
Control of a commercial vehicle by a tetraplegic

human using a bimanual brain-computer interface

Xinyun Zou1,2∗, Jorge Gamez1,2∗, Meghna Menon3, Phillip Ring3,

Chadwick Boulay4, Likhith Chitneni4, Jackson Brennecke4, Shana R. Melby4,

Gracy Kureel4, Kelsie Pejsa1,2, Emily R. Rosario5, Ausaf A. Bari6,

Aniruddh Ravindran3, Tyson Aflalo1,2, Spencer S. Kellis4,7,8,

Dimitar Filev3, Florian Solzbacher4,9,10,11, Richard A. Andersen1,2

1Division of Biology and Biological Engineering, California Institute of Technology,

Pasadena, CA 91125, USA.

2T&C Chen Brain-Machine Interface Center, California Institute of Technology,

Pasadena, CA 91125, USA.

3Ford Motor Company, Dearborn, MI 48126, USA.

4Blackrock Neurotech, Salt Lake City, UT 84108, USA.

5Casa Colina Hospital and Centers for Healthcare, Pomona, CA 91767, USA.

6Department of Neurological Surgery, University of California Los Angeles,

Los Angeles, CA 90095, USA.

7Department of Neurological Surgery, Keck School of Medicine,

University of Southern California, Los Angeles, CA 90033, USA.

8Neurorestoration Center, University of Southern California, Los Angeles, CA 90033, USA.

9Department of Electrical and Computer Engineering, The University of Utah,

Salt Lake City, UT 84112, USA.

1

ar
X

iv
:2

50
8.

11
80

5v
1 

 [
ee

ss
.S

Y
] 

 1
5 

A
ug

 2
02

5

https://arxiv.org/abs/2508.11805v1


10Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA.

11Department of Materials Science and Engineering, The University of Utah,

Salt Lake City, UT 84112, USA.

∗Corresponding authors. E-mails: xzou@caltech.edu, jgamez@caltech.edu

Brain-computer interfaces (BCIs) read neural signals directly from the brain

to infer motor planning and execution. However, the implementation of this tech-

nology has been largely limited to laboratory settings, with few real-world appli-

cations. We developed a bimanual BCI system to drive a vehicle in both simulated

and real-world environments. We demonstrate that an individual with tetraplegia,

implanted with intracortical BCI electrodes in the posterior parietal cortex (PPC)

and the hand knob region of the motor cortex (MC), reacts at least as fast and pre-

cisely as motor intact participants, and drives a simulated vehicle as proficiently

as the same control group. This BCI participant, living in California, could also

remotely drive a Ford Mustang Mach-E vehicle in Michigan. Our first teledriving

task relied on cursor control for speed and steering in a closed urban test facility.

However, the final BCI system added click control for full-stop braking and thus

enabled bimanual cursor-and-click control for both simulated driving through a

virtual town with traffic and teledriving through an obstacle course without traffic

in the real world. We also demonstrate the safety and feasibility of BCI-controlled

driving. This first-of-its-kind implantable BCI application not only highlights the

versatility and innovative potentials of BCIs but also illuminates the promising

future for the development of life-changing solutions to restore independence to

those who suffer catastrophic neurological injury.

Summary

This study develops an intracortical BCI system that allows a tetraplegic person to volitionally drive

a commercial vehicle.
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INTRODUCTION

Brain computer interfaces (BCIs) are changing the ways in which humans interact with their

environment. BCIs translate neural activity from the brain and can help individuals overcome

motor disabilities, enabling their control of robotic limbs, wheelchairs, exoskeletons, and functional

electrical stimulation of the body [1, 2, 3, 4, 5]. BCIs also facilitate communication by decoding

speech articulation, interpreting motor imagery for handwriting, and enabling interactions with

keyboards [6, 7]. In addition, they support the use of computers, tablets, and smartphones by

controlling cursor movement, clicks, and keyboards [8, 9, 10]. For those with severe paralysis,

BCI technology increases their opportunities to restore independence, return to work, and enhance

social interactions [11].

In 2019, approximately 20.6 million people worldwide lived with spinal cord injury (SCI) [12],

roughly 60% of whom were estimated to have tetraplegia, meaning that all four of their limbs

were affected by paralysis. Tetraplegia has devastating effects on an individual’s independence,

functionality, mental health, and overall quality of life. Beyond activities of daily living, individuals

with SCI are often dependent on caregivers, partners, and other family members for transportation

needs. Driving is frequently regarded as a key component of individual autonomy, particularly in

societies such as the United States, where the ownership of personal vehicles and the necessity

of driving are widespread. These capabilities are considered essential to facilitate independent

mobility and access to social, economic, and healthcare resources. The capacity of personally

controlling a vehicle not only encompasses transportation but also preserves a sense of agency and

independence, and its loss constitutes a decline in functional independence and autonomy.

The non-invasive electroencephalogram (EEG) technology has previously been used to develop

BCIs for vehicle driving that assess cognitive states [13, 14, 15, 16, 17], predict intentions [18,

19, 20], and perform basic vehicle control [21, 22]. However, EEG faces challenges such as

susceptibility to noise, lack of individual generalizability, and the need for extensive training

[20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. In contrast, intracortical BCIs, which involve surgical

implantation of recording electrodes, offer greater signal fidelity and stability, allowing for more

precise decoding and possibilities of broader applications [1, 6, 8, 33].

In this study, we present the first intracortical BCI system that allows real-time bimanual control
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of a commercial vehicle by a tetraplegic human participant (see Figure 1). A multidisciplinary

group spanning academia and industry built a BCI driving system that allowed a tetraplegic BCI

participant, BCI-JJ, to remotely operate a Mustang Mach-E (Ford Motor Company, Dearborn,

MI) in closed test environments without other traffic or pedestrians to ensure appropriate safety

control. As part of an FDA-approved clinical trial (ClinicalTrials.gov number NCT01958086), we

implanted BCI-JJ intracortical NeuroPort Electrodes (Blackrock Neurotech, Salt Lake City, UT)

in both the posterior parietal cortex (PPC) and the hand knob region of the motor cortex (MC)

(see figure S1). BCI-JJ employed mental imagery of both upper limbs for control, which led to a

more intuitive separation of driving functions across the left and right limbs. Using this bimanual

control scheme, BCI-JJ could volitionally control the vehicle for both extended navigation in the

real world and more specific tests of driving capabilities. In experimentally constrained laboratory

tests, BCI-JJ, using our BCI system, reacted at least as fast and precisely as a motor intact control

group performing the same tasks with a standard computer mouse.

This work represents both a BCI-enabled driving system with the most advanced capability

to date and a model for meaningful academic-industry collaboration in the rapidly growing field

of BCIs. Building this system required neuroscientific development to provide novel bimanual

capabilities enabled by implants across the cortical motor system, as well as significant technology

development to allow remote moment-by-moment control of a full-sized commercial vehicle.

RESULTS

System and tasks overview

We used FENet [34], a multi-layer, one-dimensional convolutional neural network, to process neural

signals collected from the NeuroPort Electrodes via the NeuroPort System (Blackrock Neurotech,

Salt Lake City, UT) and generate neural features to be used as input by a linear decoder to estimate

motor intention (see the “BCI decoder system” section) and enable the control of three key variables

of a vehicle: steering, speed, and braking (see Figure 1). The “BCI-enabled driving” section will

explain each module of our BCI-enabled driving system at the BCI test site and the vehicle test site

in details, as shown in Figures 2A and 2B respectively.
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Figure 1: The BCI control system diagram for teledriving a Ford Mustang Mach-E vehicle.

