifting,
such that the accumulator value is effectively divided by
the parameter’s set number of bits within the LATCH POOL
STALL and FINISH POOL states. During the Wait For
Format CNN state, the pooling register is normalized by bit
shifting (DIVIDE POOL, SHIFT POOL), rounded (START
ROUND & QUANTIZE, FINISH ROUND & QUANTIZE),
and shifted back into place (RESTORE POOL). During the
WAIT FOR FORMAT CNN state, a 9 bit partition of the
pooling register is written to the feature shift register for
export.

Fig. 5: Control behavior for 3 layers of the CNN depicting
the 3 padding state behaviors: (a) Startup Padding (b) Steady
State Convolution (c) Conclusional Padding.

Fig. 6: FSM control of the PE. Each colored path corresponds
to a different control path depending on the state of the CNN
control FSM.

V. SYSTEM EVALUATION

A. Validation Setup and Metrics
The hardware setup for offline validation is shown in Fig. 7

and consists of the fabricated FENet ASIC, a Xilinx ZCU106
FPGA validation server, and laboratory power measurement
equipment. Pre-recorded or real-time neural data are streamed
to the FPGA, which applies simple array-wide CAR and
transmits the data to the ASIC for feature extraction.

An emulated replica of the ASIC logic was implemented
on the FPGA to verify ASIC outputs in real time. The
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ASIC was powered with separate voltage domains for the
validation interface, processing elements, and memory. Power
measurements were collected after a 30-second stabilization
period to ensure steady-state conditions. IO and validation
system power were excluded from all reported values.

It is important to note that unlike SD and SS methods, BFE
does not detect and classify spikes, but captures aggregate
neural activity within broadband data, which makes direct
comparison with these methods inapplicable. Therefore, to
evaluate performance, we followed the cross-validated linear
decoding methodology established in [11]. Features were
generated from neural recordings and used to train and test
a linear decoder. Decoder performance is measured by the
coefficient of determination (R2), described in (3):

R2
vx|vy =

( ∑
(yi − ȳ)(ŷi − ¯̂y)√∑

(yi − ȳ)2
∑

(ŷi − ¯̂y)2

)2

(3)

which quantifies the correlation between the decoded and
intended target velocities. Given the 2 degrees of freedom
in center-out tasks (X and Y velocity), R2 values for each
dimension are combined into a single score via the root mean
square, as shown in (4).

R2 =
1√
2

√
(R2

vx)
2 + (R2

vy)
2 (4)

Offline open-loop decoding analysis validates the ASIC fea-
ture performance across a large set of prerecorded data. Data
from 48 center-out sessions [11] were used for benchmarking.
Raw neural signals were first preprocessed by removing the
first 2 PCA components of each array (for PCA-based CAR),
followed by an 8th-order elliptical high-pass filter (80 Hz
cutoff, 0.01 dB passband ripple, 40 dB stopband attenuation)
and batch normalization.

Hardware-generated features were reduced from N to one
feature per channel using a PLSR model. To mitigate overfit-
ting, a single averaged PLSR model was trained offline on
one session, then applied across all 48 sessions. A linear
least-mean-squares regression decoder was trained with 10-
fold cross-validation for each session to compensate for non-
stationary effects of the implant due to micro-movements.

Feature performance was compared against established fea-
ture extraction methods in the literature including WT BFE,
SBP [25], [35], TC, and MUA. WT features were generated by
loading our ASIC with the hardware-friendly Haar WT which
has 3 layers with kernel size 2, totaling 4 output features.
We use the same number of layers as FENet-66 to keep
the decoding dimensions the same. We also used the same
sampling rate as the target rate of FENet-66 (5 kSps) such
that only the effects of using trained kernels are compared.
SBP features were generated by first filtering the neural data
at 1 kHz, and downsampling to 2 kSps, then averaging the
magnitude of neural recordings within the 30 mS time bin.
TC features were generated by counting crossings over an
adaptive threshold set at −3.5× the root mean square of the
neural signal in 30 mS bins. MUA features were generated
by SS the threshold crossing events utilizing the sorting and
clustering algorithms used in [36].

Fig. 7: Offline validation setup (left). The FENet ASIC is
connected to the validation server over the built in mezzanine
connector. The validation server is attached to an Ethernet
local area network which relays neural recordings from either
an experimental test computer, or real-time neural data from
a Cerebus neural signal processor. The Ethernet network
also relays features generated from the ASIC to an external
computer for decoding. The dye graph (right) of the FENet
ASIC.