Our setup included the decoder and display computers at the BCI test site in California and the

in-vehicle controller computer at the vehicle test site in Michigan. Brain signals were recorded

from BCI-JJ’s posterior parietal cortex (PPC) and the hand knob region of the motor cortex

(MC) via the intracortical NeuroPort Electrodes (Blackrock Neurotech, Salt Lake City, UT) and

processed by the NeuroPort system (Blackrock Neurotech, Salt Lake City, UT). The decoder

computer extracted the neural features from the acquired signals, decoded the motor intention, and

generated a corresponding motor command. This motor command was transmitted to the display

computer and then sent to the in-vehicle controller via TCP and UDP. At the vehicle test site, the

in-vehicle controller computer executed the motor command for the vehicle. This computer also

recorded a live-stream video from a camera mounted on the vehicle. The video feedback and the

vehicle state were transferred to the display computer at the BCI test site for BCI-JJ to watch and

respond in real-time.
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A

B

Figure 2: Detailed flowcharts of the BCI-enabled driving system. (A) The detailed mechanism

of BCI neural signal decoding and driving control of either a Mach-E commercial vehicle remotely

or a CARLA simulated vehicle. (B) The vehicle control architecture of a Ford Mach-E.
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Table 1: BCI reaction and driving task summary. “MI” means comparisons with motor intact

participants. “CARLA Lb 2.0” stands for the CARLA Autonomous Driving Leaderboard 2.0. Green

circles represent effectors tested for click movement, including left and right index fingers, ring

fingers and power grips. Blue circles represent effectors tested for cursor movement, including the

right thumb.

Task Name Platform Tested Components Tested BCI Effectors MI?

Simple

Reaction

Time

Unity 2018.4.23f1
Simple reaction time &

performance measures
Yes

Braking

Reaction

Time

CARLA 0.9.13 +

brake overlay

Braking reaction time &

performance measures
Yes

Mcity

Teledriving

Ford Mach-E +

speed and steering

overlay

4 random routes (with

turnings, stops, lane

switches, roundabouts)

No

Simulated

Town

Driving

CARLA Lb 2.0 +

speed, steering

and brake overlay

A fixed route (with

traffic lights, turnings,

lane switches)

Yes

Obstacle

-course

Teledriving

Ford Mach-E +

speed, steering

and brake overlay

4 fixed routes (with

stops, turnings, lane

switches, roundabouts)

No

7



To evaluate the capability of our BCI system to control a vehicle, we conducted a series of five

tasks, progressing from in-lab to more complex, real-world applications (see Table 1). First, we

compared the speed and proficiency of BCI-JJ to a control group of motor intact individuals during

two reaction time tasks. Task 1 tested the reaction times in a simple task [35, 36], in which each

participant made an attempted or actual click, via our BCI click decoder (see the “BCI decoder

system” section) or a computer mouse, in response to a target appearing on a computer screen (see

Figure 3A). Task 2 tested the braking reaction times during simulated driving in CARLA 0.9.13

[37] in which each participant was asked only to brake (again via a click) in response to each

random obstacle appearing in front of a virtual vehicle driving on a predetermined course with

random settings of sunlight and shadows (see Figure 3B). We evaluated the reaction times of the

motor intact control group compared to BCI-JJ in both reaction time tasks, finding that BCI-JJ

had similar reaction performance measures and significantly faster reaction times than most of the

motor intact participants.

As a proof-of-concept, we then tested the ability of our BCI system to remotely control the

speed and steering of a Ford Mustang Mach-E vehicle in real time (see Figures 1 and 2A). Using a

cursor-movement-based BCI decoder (see the “BCI decoder system” section) and control system,

BCI-JJ navigated the Mach-E vehicle in Mcity, a closed test facility in Michigan made to represent

an urban driving environment without traffic, in Task 3 (see Figures 3C and 3D). As shown in

Figure 2A, the overlay module obtained the decoded x and y cursor movement values from the

effector controller module and displayed them as positions of the blue and red circles, which would

be post-processed for steering and speed control of the vehicle, respectively (see the “BCI-enabled

driving” section for a full description).

Once the basic safety and feasibility of vehicle control was established, we implemented a more

complex simulated driving task modified from the CARLA Leaderboard 2.0, using the bimanual

cursor-and-click control, to evaluate our BCI control system in more realistic traffic situations. In

Task 4, which mimicked the downtown driving scenarios in a big city with skyscrapers and busy

traffic (see Figures 3E and 3F), we compared the simulated driving performance of BCI-JJ to that

of the motor intact control group, both with bimanual control which included click movement with

the left index finger for full-stop braking and cursor movement with the right thumb for speed and

steering adjustments. Like the display for the unilateral cursor control previously in Task 3, we still
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A
B

C D

E F

G H

Figure 3: Display of five tasks and the driving routes. (A) Simple reaction time task. (B)

Simulated braking reaction time task in CARLA 0.9.13. (C) BCI-controlled teledriving of a Mach-

E without traffic in the Mcity test facility. (D) Four teledriving routes in Mcity. (E) Simulated town

driving with traffic in the CARLA Leaderboard 2.0. (F) One simulated driving route in Town 12

of CARLA. (G) BCI-controlled teledriving of a Mach-E without traffic on an obstacle course. (H)

Four teledriving route options on the loop-shaped obstacle course.
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used the same overlay module to display bimanual control, with each click-to-brake information

represented by an immediate decrease-to-the-bottom of the vertical position for the red circle, which

would be post-processed as an immediate speed decrease to zero of the vehicle (see Figure 2A and

the “BCI-enabled driving” section for a full description). Using simulated driving proficiency

scores, calculated based on the occurrence of traffic infractions and the completeness of the route

in Task 4, we were able to show that BCI-JJ had similar driving proficiency compared to the motor

intact control group, indicating that the BCI control system can achieve essential functions of a

vehicle while driving.

Finally, to test the translatability of BCI vehicle control, we used the bimanual BCI control

system described in the previous simulated driving task (i.e., Task 4) to control the same Ford

Mustang Mach-E vehicle as in the Mcity teledriving task (i.e., Task 3), to remotely navigate an

obstacle course in real time in Task 5 (see Figures 3G and 3H). This course included components of

a typical driving test for a motor intact person (e.g., full stops, lane switches, turnings, roundabouts,

and obstacle avoidance). BCI-JJ was able to fully navigate the Mach-E vehicle through the obstacle

course with a high degree of proficiency, demonstrating the first implementation of bimanual

intracortical BCI control of a full-sized commercial vehicle in a real-world driving environment.

BCI reaction times and performance measures

The main purpose of our study is to robustly apply our BCI system to real-world applications

beyond the laboratory. The prerequisite for achieving this aim is to prove, in a controlled laboratory

environment, that a participant using our BCI system can react as fast and precisely as individuals

with intact motor functions, while controlling potential biases related to age and gender. Therefore,

we first designed two reaction time tasks with various target and scenario complexities but the

same concept of responding with a decoded or actual click as soon as a target appeared. The simple

reaction time task had a target presented at varying time intervals on an otherwise black computer

screen, and the participant was asked to click with either our BCI click decoder or a computer

mouse as quickly as possible each time the target appeared in each GO trial (see Figure 3A).

The braking reaction time task had obstacles appeared at random on a predetermined path in the

CARLA 0.9.13 driving simulator [37], and the participant was asked to click for full-stop braking
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of an otherwise autonomous driving vehicle whenever an obstacle appeared in its path in the GO

phase (see Figure 3B). The “Reaction time tests” section has a full description of the experimental

settings for the two reaction time tasks.

To set up a comparison study of BCI-JJ with a control group, we recruited 20 motor intact

participants (M01–M20) with no gender bias and their ages normally distributed between 35 and

65. The average age of this motor intact control group was 50, the same as the age of BCI-JJ at the

time of testing. For both the simple and braking reaction time tasks described above, all 20 motor

intact participants in this control group were asked to click on the left button of our computer mouse

with their right index finger, in consistent with their daily habit, to react to targets. Meanwhile,

BCI-JJ was asked to test six hand effectors to make attempted clicks via our BCI click decoder in

the simple reaction time task, with the two best effectors chosen for the braking reaction time task.

We assessed the reaction times, accuracy, sensitivity, and specificity of participants’ responses

over each run in both reaction time tasks. A reaction time was considered valid in a GO trial/phase

if the participant’s response occurred between 50 ms and 1000 ms, after which time the target

disappeared from the screen. A true positive case would refer to a GO trial/phase with only one

click between 50 ms and 1000 ms. A true negative case would refer to a NO-GO trial/phase with

no click. A false positive case would refer to either a NO-GO trial/phase with any click, a GO

trial/phase with any click before 50 ms, or a GO trial/phase with any click after 1000 ms from the

start of the Target Phase. A false negative case would refer to a GO trial/phase with no click. The

accuracy measures the total number of correct cases (true positives + true negatives) divided by

the total number of cases (true positives + true negatives + false positives + false negatives). The

sensitivity measures the number of true positives divided by the total number of true positives and

false negatives. The specificity measures the number of true negatives divided by the total number

of true negatives and false positives.

BCI simple reaction performance among different hand effectors

To assess the basic reaction times of our BCI control system, we conducted a simple reaction time

task in which BCI-JJ attempted to click with one of six different effectors: left and right index

fingers, left and right ring fingers, and left and right power grips to complete this action. Decoded

click movement intentions for each effector were digitally executed as mouse clicks to complete the
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task. BCI-JJ was asked to complete 10 runs consisting of 40 GO trials and 10 randomly interleaved

NO-GO catch trials (indicated by an auditory stimulus during the ITI phase) per run. BCI-JJ

repeated these 10 runs for each effector separately.

We compared the valid simple reaction times, accuracy, sensitivity, and specificity across all

six effectors for BCI-JJ using a one-way ANOVA test followed by pairwise comparisons with

all 10 runs for each effector combined. The reaction times for BCI-JJ’s right (contralateral to the

recording hemisphere) index finger performed significantly faster than all other effectors (𝑝 < 0.05,

Bonferroni corrected) with an average reaction time of 137 ms (26.8 ms SD). Using his right index

finger led to insignificantly different performance measures compared to using the rest effectors,

with an average accuracy at 90.8% (4.13% SD), an average sensitivity at 98.4% (2.82% SD), and

an average specificity at 73.3% (13.8% SD) (see Figures 4A and 4B, tables S1 and S2).

BCI braking reaction performance with index finger effectors

To evaluate the reaction times of our BCI control system in a more realistic driving scenario, we

conducted a braking reaction time task in a virtual town environment using the CARLA 0.9.13

driving simulator [37]. BCI-JJ completed 10 runs per right or left index finger, consisting of 40

trials per run, with one NO-GO phase and one GO phase in each trial. The effectors we evaluated

were limited to the index fingers for this task, because these two effectors provided him with the

best performance among all the six hand effectors tested during the previous simple reaction time

task.

We compared the valid braking reaction times, accuracy, sensitivity, and specificity between the

left and right index finger effectors via two-sample t-tests for BCI-JJ (see tables S3 and S4). Like

the simple reaction time task, BCI-JJ had significantly faster reaction times using the right index

finger, compared to the left (i.e., 290 ms (64.9 ms SD) versus 338 ms (82.2 ms SD), with 𝑝 < 0.05)

(see Figure 4C). BCI-JJ showed greater than 90% accuracy, sensitivity, and specificity across both

effectors throughout all trials for this simulated braking task (see Figure 4D). Comparing each

performance measure (i.e., accuracy, sensitivity, and specificity) of BCI-JJ’s right and left index

fingers, their differences are either at the edge of the corrected 5% significance level or clearly

insignificant (see table S4).
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C D

Figure 4: BCI trial-based simple and braking reaction time task results among different hand

effectors of BCI-JJ. (A and B) For the simple reaction time task, we collected 10 runs for each

of BCI-JJ’s six effectors (i.e., right and left index fingers, ring fingers, and power grips) consisting

of 40 GO trials and 10 randomly interleaved NO-GO catch trials per run. We compared simple

reaction times within the valid range from 50 ms to 1000 ms in GO trials/phases among the six

effectors. We also conducted comparisons of simple reaction performance measures (i.e., accuracy,

sensitivity, specificity) among these effectors. (C and D) For the braking reaction time task, we

collected 10 runs per right or left index finger consisting of 40 trials per run, with one NO-GO

phase and one GO phase in each trial. We compared braking valid reaction times and reaction

performance measures between these two effectors. Box charts whose shaded notches around the

median lines do not overlap have different medians at the corrected 5% significance level.
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BCI versus motor intact reaction performance

Each of the 20 motor intact control participants completed 4 runs of the simple reaction time task

and 5 runs of the braking reaction time task, both with the same number of trials per run and layout

as the same tasks for BCI-P2.

Between BCI-JJ and the motor intact control group, we applied two-sample t-tests to compare

the valid reaction times, accuracy, sensitivity, and specificity using their right index finger effector

(see Figure 5 and tables S5, S6, S7, S8, S9, and S10). For both tasks, BCI-JJ had significantly faster

valid reaction times when compared to the motor intact control group (𝑝 < 0.05). However, both

BCI-JJ and the control group had slower reaction times on average in the more complex braking

reaction time task compared to the simple reaction time task (see Figures 5A and 5B). The motor

intact control group had significantly higher accuracy and specificity (𝑝 < 0.05) when compared to

BCI-JJ during the simple reaction time task (see Figure 5C). There were no significant differences

in accuracy, sensitivity, or specificity performance between the two groups during the braking

reaction time task (see Figure 5D). This indicates that the reaction performance of the BCI control

system in BCI-JJ was, on average, faster than and as reliable as the motor intact control group of

comparable ages, no matter of the complexities of the two reaction time tasks.