.

B. Online Validation
We validated the FENet ASIC’s performance with online

kinematic decoding trials. Our participant (JJ) was implanted
with two 96-channel MEA Utah devices in their motor and
peripheral parietal cortices six years before this online evalu-
ation. All procedures were approved by Caltech’s Institutional
Review Board (IR20-0983).

We validated closed-loop decoding using hardware-
generated features during a center-out cursor control task. An
initial decoder was trained in an open-loop trial where the
participant (JJ) imagined tracking an on-screen cursor with
his thumb without feedback. ASIC-extracted features from
this trial were used to train a linear decoder. In subsequent
closed-loop trials, the cursor position was updated in real
time based on decoded kinematics. The decoder was fine-
tuned through successive trials, gradually reducing assistance,
ultimately achieving fully autonomous control.

The online setup (Fig. 8) streamed neural data at 30 kSps
using a Cerebus neural signal processor, which digitized and
bandpass filtered the signals. Data were sent to the FPGA-
based validation server where CAR was applied before being
forwarded to the ASIC for feature extraction. Features were
transmitted back to the trial computer for real-time decoding
and cursor control.

The decoding pipeline was implemented in Matlab on the
experiment computer. Features were dimensionally reduced
using PLSR, then decoded to kinematics with a linear decoder,
exponentially smoothed [37], and displayed as cursor position
to the patient.

Post-hoc SS analysis was performed on recorded neural
data to assess electrode quality and evaluate the viability of
SS feature extraction under the implant’s noise conditions,
following the method of [36] using threshold detection and
k-means clustering on 2-4 PCA components of the spike
waveform.
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Fig. 8: Data flow for neural data retrieved during an online
session.

VI. RESULTS

A. Hardware Analysis

Conventional CNN processing systems must cache the en-
tire bin of neural data before computing convolutions. They
must also write back their intermediate results to memory
for the next layer. This architecture employs a scheme that
processes data as it become available in large batches. This
minimized the memory requirements on the system to only the
width of the kernels utilized in the CNN model. For instance,
FENet-66 only requires 66 elements of memory per channel,
whereas a conventional system would need enough memory
for a full bin of raw neural data and intermediate activations
(total of 327 elements for FENet-66 operating on sample bins
of size 150). Our architecture reduces the algorithmic memory
requirements by 5× for FENet-66 operating on 5 kSps data
and 26× operating on 30 kSps.

The FENet ASIC, shown in the die graph in Fig. 7, was
implemented in 65 nm LP CMOS technology. The ASIC
supports up to 192 neural streaming channels and occupies a
total core area of 2.62 mm2. Each channel occupies 12801 µm
of area with the processing element consuming 1447 standard
cells (7156 µm2). This chip demonstrates chaining of up to
4 channel blocks in series with 6 parallel chains, showing
the channel block MARCO’s scaling potential since additional
channels only require linear increase in area and power without
adjusting clock frequency.

Two core voltage levels are used to minimize processing
power (MAC VDD) while maintaining the voltage headroom
necessary for low leakage SRAM (MEM VDD). The break-
down of power for the components of each channel is shown

in Fig. 9 B and is estimated by post-place and route simulation
at 1 V and 1.2 V and was observed to be relatively consistent
across voltages within each respective domain. The total power
ratio was measured directly with a MEM and MAC voltage
of 0.9 V and 0.63 V, respectively. The voltage sensitivity of
the ASIC is depicted in Fig. 9 A. The measured sensitivity is
consistent for system clock frequencies less than 700 kHz,
which is fast enough to operate FENet-66 with a padding
latency of only 1.62 ms. No errors were observed for MAC
VDDs greater than 0.65V within this operating range. The
mean squared error (MSE) between the ASIC and FPGA-
reference generated features are plotted alongside the cross-
validated decoder R2 using data from the first session of the
offline data also used in Fig. 10. The decoder features show
robustness to total MSE values less than 100 such that the
R2 performance maintains 98.8% of its value. As such, the
minimum voltage values for the MAC and MEM VDDs are
chosen to be 0.63 V and 0.90 V, respectively. The decoder
was trained using the FPGA features and validated with those
generated by the undervolted ASIC. For this performance,
the feature extraction ASIC consumed 346.2 µW to generate
features for all 192 channels at an efficiency of 335 GOPS/W
where a MAC operation is two OPS with a padding latency
of 6 mS. The processing element consumes 179 µW (52%)
of the total power. These power results exclude the power
contributions of the validation interface and IO.