Among BCI-JJ and all 20 motor intact participants (M01–M20) individually, we also compared

the reaction performance using a one-way ANOVA test followed by pairwise comparisons (see

Figure 6 for the valid reaction times and figures S2, S3, S4 for the reaction accuracy, sensitivity, and

specificity). During the simple reaction time task, BCI-JJ had significantly faster valid reaction times

than 12 out of 20 motor intact participants, and significantly lower accuracy and sensitivity compared

to 7 motor intact participants (𝑝 < 0.05, Bonferroni corrected), which were not necessarily the

same participants between metrics. There were no significant differences in sensitivity between

BCI-JJ and any motor intact participants (see tables S5 and S7). During the braking reaction time

task, BCI-JJ had significantly faster valid reaction times than 18 out of 20 motor intact individuals,

and significantly higher sensitivity compared to 1 motor intact participant (𝑝 < 0.05 Bonferroni

corrected). There were no significant differences in accuracy and specificity between BCI-JJ and

any motor intact participants (see tables S8 and S10). This indicates that BCI-JJ, via our BCI click

control, reacted at least as fast and precisely as most of the motor intact control participants, no
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Figure 5: Trial-based simple and braking reaction time task results between BCI-JJ and the

motor intact control group with the same right index finger effector. We recruited 20 motor

intact participants with no gender bias and an average age of 50± 15, the same as the age of BCI-JJ

at the time of testing. For the simple reaction time task, we collected 10 runs from BCI-JJ and 4

runs from each of the 20 motor intact participants, with each run consisting of 40 GO trials and 10

randomly interleaved NO-GO catch trials. For the braking reaction time task, we collected 10 runs

from BCI-JJ and 5 runs from each motor intact participant, consisting of 40 trials per run, with

one NO-GO phase and one GO phase in each trial. We compared the valid reaction times between

50 ms and 1000 ms in GO trials/phases between BCI-JJ and the motor intact control group for

(A) the simple reaction time task and (B) the braking reaction time task. We also conducted group

comparisons of reaction accuracy, sensitivity and specificity for (C) the simple reaction time task

and (D) the braking reaction time task. Box charts whose shaded notches around the median lines

do not overlap have different medians at the corrected 5% significance level.
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Figure 6: Trial-based valid reaction times for the simple and braking reaction time tasks

among BCI-JJ and all 20 motor intact participants individually with the same right index

finger effector. In the parenthesis under each participant’s ID, the number represents their age, and

the letter “f” or “m” represents their gender (female or male). The box plots are sorted according

to the average performance of each participant. We conducted pairwise comparisons using a

Bonferroni post hoc test following a one-way ANOVA with 21 participants. For the participants

whose box plots are outside the green rectangular area, their performance was different from BCI-JJ

at the corrected 5% significance level. There are comparisons of the valid reaction times between

50 ms and 1000 ms in GO trials/phases among all 21 participants for (A) the simple reaction time

task and (B) the braking reaction time task.
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matter of the complexities of the two reaction time tasks.

BCI driving performance

Via the two reaction time tasks, we established that the reaction performance of BCI-JJ with index

finger clicks decoded by our BCI system was at least as fast and reliable as the average performance

of the motor intact participants clicking a computer mouse. In order to verify the robustness of our

BCI system in dealing with more realistic applications, such as driving a vehicle, we outfitted a Ford

Mustang Mach-E vehicle to be remotely controllable in real-world environments without traffic.

Via teledriving, we first tested the speed and steering control with cursor movement decoded by our

BCI system in a free-driving scenario through an urban test facility called Mcity (see Figure 3C).

Then we increased the complexity of the BCI decoder from the unilateral cursor control for steering

and speed to the bimanual cursor-and-click control, which enabled more precise full-stop braking

via clicks with the left index finger effector and continuous steering and speed adjustments via

the horizontal and vertical cursor movement, respectively, with the right thumb. To ensure the

safety, precision, and complexity of our driving evaluations with bimanual control, we temporarily

switched back to a laboratory setting and compared the driving proficiency of BCI-JJ to the motor

intact control group using a virtual vehicle in a simulated town environment with busy traffic and

a more sophisticated route modified from the CARLA Leaderboard 2.0 (see Figure 3E). Finally,

we designed an obstacle course and applied teledriving with the same Mach-E vehicle which could

verify our bimanual BCI driving system in a more applicable real-world setting mimicking many

components of a standard driving test (see Figure 3G). The “BCI-enabled driving” section has a

full description of the experimental settings for the three driving tasks.

We evaluated the following infractions, including the proportion of the completed route distance

(𝐶), the number of collisions (𝑁𝑐), the number of lane deviations (𝑁𝑙), and the number of running

red traffic lights or stop signs if available (𝑁𝑠). The infraction metric aggregated all these infractions

using the following equation:

Driving Score = 𝐶 × 0.8𝑁𝑐 × 0.9𝑁𝑙 × 0.9𝑁𝑠 . (1)

It started with an ideal 1.0 base score, which was reduced each time an infraction was committed.

Here, 𝐶 could be a decimal between 0 and 1.0 with 1.0 as full completion of the route. 𝑁𝑐, 𝑁𝑙 and
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E F

Figure 7: BCI driving scores and infractions. It started with an ideal 1.0 base score in each run,

which was reduced each time an infraction was committed. (A and B) The teledriving scores and

infractions of BCI-JJ using the unilateral cursor control for steering and speed of the commercial

Ford Mustang Mach-E vehicle through four random routes in the Mcity facility encompassing an

urban environment. (C and D) The simulated driving scores and infractions of BCI-JJ and the motor

intact control group with the bimanual cursor-and-click control for steering, speed, and braking

of a virtual vehicle on a town route modified from the CARLA Leaderboard 2.0. (E and F) The

teledriving scores and infractions of BCI-JJ using bimanual control for steering, speed and braking

of the Mach-E vehicle through an obstacle course. “CW” and “CCW” are short for clockwise and

counterclockwise respectively.
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𝑁𝑠 were all nonnegative numbers whose increase would cause a decrease in the driving score.

For both teledriving tasks in Mcity and through the obstacle course, BCI teledriving infractions

were evaluated based on recorded videos by three independent evaluators from the California

Institute of Technology, Blackrock Neurotech, and Ford Motor Company. Please note that if the

vehicle was about to collide with some dangerous obstacle, 𝑁𝑐 would increase by 1, and the safety

driver in the test vehicle would take over the vehicle control for a few seconds to move it back to

the right track before the BCI teledriving could resume. If the vehicle was about to turn left at an

intersection where a left-turn lane was available, it should merge to that left-turn lane before its

left turn during BCI teledriving; otherwise, 𝑁𝑙 would increase by 1. If an evaluator was uncertain

about the occurrence of any infraction component (𝑁𝑐, 𝑁𝑙 or 𝑁𝑠) (e.g., whether there was a lane

deviation at 𝑡 = 45 seconds in Run 2), he/she would mark it with a quantity increase of 0.5 instead

of 1 (e.g., 𝑁𝑙 += 0.5).

For the simulated town driving task, the infractions of BCI-JJ and the motor intact participants

were automatically measured by the CARLA Leaderboard 2.0 at the end of each run to compute the

driving score for the simulated route. So in this case, 𝑁𝑐, 𝑁𝑙 and 𝑁𝑠 were all nonnegative integers

without the possibility of increasing by 0.5.

Teledriving performance in Mcity

As a proof-of-concept, we started the evaluations of our BCI-enabled driving system with the

unilateral cursor movement control for steering and speed of a commercial vehicle through a real-

world urban environment without traffic. BCI-JJ, who was living in California, remotely controlled a

Ford Mustang Mach-E vehicle through Mcity, a mock urban road environment located in Michigan.

The goal of this Mcity teledriving task was to evaluate the continuousness and proficiency of BCI

driving control in speed and steering, rather than to repeatedly evaluate reaction times or braking

as we had done in the previous two reaction time tasks. Therefore, BCI-JJ was asked to ignore

all traffic lights and stop signs in this urban test facility, focusing only on the unilateral cursor

control for steering and speed with his right thumb. BCI-JJ completed four randomly mapped

routes through Mcity, with one run per route across two sessions (see movies S1, S2, S3 and S4).

Each route included various driving elements (e.g., turnings at intersections, roundabouts, U-turns,

lane merges, etc., see Figure 3D and the “BCI-enabled driving” section for a full description).
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With the BCI teledriving infractions in Mcity evaluated by the three independent evaluators,

we applied the infraction metric to compute the cursor-only BCI teledriving score in Mcity using

Eq. 1 in which 𝑁𝑠 was set to zero, because in this task no traffic light or stop sign was considered.

Using BCI-decoded cursor movement for speed and steering control of the Mach-E vehicle, BCI-JJ

completed each of the four random routes through Mcity in 2.5 to 7.5 minutes and obtained an

average driving score of 0.78 (0.211 SD) across the four routes (see Figure 7A), with his driving

performance improving over the course of each run (see Figure 7B).

Simulated driving performance in a virtual town

After establishing that BCI-JJ could remotely drive a physical vehicle with continuous control of its

speed and steering, we upgraded our BCI teledriving system to include bimanual control for cursor

and click movement. BCI-JJ’s right thumb was used as before for cursor movement on the overlay

for continuous changes in speed and steering; meanwhile, his left index finger was used for clicks

on the overlay to achieve fast and accurate full-stop braking action. In order to more realistically test

the BCI driving proficiency while ensuring the safety and consistency of measurement comparable

to the motor intact behavior, we switched the driving test scenario to a more complex simulated

town environment. Using the CARLA Autonomous Driving Leaderboard 2.0 simulator, we applied

an approximately 20-minute route in a sophisticated virtual environment that mimicked traffic in

a big city. In this simulated town driving task, the route consisted of four-way intersections with

traffic lights, curves, lane changes, and an equal amount of left and right turns (see Figure 3D

and the “BCI-enabled driving” section for a full description). BCI-JJ and the same control group

of 20 motor intact participants were asked to navigate the simulated urban route with a virtual

vehicle in which they had to maintain control of the vehicle’s speed, steering, and braking, while

adhering to standard traffic guidelines. For motor intact participants, the bimanual cursor-and-click

control of the virtual vehicle was programmed using the right thumbstick and the top left button

on a joystick (see figure S5). Each participant received 15 minutes of practice time before their

runs were recorded. BCI-JJ completed 10 runs in four sessions, and each motor intact participant

completed two runs in two sessions. With the infractions automatically measured by the CARLA

Leaderboard 2.0 at the end of each run, we applied the infraction metric to compute the bimanual

simulated driving score using Eq. 1 in which 𝑁𝑠 represented the number of running red traffic
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lights.

Using a right-tailed two sample t-test, we compared the composite simulated driving scores

for BCI-JJ versus the motor intact control group. All participants applied the bimanual cursor-

and-click control for steering, speed, and full-stop braking of the virtual vehicle. Across all runs,

BCI-JJ, via our BCI control system, performed significantly better than the motor intact control

group (𝑝 < 0.05), with an average driving score of 0.924 (0.115 SD), compared to an average

score of 0.823 (0.160 SD) for the motor intact control group, where a score of 1.0 is perfect (see

Figure 7C, table S11, and movie S5 for a side-by-side comparison of the average simulated driving

performance between BCI-JJ and a motor intact participant). Additionally, we used two sample

t-tests to compare the number of average traffic violations between BCI-JJ and the motor intact

control group. BCI-JJ had significantly fewer collisions per run, on average, than the control group

(𝑝 < 0.05). There were no significant differences between these two groups in the number of red

light violations or lane deviations (see Figure 7D and table S11). These results reflect the previous

findings of two reaction time tasks in which BCI-JJ reacted at least as fast and precisely as the

motor intact control group. We also compared the simulated driving scores between BCI-JJ and

all 20 motor intact participants individually, using a one-way ANOVA test followed by pairwise

comparisons. We found BCI-JJ had his simulated town driving performance similar to 19 motor

intact participants and only significantly better than 1 motor intact participant (𝑝 < 0.05 Bonferroni

corrected, see figure S6). These results indicate that the BCI control system can be used to control

the essential functions of a vehicle as proficiently as motor intact people in a realistic driving

environment.

Teledriving performance on an obstacle course

After establishing the safety and efficacy of our bimanual BCI control system in a complex simu-

lated town driving task, we then demonstrated the capability of the bimanual BCI control system

to navigate a commercial vehicle in a real-world driving scenario. To do this, BCI-JJ remotely

controlled the same Mach-E vehicle through a loop-shaped driving obstacle course which included

many components of a standard driving test (e.g., lane switches, turnings, full stops, roundabouts,

obstacle avoidance, etc.) (see Figure 3H and the “BCI-enabled driving” section for a full descrip-

tion). In this obstacle-course teledriving task, BCI-JJ completed 9 runs per route for a total of four
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different route options (i.e., a clockwise or counterclockwise loop with or without a lane-switch

segment) across three sessions (see movies S6, S7, S8 and S9 for one example run per route).

With the BCI teledriving infractions through the obstacle course evaluated by the three in-

dependent evaluators, we applied the infraction metric to compute the bimanual BCI teledriving

score through the obstacle course using Eq. 1 in which 𝑁𝑠 represented the number of running stop

signs. During all 36 runs through the obstacle course with the bimanual cursor-and-click control for

steering, speed, and full-stop braking of the Mach-E vehicle, BCI-JJ received a composite driving

score of 0.939 (0.0957 SD), where 1.0 is considered a perfect score (see Figure 7E). There were no

significant differences in scores among the four different routes taken through the course (see Fig-

ure 7F), indicating that our bimanual BCI control system has the capability to remotely operate the

basic controls of a commercial vehicle. To our knowledge, this is the first successful demonstration

of full BCI control of a full-sized commercial vehicle in a real-world driving scenario.

DISCUSSION

Reaction times and robustness in tasks with various complexities

We conducted two reaction time tasks (i.e., the simple reaction time task and the braking reaction

time task) by using different hand effectors of BCI-JJ with attempted clicks decoded by our BCI

system and the right index finger of 20 motor intact participants with actual clicks via a computer

mouse. Among tests of six hand effectors (i.e., right and left index fingers, ring fingers, and power

grips) of BCI-JJ in the simple reaction time task, his right index finger had significantly faster

reaction times and competitive performance measures. Compared with his left index finger in the

braking reaction time task, BCI-JJ’s right index finger also had significantly faster braking reaction

times; however, both index finger effectors had stable enough reaction performance in order to allow

the vehicle’s braking in the face of emergencies. While the right thumb was selected for BCI-JJ to

control the cursor movement for steering and speed changes in all three of our BCI driving tasks, his

left index finger was selected to control the clicks for full-stop braking in both the simulated town

driving task and the obstacle-course teledriving task. The differences in effector control are likely

due to the placement of the arrays within MC, which has a rough somatotopic map for effectors,
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and degree of mixed selectivity of effectors, which is greater in PPC than MC [38, 39]. For fair

comparisons, the same two effectors (i.e., the left index finger for clicks and the right thumb for

cursor movement) were selected for motor intact participants during the simulated town driving

task. Our reaction time task results have shown that the reaction times increase with task complexity

for both BCI-JJ and the motor intact control group [40]. These results also indicate that reading

human brain signals directly from the PPC and MC regions can provide reaction performance at

least as fast and reliable as the motor intact behavior. This feature of our BCI system can be further

applied to other time-sensitive devices.