The power consumed in various device configurations is
shown in Table II. Power was not measured directly during
the online test, but the power draw for the same number
of channels and sampling rate was measured to be 586 uW
(3.05 µW per channel). In a highly optimized case, where
only top-64 most informative channels are used streaming
neural data at a 5 kSps sampling rate, the feature extraction
power was reduced to 140 µW (2.2 µW per channel), while
maintaining an average R2 of 0.354 over all 48 sessions.
Alternatively, all 192 channels can be operated at 2 kSps with
178 uW (0.93 µW per channel), with an average R2 of 0.41.
Reducing the device to 1 channel shows a minimal operating
power of 25.2 µW , demonstrating the operation floor of this
device.

The chip was constructed with a custom serial interface
for validation that has a maximum bandwidth of 95 Mb/s
operating at a clock frequency of 42 MHz. The power con-
sumption of this data interface was measured at 0.9 V to be
6.14 µW/MHz. The chip was also fitted with a JTAG interface
to support debugging.

The FENet ASIC running the FENet-66 model substantially
cuts the data rate necessary for transmission by 37.5× when
operating on 5 kSps neural streams and 225× when operating
on 30 kSps neural streams. Features are successfully generated
at a rate of 33 FPS, which is sufficient for rapid, fine motor
control.

Intrinsic processing latency in the ASIC is dominated by
the final padding phase, when no new input data is available
for the current bin. Data that is not streamed during padding
must either be externally cached or discarded, however, as
discussed in Section VII, this issue would be mitigated through
modification of the control FSM, to allow caching into the
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TABLE II: Power of various configurations using FENet-66.
Channel S. Rate Freq. (MHz) Voltage Total Ch.
Count (kSps) System//MAC MEM//MAC (µW) (µW)
192 2 0.095//2.0 0.90//0.63 178 0.93
64 5 0.188//3.984 0.90//0.63 140.0 2.2

192 5 0.188//3.984 0.90//0.63 346.2 1.8
192 10 0.345//7.25 0.93//0.65 586.4 3.05
192 30 0.980//20.58 0.98//0.67 1584.0 8.25

Gray highlighting denotes sampling rate used in online testing.

SRAM of the first layer during the conclusional padding
phase. Because new data cannot be streamed during padding,
optimizing the number of MAC operations during this phase
is critical. The number of clock cycles required to process
the padding phase for each model is summarized in Table III
along with the padding latency incurred while operating at the
minimum frequency to achieve a feature rate of 33 FPS. Since
all other computations are completed in-between the arrival of
data-samples, the number of clock cycles of latency is constant
and determined by the number of padding cycles for a given
FENet model, regardless of the number of channels.

FENet-66 requires 6.2× fewer padding cycles than FENet-
240, enabling feature generation at 33 FPS while operating
the system clock at only 188 kHz with 5 kSps neural data and
a padding latency of 6 ms. In contrast, FENet-240 requires a
2.9× higher system clock to meet the same feature rate due to
its larger model complexity. These improvements in padding
efficiency directly translate to lower operating frequencies and
reduced dynamic power.

We explore the power requirements of different models at
various system clock frequencies in Fig. 9 C. The MAC clock
was maintained at a multiple of the system, consistent with
the PE clock multiplier listed in Table I. The data interface
frequency was maintained at 9 − 14× the system frequency.
We further limited the neural data packet rate to 5 kSps,
regardless of the maximum throughput of the ASIC, so that
our system generates 33 FPS over the entire range of operating
frequencies to match realistic data rates. MAC VDD was
scaled so that R2 performance is maintained above 98%. Since
the interface speed was limited, MEM VDD was maintained
at 0.9V across all frequencies. We further discuss the effect
of model complexity on the minimum operating frequency of
the model in Appendix I.