Bimanual control with BCI

Compared with largely focused single-effector control by many existing BCI systems [8, 41, 42],

multi-effector movement allows greater functionality for people with paralysis. Our bimanually

controlled BCI system can decode both the click movement via the left index finger and the

cursor movement via the right thumb simultaneously and accurately using the partial least squares

regression (PLSR) decoder with a feature extraction algorithm called FENet [34] (see the “BCI

decoder system” section for a full description). We first documented the stability and accuracy of

cursor and click control separately via two reaction time tasks and a free teledriving task in the Mcity

closed test facility, respectively. Then we bimanually combined click control for braking and cursor

control for speed and steering of a vehicle. In order to minimize the bias of comparisons between

our BCI system and motor intact behavior for bimanual driving control, we asked all participants

to navigate a virtual car through a simulated busy urban town. As judged by the simulator itself

at the end of each run, the bimanual driving performance decoded by our BCI system from the

PPC and MC regions of BCI-JJ turned out to be as stable and proficient as using a joystick by the

motor intact control group. With the safety and efficacy of our bimanual BCI control established,

we finally had a successful demonstration of the same BCI system teledriving a real-world vehicle

through an obstacle course which contained many components of a standard driving test. Compared

to existing bimanual control of BCI [10], the advance of our bimanual cursor-and-click BCI control

system further enhances the degrees of freedom and complexities of real-world applications.
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BCI beyond the lab: real-world driving applications

Most existing intracortical BCI systems have been applied to controlled tasks within the laboratory

or in simple home settings [1, 6, 8, 9, 33]. We show that current advances in intracortical BCIs

extend the use of this technology to real-world scenarios, potentially improving the mobility of

people with paralysis. Previous BCI systems for vehicle control suffered from temporal and spatial

limitations [18, 22, 27, 31]. Our intracortical BCI system can provide proficient driving experiences

for a tetraplegic participant not only in a simulated town environment with busy traffic but also in

the real-world environments for the first time by remotely controlling a commercial vehicle. Using

the bimanual cursor-and-click control via our BCI decoder, BCI-JJ has had his BCI-controlled

driving performance in the CARLA 0.9.13 simulator comparable to 20 motor intact individuals

with the same average age, according to the infraction components automatically recorded by the

CARLA Leaderboard 2.0 at the end of each run. He has also performed BCI teledriving stably with

a Ford Mach-E vehicle both in the Mcity closed test facility encompassing an urban environment

without traffic (using the unilateral cursor control) and on an obstacle course (using the bimanual

cursor-and-click control), according to the independent evaluations based on the recorded videos.

Limitations

Potential biases on the BCI versus motor intact control tests

Various factors can lead to biased comparisons, such as prior experience with driving simulators,

joystick usage, and the level of involvement in the tasks between BCI-JJ and 20 motor intact

participants. However, we made sure that the motor intact participants were selected with no gender

bias and with their average age same as BCI-JJ’s. We only had the opportunity to test the BCI

reaction time tasks and driving tasks with one tetraplegic participant who might already have faster

reaction times before his injury than the average performance of the motor intact control group.

BCI-JJ also had longer practice time than motor intact participants, although we tried to make

sure the tasks were straightforward with a steep learning curve. We also do not have a comparison

between our BCI system and the motor intact control group for driving a commercial vehicle in the

real-world traffic environment.
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Driving lags and restrictions

Our existing settings for both teledriving and simulated driving still had lags (e.g., feedforward

control from the decoded brain signals or the joystick input to the vehicle, feedback control from

the vehicle to the video display, etc.) and view restrictions (i.e., less than 180 degrees of the

view ahead of the vehicle). As a result, we set the maximum speed of the simulated vehicle

to 5 mph and the Ford Mach-E vehicle to 4 mph. Such low-speed vehicle control could ensure

safety of the commercial vehicle and safety drivers, stable feedforward bimanual control in both a

simulated busy town environment and a real-world obstacle course with narrow lanes, and smooth

display of the video feedback. Completely eliminating all lags in the teleoperation pipeline might

prove challenging, as this issue could arise at various stages, from data encoding and decoding to

information transmission. Factors such as availability and bandwidth of the wireless network could

also contribute to these lags. During BCI teledriving tests, the aggregated lags occasionally were

non-negligible (i.e., greater than 1 to 2 seconds). When it happened, the safety driver immediately

took control of the vehicle. Further development of a simulated driving setup with a VR system

and/or an in-vehicle BCI setting for broader and more realistic views and shorter lags can help

improve the driving realism and performance of both BCI and motor intact participants.

Future work

Potential improvement for the decoder

MC and PPC have traditionally been understood to have a functional organization with distinct

areas responsible for the movement of different body parts. In this study, NeuroPort Electrodes were

implanted in regions of the cortices that are typically associated with finger movements. However,

results from existing studies have shown that neurons in these regions encode motor information

of body parts beyond the hand [38, 39, 43]. Understanding how simultaneous movements across

the body are encoded in these areas remains an open area of study. Improving our decoder to

include effectors beyond the hand area would allow our participants to use their feet to control

acceleration and braking, providing a driving experience that more closely resembles that of motor

intact individuals and enriching the overall user experience of BCI control.

Early work on simultaneous multi-effector encoding suggests a complex neural representation
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that requires non-linear decoders for accurate interpretation, making the development of more

complex decoders essential for the evolution of BCIs. The implementation of these complex

algorithms will demand more processing power. However, for real-world applications, BCIs must

be portable and operate with limited access to power sources. As a result, decoding algorithms will

need to be transitioned from high-power general-purpose processors to low-energy application-

specific integrated circuits (ASICs) [44, 45].

Application with autonomous vehicles and robotics

Intracortical BCI control with high proficiency can improve safety and personal experiences when

driving a semi-autonomous vehicle or using a robot [46]. By building on current results and

improving multi-effector decoding, we can pursue more advanced engineering outcomes for driving

with BCI. We can enrich our BCI system with a decoder of cognitive states which could provide

a vigilance alert signal, trigger built-in vehicle safety features, and/or switch the vehicle control

between autonomous driving and driver’s manual control. This advanced vehicle control system

might eventually enable BCI participants to drive via their brain control inside the test vehicle

instead of remotely with occasionally non-negligible telecommunication delay. In both simulated

and physical urban scenarios with a semi-autonomous vehicle, the enhanced BCI system could

continuously track the vigilance of each participant. If a participant is detected as having reduced

attention, the system will alert them and strengthen the vehicle’s safety controls. Unlike an obstacle

detection sensor (ODS) that comes with many commercial vehicles, such continuous BCI vigilance

check can remind the driver to remain focused on the traffic at all times, rather than waiting until the

vehicle gets too close to an obstacle or another vehicle. Although autonomous vehicles might be able

to drive without human intervention in common scenarios, they might not respond adequately under

special conditions (e.g., sudden appearances of other cars, pedestrians, obstacles, and unpredictable

weather conditions). Therefore, the multi-effector BCI control and the autonomous driving features

of the vehicle could be alternatively activated or used in combination under different situations.