We also measured the performance of the system using
each model over the same system frequency range, without
constraining the neural data rate. In this case, we optimized
the interface clock frequency to the minimum frequency at
which the processor can remain computationally limited, max-
imizing efficiency. FENet-15, FENet-66, and FENet-240 were
measured to each require a minimum energy of 24 nJ , 42 nJ ,
and 82 nJ , respectively for each feature set per channel.
Noting the values in Table I, we calculate the max efficiency
to be 104 GOPS/W , 424 GOPS/W , and 661 GOPS/W ,
respectively (1 MAC = 2 OPs). This range in efficiencies
correlates to the ratio of MAC operations, to the total number
of cycles each feature set requires.

Each processing element, which has two independent data
paths, consumes 7165 µm2 of area per channel (1447 gates),

and the 4 element asynchronous queue and level shifters
further consumes 1144 µm2 (121 gates), which is 56% and
9% the total area per channel, respectively. The 256-element
SRAM consumes 3790 µm2 which is 30% the channel area,
the remainder being used for buffering and signal gating.
The control logic and weight SRAM occupies an area of
31626 µm2 (2423 gates) and 100082 µm2, respectively.

With neural decoding systems rapidly incorporating hun-
dreds to thousands of channels, scalability of power, area, and
latency are of utmost importance. Our architecture completes
all possible computations at the same rate as data arrival. Con-
clusional padding cycles, defined only by the model, delineates
the latency and therefore remains constant when scaling the
system. The scaling behavior of power and efficiency of our
system is shown in Fig. 9 D. The power of the system scales
with the equation: (5)

Power(µW ) = α+ κ ∗NCh. + β ∗NBl. + σ ∗NSt. (5)

where α is the baseline power of the system and κ, β, and
σ are the scaling factors for the number of channels, blocks,
and streets enabled, respectively. We measured the parameters
running FENet-66 at 0.188 MHz with a MEM and MAC VDD
of 0.9 and 0.63, respectively. The values for α, κ, β, and σ are
measured to be 15.102, 1.245, 0.985, and 7.833, respectively.

With this model, we can extrapolate the power scaling of the
system. For a projected feature extraction system with 1024
channels, we would simply increase the number of streets (32
channels and 4 blocks per street) from 6 to 32. This predicts
our system power to be around 1.67 mW .

All controls for the system are centralized and broadcast to
each channel, with each channel block designed to be self-
contained. Adding additional streets requires only buffering
the control signals from the central FSM. As a result, the
area of our system scales linearly, with a projected 1024
channel system requiring an additional 5.59 mm2. Further-
more, each channel has an individual neural data port. With
our validation system limited by IO, our channel count is
ultimately constrained by the design specifications of the data
interface. Integrating this FENet MACRO into an SOC with
independent data sources would allow each channel to accept
neural streams in parallel.

B. Decoding Performance

The cross-validated R2 decoding performance of the pro-
posed FENet models was evaluated across 48 neural recording
sessions and compared against conventional feature extraction
methods. The performance over four years post-implant is
shown in Fig. 10 and the average performance across sessions
for various sampling rates is shown in Fig. 11.

We observed high stability in performance for FENet 66
and 240 versus sampling rate down to 5 kSps. This is a result
of the fact that a typical neural spike sampled at 30 kSps has
a waveform that occupies approximately 40 samples, which
is similar to the kernel width of the first layer of FENet 66
and 240. Their ability to accentuate real neural spikes from
noise is related to the kernel’s similarity to the average neural
spiking shape. Furthermore, models with more layers are able
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(A) (B) (C) (D)

Fig. 9: Operating conditions (unless otherwise specified): Model: FENet-66; Sampling Rate: 5 kSps; Clock Frequency:
System 0.188 MHz, MAC 3.948 MHz, Interface 6 MHz; VDD: MEM 0.9 V, MAC 0.63 V
(A) VDD scaling effect on feature quality. Solid lines denote R2, while dashed lines denote MSE of the features. First session
of offline data is used for analysis on effect. (B) Power breakdown of a single channel separated by VDD domain. (C) System
power and latency at different operating frequencies. MAC voltage is scaled so R2 maintains 98.8% performance. Bar graph
denotes the power with top and bottom bars denoting MAC an MEM domains, respectively. (D) Power and efficiency scaling
relation to the number of channels enabled.

TABLE III: Latency and minimum system clock frequencies
required to achieve 33 FPS feature generation.

Model FENet-240 FENet-66 FENet-15
Padding Clock Cycles 7038 1135 111
30 kSps System Clock [MHz] 1.60 0.980 0.310

Latency (ms) 4.4 1.2 0.4
10 kSps System Clock [MHz] 0.664 0.345 0.105

Latency (ms) 10.6 3.3 1.1
5 kSps System Clock [MHz] 0.556 0.188 0.054

Latency (ms) 12.6 6.0 2.1

to maintain their feature extraction ability at lower sampling
frequencies because the power of neural spiking shapes is
redistributed to higher-order layers.

FENet 15, has first layer kernel size of 10, which at 30 kSps
is unable to fit an entire waveform into a single convolution;
this explains why it performs worse at 30, kSps, and better
when the size of a typical neural spike after downsampling is
similar in length to the first kernel. However, since it has the
least number of layers of all the models, less power is able to
be redistributed to higher order layers when the sampling rate
is reduced further from its optimal value.

We compare the robustness of models FENet-240, FENet-
66, and FENet-15 to lower sampling rates in Fig. 11. For
comparison, the session-averaged R2 performance of WT,
SBP, MUA, and TC features are shown as stars for reference
as shown in Fig. 11.

At 5 kSps, FENet-66 achieves an average R2 of 0.46,
maintaining 98.7% of the cross-validated offline performance
of FENet-240 while requiring 2.6× fewer MAC operations.
FENet-66 also outperforms WT (10%), SBP (18%), TC (38%)
and MUA (41%), achieving a total average R2 of 0.382, 0.282,
and 0.275, respectively. To fairly compare SBP to FENet, we
also measured the performance of FENet-66 on 2 kSps data
and found the average R2 to be 0.411, which is still 8% better
than SBP. This performance is attained while only consuming
346 µW over all 192 channels (1.8µW per channel). FENet-
15, although lower in decoding performance, still outperforms
all other hardware implemented methods at 5 kSps, while
also minimizing power consumption to 219 µW (1.14 µW

per channel). The 4 layer Haar WT does remarkably well for
its simplicity, achieving 90% the performance of our trained
kernels, while requiring 177 µW (0.92 µW per channel).

The proposed architecture differs from conventional CNN
accelerators by processing time-series neural data as it arrives,
without requiring large activation caches. As a result, 3 distinct
timing metrics impact system performance: the time to process
incoming data streams, the latency incurred during the padding
phases of convolution, and the time required for the validation
system to deliver input data to the asynchronous queues.

In this work, those timing metrics combine to affect the
feature rate defined as the speed at which the system can
generate complete feature sets from streamed input data at
a given set of clock frequencies. Feature rate depends on
both data availability and the computational latency of the
processor.

Chronic performance stability is illustrated in Fig. 10.
Notably, TC performance degrades sharply by year three after
implant (session 35), coinciding with the loss of separable
single-unit activity (SUA) on the 2 arrays. FENet-66 consis-
tently maintains a higher average decoding performance after
the loss of SUA in the fourth year (sessions 35-48) of 0.404
compared to WT (0.370), SBP (0.315), MUA (0.134), and TC
(0.083). The Normalized Performance Retention (NPR) show
in (6):

NPR =
R2

ith year

R2
first year

(6)

provides a measure of the stability in performance for each
feature extraction method. Comparing the first-year average
R2 (FENet-66: 0.605, WT:0.578, SBP:0.552, MUA: 0.552,
TC: 0.509) to the fourth, the NPR for FNet-66 is 0.66,
whereas the other methods have a NPR of 0.64, 0.57, 0.48,
and 0.16, respectively. This highlights the benefit of the
FENet hardware in maintaining decoder stability over long
implant lifetimes. The power consumption of our chip is
comparable to prior state-of-the-art neural data transformers
implemented in hardware as shown in Table IV while
maintaining long-term stability.
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The validation system delivers input data serially at a
limited effective bandwidth of approximately 2.25 Mb/MHz,
which can constrain the maximum achievable feature rate
for models with high computational loads and high channel
counts. However, this parasitic limitation is a function of the
validation system interface, and not the processor architecture.

For each relevant sampling rate, the validation system
interface clock frequency was chosen such that the interface
bandwidth is sufficient to support the required bandwidth for
each sampling rate. It is notable that the minimum operating
frequency is slightly inflated due to the constraint imposed
by the validation system, since the processor would not have
to wait for the excess loading time imposed by the validation
system in neural systems with multiple data sources.