Such hierarchical BCI application can further improve the mobility of people with paralysis and

advance the accuracy and flexibility of vehicle control.
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MATERIALS AND METHODS

Intracortical BCI technology

The neural recordings in this study were collected from one participant enrolled in a BCI clinical

study (ClinicalTrials.gov Identifier: NCT01958086). The institutional review boards of the Califor-

nia Institute of Technology, Casa Colina Hospital and Centers for Healthcare, and the University of

California, Los Angeles, approved study procedures, including informed consent, implant surgery,

and experiment design. BCI-JJ is a right-handed male 50 years old with a C4-C5 level spinal

cord injury that occurred approximately three years before his enrollment in the study. BCI-JJ was

implanted with two arrays of 96-channel NeuroPort Electrodes, including one array in PPC and

the other in MC. Neural signals were acquired, amplified, bandpass filtered (0.3 Hz to 7.5 kHz),

and digitized (30 kHz, 16 bits/sample) from electrodes using the neural signal processors called

NeuroPort Systems (Blackrock Neurotech, Salt Lake City, UT).

It is important to note that BCI-JJ’s electrodes had been implanted for more than five years at

the time of testing. The signal-to-noise ratio (SNR) of the recorded brain signals had decreased

to approximately one-third of the value observed in the first year after implantation. Due to this

decline, a custom feature extraction algorithm, FENet (see the “BCI decoder system” section),

played a crucial role in enabling BCI-JJ to control the vehicle with the proficiency described in this

paper.

Motor intact participants

We recruited 20 motor intact individuals, including 10 males and 10 females with an average age

of 50 ± 15, the same as the age of BCI-JJ at the time of testing. The motor intact control group

participated in the simple reaction time task, the braking reaction time task, and the simulated town

driving task. Each motor intact participant attended two sessions on their own to complete these

three tasks. All participants were informed about the purpose of the study and provided their written

informed consent prior to participating. They were compensated at the end of each session based

on their task performance.
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BCI decoder system

Feature extraction

Our feature extraction procedure was based on a custom algorithm named FENet [34]. In summary,

this algorithm uses a convolutional neural network (CNN) which was trained to generate neural

features from the broadband neural data. FENet consists of a set of consecutive feature engineering

modules. Each module comprises 1-D convolutional filters, nonlinear activation functions, and

pooling layers. The input signal is passed into M-1 back-to-back feature engineering modules. Each

module receives the input data of the 𝑖th feature engineering module, and the data passed through

the two separate temporal 1-D convolutional filters. The output of the upper filter is downsampled

by 2 and is passed through a leaky ReLU nonlinear activation function. Then the output of the

current filter is passed through an adaptive average pooling layer to summarize extracted temporal

patterns into a single feature. The output of the lower filter is passed to the next feature engineering

module. This process is repeated to find the output feature vector. A PLSR approach is applied to

the output feature matrix for the electrodes to reduce the number of features (see the top part of

Figure 2A).

Cursor movement decoding

We used PLSR to analyze the relationship between FENet features and movement directions. PLSR

projects the predictive and observed variables into a new space by finding pairs of weight vectors

that maximize the covariance between the two projections [47]. Specifically, for each pair of neural

activity data (𝑁) and corresponding movement directions (𝑀), we computed the FENet features

from the neural activity in 30 Hz frequency bins and transformed these values into z-scores. After

determining the weight matrix from the training dataset using PLSR, we used it to predict 𝑀 from

𝑁 on untrained data. Finally, we applied exponential smoothing to the predicted 𝑀 values.

Click classification

Our click classifier involved a two-step process. In the first step, a Linear Discriminant Analysis

(LDA) model calculated the probability that the current population firing rate was related to the

intention of clicking. The second step corresponded to a Hidden Markov Model (HMM) that used
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the LDA probability as the input to set the state of the click between on and off. The classifiers were

trained on individual trial data from a center-out task that required BCI-JJ to attempt to click (i.e.,

moving his index finger as if activating a trigger) when a target appeared in a reaction time task or

when full-stop braking was needed in a driving task.

Statistics

To assess significant differences between populations, we employed two-sample t-tests (between

two groups, using ttest2 in MATLAB R2021b) or one-way ANOVA (among more than two groups)

followed by a Bonferroni post hoc test to adjust for multiple comparisons (using anova1 and

multcompare in MATLAB R2021b). With the Bonferroni correction, a 5% significance level was

utilized for all tests, unless otherwise specified for a particular analysis.

We also performed a power analysis to establish the required sample size of individuals with

intact motor function for comparisons between two independent means. The analysis was based on

an effect size of 0.8, an alpha level of 0.05, a power of 0.95, considering a dropout rate of 25%.

Reaction time tests

Participants performed two reaction time tasks of increasing complexity (see Figures 3A and 3B).

For both tasks, participants were required to react when they saw a visual stimulus. The tetraplegic

participant BCI-JJ attempted a click movement as if pushing a button with one of his hand effectors

via the BCI system, whereas each motor intact participant performed a click with their right index

finger using a computer mouse. In both tasks, the timing of the stimulus was corroborated using a

photodiode and the click signal was recorded directly from the voltage of the mouse button switch

for the motor intact individuals. The participants sat 150 cm away from a computer monitor with a

diagonal length of 54 cm.

The simple reaction time task required the participants to click as soon as they saw a white

circular target with 5 cm radius appear on a black screen during the Target phase (see Figure 3A).

The time of the appearance of the target was randomly taken from a uniform distribution between

1000 and 3000 ms. The target appeared on the screen for 60 ms. Each run of this task had 50 trials,

with 10 randomly interleaved NO-GO catch trials during which the participants were not supposed
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to click, indicated by an auditory stimulus during the ITI phase.

The realistic braking task involved clicking to activate the brakes of a vehicle whenever an

obstacle appeared in front of a vehicle in a virtual environment within the CARLA 0.9.13 driving

simulator (see Figure 3B). During this task, the vehicle operated under algorithmic directional

control at a constant velocity (5 mph). As the vehicle proceeded down a straight road, an obstacle

(e.g., a vending machine, a trash can, etc.) would appear in the vehicle’s path (20 m in front of

the vehicle) for each GO phase of the 40 trials per run. The participants were instructed to apply

a brake signal using the BCI as soon as possible after seeing an obstacle appear. With no brake

application, the vehicle would collide with the object in 5 sec. Coming to a full stop required 2 sec

of constant brake application. Thus, the participant had 3 sec in which to begin applying the brake

signal to avoid collision. A trial was considered successful if there was no collision during the GO

phase and no manual braking during the NO-GO phase.

BCI-enabled driving

From decoded brain signals to vehicle control

The bottom part of Figure 2A depicts the flow of information from the BCI decoder output in the

decoder computer to several modules in the display computer and then to the control of a physical

or simulated vehicle. The decoder result was consumed by the effector controller, which was

responsible for continuously receiving the decoder output UDP datastream comprising positional

cursor and click information, transforming it into Python data structures and publishing it to the

overlay.