C. Online Closed-Loop Decoding
Offline validation allows analysis of a broad set of system

parameters, whereas real-time closed-loop analysis ensures
generalization of offline results within a real-world setting that
has a number of confounding variables such as latency be-
tween feature generation and kinematic prediction. We tested
the feature extraction system by decoding kinematic intent
using ASIC-generated features and returning visual feedback
to the patient by updating the position of a cursor on screen
within a center-out task.

The linear decoder was first trained using an open-loop
trial and had a combined x-y R2 performance of 0.71. The
neural data for this open-loop trial was later processed using
the software-FENet implementation of [11], which yielded
a cross-validated R2 of 0.70. This shows that the hardware
implementation maintains open-loop decoding performance
similar to software-bound implementations even six years
after implant. Spike analysis of this neural data yielded no
detectable single neurons and a total of 119 non-separable
spike channels with a mean and median SNR of 1.12 and
0.94, respectively. There were only two channels with an SNR
greater than 3 (maximum 5.25). The ability of our hardware
to generate usable features for kinematic decoding from such
noisy signals exemplifies the importance of stable decoding
hardware for implantable devices. Utilizing the spike activity
filtered from noise, we performed open-loop decoding which
yielded a cross-validated MUA R2 performance of 0.43.

We show the closed loop kinematic decoding trial utilizing
FENet-66 processing 10 kSps neural data streams in Fig. 12.
The FENet ASIC generated 33 FPS for all 192 channels. The
mean time-to-target is measured at 1.00 seconds, with an R2

of 0.66. All 192 channels were used in decoding without gain
normalization on the validation server.

D. Comparison with Other Neural BMI ASICs
There is currently a surge in the development of proces-

sors targeting low-power edge applications [18], [40]–[42].
Our feature extraction chip is a domain-specific architecture
optimized to implement FENet in the neural decoding en-
vironment. To the best of our knowledge, this is the first
system which integrates multi-level global average pooling
accumulators and dual mode convolutional data paths for each

Fig. 10: Cross-validated decoder R2 performance over
four years post-implantation. Locally Estimated Scatterplot
Smoothing (LOESS) fits and confidence intervals are shown
for each feature type.

Fig. 11: Cross-validated decoder R2 performance of FENet
models versus sampling rate. The average R2 performance
of other features from Fig. 10 is shown as starred points for
reference.

channel. Our dual mode processing elements generate interme-
diate activations for higher order layers, while simultaneously
computing output features. With an 8 layer output stationary
processing element, we entirely avoid re-fetching intermediate
activations to generate the output features. Through intensive
hardware reuse, channel-level-power scaling granularity, and
unique data streaming structure, we optimized this architecture
for the neural decoding environment, where other conventional
CNN processors can be too bulky or memory intensive for the
FENet workload. We optimized the data flow for FENet feature
generation to achieve high kinematic decoding accuracy and
stability with long implant lifetimes. Table IV compares the
proposed FENet architecture with existing hardware imple-
mentations of neural feature extractors.
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Fig. 12: (A) Research participant controlling a cursor utilizing ASIC for kinematic decoding in a center out task. (B) Online
closed-loop decoding session using FENet ASIC in loop. Boxes represent the target where the height is the size of the target
in its represented dimension, and the width represents the time it took to reach the target; color corresponds to the x and y
dimension of the cursor control. (C) Time-to-target plot for all 63 targets with a mean time-to-target of 1.00 (seconds).

TABLE IV: Comparison with other state-of-the-art neural feature extraction ICs.

Metric This Work TBCAS22 [25] BCAS19 [19] TBCAS24 [38] TBCAS22 [18] TBCAS23 [15] JNE25 [16]
Process 65 180 32 180 22 65 65

Implementation Digital ASIC Digital ASIC Digital Sim. Digital Sim. Digital ASIC Digital Sim. Digital Sim.
Number of Channels 192 93 1 96 16 128 8
Channel Area µm2 12801 28443α 2570000 20000 14000 6760 6450
Scaled Areaϕ µm2 12801 2370α 8481000 1667 92394 6760 6450
Channel Power µW 1.8 3.68 2.78 0.076 2.79 0.038 0.532

Resolution (bits) 9 16 6 10 8 1 1
Sampling rate (kHz) 5-30 2 24 24 20 7 24

Feature Type FENet SBP MUA LFP MUA TC TC
Algorithmγ CNN MAV SS OSort AE SS SD NEO SD TEO & SWT

Avg. Feature R2 0.446 0.382 0.275 - 0.275 0.282 0.282
Feature NPR 0.66 0.57 0.48 - 0.48 0.16 0.16

Feature Rate FPS 33 20 Async. - Async. Async. Async.
Bin Size (samples) 150β 100 64 - 64 16 80
Supply Voltage (V) 0.63//0.9β 0.625 1.16 1.8 0.63 1.8 1.2

Clock (MHz) 0.188δ 0.068η 0.024 0.004 0.400 0.896 0.200
Latency (ms) 6.0 0.5 1.3 - 0.07 - 0.05

Validation Model Human Primate Synthetic Primate Rat Synthetic Primate

αCalculated from feature extraction hardware only.
βConfigured for sampling rate of 5 kSps with FENet-66.
δSystem clock frequency. Mac frequency for FENet-66 is 21x the system clock frequency.
ηSpiking band power feature extraction unit runnning at 2.9 MHz.
ϕScaled to 65 nm process using methods in [39]
γMean Abolute Value (MAV); Auto Encoder (AE); Nonlinear Energy Operator (NEO);
Teager Energy Operator (TEO); Stationary Wavelet Transform (SWT)

The FENet algorithm is trained on data from Utah arrays
with large probe spacing (0.4 mm) and therefore does not see
significant inter-channel correlations of spike signals from the
same neuron [43], however, training of FENet with presence
of inter-channel correlations is an interesting topic for future
investigations. Spike detectors and spike sorters like those
found in [15], [16], [18], [19] are able to distinctly identify
neural sources, and firing patterns, which is well suited for
systems with high inter-channel correlations, but require high
SNR for accurate detection and sorting. The calibration free
SD system in [15] has a power and area cost of 6760 µm2 and
0.038 µW per channel, respectively. Their system employs
adaptive thresholding techniques, which showed maintained
detection accuracy for 200 days. However, chronically im-
planted neural probes used in our study have mean noise levels
of 89% six years after implant, which is much higher than the
20% tested in [15]. Even with our most advanced adaptive
thresholding techniques, FENet features outperform SD (TC
features) by 487% after 4 years.

SPB calculated in [25] has remarkably low complexity in
relation to its performance, achieving 3.68 µW and a scaled
area of 2370 µm per channel. SBP features further reduce
each bin of neural data down to a single feature. For a 30 ms
time bin sampled at 2 kSps, this reduces the dimensionality
of the neural data 60×. The simplicity of this algorithm
accentuates its utility when power and area constraints are
high and decoding precision is less pertinent.

Other neural interface modalities employ signal compres-
sion such that low data rate representations of the neural data
can be transmitted then reconstructed with little or no loss.
The system in [38], utilizes an Autoencoder (AE) to compress
local field potentials (LFP) at 0.076 µW and 0.02 µm2 per
channel with a compression ratio of 19.2. The compression
system is designed specifically for LFP as it relies on the
spatially correlated nature of these signals. The system allows
for lossy reconstruction of the original signal with a signal-
to-noise distortion ratio of 15-19 dB.

While our system primarily focuses on feature extraction,
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the systems in [18], [25], [44], incorporate on-chip decoders
to fully integrate the decoding pipeline. The system in [25]
achieved an average cross validated correlation of 0.29-0.49
with 1D, and 2D kinematic decoding trials, respectively using
a steady state Kalman filter. In [44], a decoder using distinctive
neural codes and a linear discriminant analysis classifier were
able to achieve 31-class handwriting classifications at 1 classi-
fication a second with 91.3% accuracy. This system was able
to achieve this while only consuming 0.44 µW and 1500 µm2

per channel. Notably, their system employs gaussian smooth-
ing on firing rates derived either from raw threshold crossings,
or spike sorted features. Feature smoothing can help assuage
high frequency fluctuations, and improve decoder performance
as shown in our explorations in Appendix I.

VII. CONCLUSION

In this work we have developed a scalable, low power
1D CNN-based feature extraction ASIC optimized to process
broadband neural data streams with low power and area
overhead. Our architecture is optimized to implement the
FENet algorithm on hundreds of continuous streams of data,
which reduced memory requirements by 5× over conventional
architectures. The algorithm implemented by this hardware
generates neural features with state-of-the-art stability even
six years post-implantation, where the maximum SNR of
the MEAs over all 196 channels was 4.18. We validated
the hardware-optimized FENet models and the ASIC that
implemented them online through closed-loop cursor control
with a human subject.

The power consumption of the ASIC was 341.2 µW
(5kSps) to generate neural features at 33 FPS for all 192
channels at a latency of 6 ms, fast enough for accurate
and responsive kinematic decoding. The feature extraction
hardware is highly power-scalable, providing flexibility to the
decoding system. While the system does not dynamically re-
configure itself, the models, and channel counts could be
updated by a central control system of a more complex SOC
that integrates the FENet hardware into its neural decoding
pipeline. Early in an implant’s life-cycle, when only few
informative channels are necessary, power can be optimized
to achieve quality decoding performance with low drain on
system power. Later in an implant’s life-cycle, when noise is
high, more channels can be enabled to maintain performance
at a linear expense in power.

Scalable processors for 1D CNNs may prove useful in
other many-channel signal processing applications, such as
ultrasonic sensing. It is worth noting that data-specific choices
made to suit the neural decoding environment may need
optimization for these application.

Further improvement of the FSM control flow would allevi-
ate the necessity for caching input data during the conclusional
padding phase. Simply allowing input data to be written
into the SRAM space that becomes unused during padding
would build-in caching into the already available hardware.
Additionally, unused SRAM kernel space could be used for
storing PLSR and linear decoder weights, further expanding
the hardware’s capabilities by minimally adjusting the data-
flow architecture and CNN control flow.

Brain machine interfaces have evolved expeditiously over
the past few years. This work provides one important block
of the neural decoding pipeline that significantly reduces the
bandwidth of downstream decoding components, while main-
taining much of the important information found in broadband
neural data.

APPENDIX I
MODEL PARAMETER EXPLORATION

In Fig. 13 A, we show the tradeoffs between the number of
features, the total number of cycles required for each feature
(solid line) and the number of those cycles that are necessary
for padding (dashed lines). The minimum operating frequency
of the system is related to the cycle count by equation (7):

fsys = Nfeatures ∗Ncycles (7)

where fsys is the minimum operating frequency, Nfeatures

is the desired number of features per second, and Ncycles is the
minimum number of cycles required of the model. Using this
frequency, we can roughly determine the power and latency
tradeoffs for a given feature rate based on Fig. 9 C.

While the effect of kernel size on accuracy is highly non-
linear, the number of layers can in some degree be related
to decoder accuracy. We explore this effect in Fig. 13 B. We
trained 51 models and held the kernel width and stride constant
at 40 and 2, respectively, to tease out only the effect of the
number of layers. We notice that there is a quasi-logarithmic
effect on the number of layers to decoding accuracy, which
reflects that the majority of neural information is captured in
the lowest feature layers, with diminishing, but extant returns
on performance as the number of layers is increased.

We further explore the effect of channel gating on this
particular center-out decoding task in Fig. 13 C. We notice that
early years require very few channels for high decoding accu-
racy, allowing for significant reduction in system resources.
Later years often require more channels to achieve better
performance.

Smoothing features prior to decoding alleviates effects of
high frequency noise on decoders, which improves perfor-
mance. In Fig. 13 D, we apply the gaussian kernel used in
[44]. We scaled the window size and standard deviation by a
factor of 1

3 to accommodate the fact that our neural data bins
were 3× larger.
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(A) (B) (C) (D)

Fig. 13: (A) Cycle count for models with various hyperparameters. Solid lines denote the total cycle count, dashed lines
indicate padding cycles. Kernel sizes are constant for all layers. Bin size: 150. (B) Affect of the number of feature layers on
decoding performance with a constant kernel size and stride of 40 and 2, respectively. R2 from 10 days of training data only.
(C) Effect of the number of channels on decoding performance. Shaded regions indicate the standard deviation of performance
within the year. Colors indicate the year. (D) Cross-validated decoder R2 performance over four years post-implantation with
a gaussian kernel applied to features prior to decoding. Locally Estimated Scatterplot Smoothing (LOESS) fits and confidence
intervals are shown for each feature type.
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