The overlay was a Python pygame instance, which subscribed to the effector controller and

transformed the x-value into the horizontal position of the blue circle and the y-value into the

vertical position of the red circle. The overlay further post-processed the horizontal and vertical

positions into steering and speed, respectively (for all three driving tasks) and the click signals into

full-stop braking (for the last two bimanually controlled driving tasks). The steering value would

change counterclockwise or clockwise exponentially when the blue circle moved to the left or

right red rectangular hot zone. The speed value would increase (up to the maximum speed limit) or

decrease (down to zero) exponentially when the red circle moved to the top or bottom red rectangular
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hot zone. If a full-stop braking was triggered by a click signal, the speed value would be immediately

brought down to zero for 1 second, meaning the red circle would be immediately brought down

to the bottom hot zone. For the two teledriving tasks without traffic, we also programmed slight

changes of the steering value when the blue circle moved within the gray central cold zone. The

final transformed steering and speed (and full-stop braking) values were displayed on screen and

transmitted to the data client. The data client also sent the vehicle feedback values to the overlay

display during the obstacle-course teledriving task.

The data client established multiple parallel connections with either the physical Ford Mustang

Mach-E vehicle remotely or the virtual vehicle in the CARLA simulator locally. From the data client

to the vehicle, the control signals including steering, speed, braking and latency were transmitted

over TCP, whereas the clock synchronization signals were transmitted over UDP for lower-latency

and better estimates of clock offsets. Meanwhile, the vehicle state was transmitted over UDP from

the vehicle to the data client. The real-time video feedback from the vehicle was transmitted to the

video display window on the display computer for BCI-JJ to view together with the overlay display

while driving the vehicle with the BCI control.

Simulated town driving

For the simulated driving task modified from the CARLA Autonomous Driving Leaderboard 2.0,

we asked BCI-JJ and the group of 20 motor intact participants to hit the vehicle’s brake by clicking

with their left index finger and to adjust the vehicle’s speed and steering by moving the cursor

with their right thumb. While BCI-JJ had his attempted movement directly decoded from his PPC

and MC signals using our BCI system, the group of 20 motor intact participants physically used a

gaming joystick to control the agent vehicle’s movement (see figure S5). With the overlay instance

floating above the vehicle simulation window (see Figure 3E), each participant got real-time visual

feedback of their cursor and click control, the view ahead of the vehicle, and the side views. In

the CARLA Leaderboard 2.0, we tested in Town 12’s downtown areas which featured high-rise

skyscrapers arranged into blocks on a consistent grid of roads with busy traffic. The route that we

edited from Town 12 included 2 right turns, 2 left runs, 1 right curve, 1 left lane switch, and 6 traffic

lights (see Figure 3F). The correct route was labeled with green dots on the ground for the agent

vehicle to follow.
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The display computer recorded videos for all 10 runs in four sessions controlled by BCI-JJ

and for both two runs in two sessions controlled by each motor intact participant (see movie S5

for a side-by-side comparison of the average simulated driving performance between BCI-JJ and

a motor intact participant). Each run of the same route lasted for about 20 minutes with both the

agent vehicle’s maximum speed and the traffic speed at 5 mph. If the agent vehicle deviated from

the correct route for more than 10 seconds, the run would be stopped immediately and marked as

incomplete. With the bimanual cursor-and-click control, the simulated driving performance through

this route in the virtual town was evaluated based on (1) the proportion of the completed route

distance (𝐶), (2) the number of collisions with obstacles (𝑁𝑐), (3) the number of lane deviations

(𝑁𝑙), and (4) the number of running red traffic lights (𝑁𝑠). All these factors were automatically

measured by the CARLA Leaderboard 2.0 by the end of each run and aggregated together for a

composite bimanual simulated driving score as shown in Eq. 1. It started with an ideal 1.0 base

score in each run, which was reduced each time an infraction was committed.

Teledriving with a physical vehicle

For this study, a Ford Mustang Mach-E vehicle was instrumented with additional hardware to facil-

itate remote motion control of the vehicle as follows: an in-vehicle controller computer with a UDP

connection facilitating a telematics node to a MicroAutoBox II (MABx) containing the controller

node, which provided data downstream to vehicle motion control modules via CAN. Onboard the in-

vehicle telematics node in Michigan, the application received the remote teleoperation commands

for speed and steering input from the display computer for BCI-JJ in California published in the

form of a ROS message from the software located at the display computer’s ROS client over TCP.

The ROS master located on the in-vehicle telematics node subscribed to the incoming published

messages and refactored the data into a UDP input to the vehicle, which was then received via the

controller node on the MABx. The MABx code ran a Simulink model which ingested the UDP data

and sent these inputs over CAN to the downstream vehicle motion control modules. This software

also provided feedback to the display computer in the reverse path, packaging CAN data back over

UDP which was then published out on a ROS message subscribed by the display computer (see

Figures 1 and 2B). The speed and steering values that the in-vehicle controller received from the

display computer were between 0 and 1, which were mapped to 0 → 4 mph for the actual speed of
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the vehicle and to −601.5 → 601.5 degrees in the steering wheel angle.

With both BCI-enabled teledriving tasks, there were important components added to ensure

the safety of test operators while remote teleoperation was occurring. Within the software on the

MABx, safety controls were in place to utilize the Electronic Parking Brake (EPB) and ensure

successful exit of teleoperation mode. Thus, safety controls for the safety driver were performed via

1) a manual brake press/hold to intervene in intermediate cases where the BCI-controlled vehicle

might encounter an obstacle or experience non-negligible lags (i.e., greater than 1 to 2 seconds),

and 2) EPB engagement to fully exit teleoperation mode. On the vehicle server ROS node, the test

operators also initiated the testing by publishing a specific message to activate the teleoperation

mode with a locally published message prior to initiating the remote participant display computer’s

ROS node. Finally, the vehicle was calibrated, and the speed request was limited to only perform

low speed control of less than or equal to 4 mph.

Teledriving real-time feedback

As BCI-JJ was living in California while the Ford research team and this Mach-E vehicle were

located in Michigan, it was necessary to establish a teleoperation framework in the initial stages of

testing and validation. Our experimental setup consisted of a network created between the display

computer and a modem in the Ford Mustang Mach-E SUV (see Figure 2B). A TailScale Virtual

Private Network was set up to facilitate the generation of a different IP address for each of the

different nodes. The display computer was connected to the Internet via a 1 Gbps fiber connection,

while the modem on the vehicle was a Verizon MiFi-2100 5G Modem. In addition, a smartphone

was securely mounted on the dash inside the vehicle to allow safety drivers to communicate with

the team via video chat. This smartphone was not connected to the other devices in the vehicle to

minimize network traffic. The video feed was transported to the display computer over WebRTC

with a latency under 600ms and a bandwidth under 3Mbps. Additionally, the in-vehicle telematics

node transmitted the actual speed and steering values to the display computer, which was then

displayed in a rolling time window.

In any situation that requires real-time feedback for teleoperation, it is extremely important that

command and video latencies are minimized. Therefore, we implemented a system for monitoring

the glass-to-glass latency that involved initially pointing a camera at a clock in the vehicle, then
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streaming the feed to a display computer, and finally taking a picture of both the real time on the

clock and the time as shown in the camera stream. The difference between these two times was the

glass-to-glass latency. We ran the “date-time” Linux command in a terminal as part of the stream

from the interface computer to the display computer. The display computer streamed its screen

back to the vehicle via the external video chat.

Teledriving evaluations

For the Mcity teledriving task with cursor-movement-only BCI control, we tested four randomly

mapped routes in this mock urban environment. BCI-JJ navigated the Mach-E vehicle for one run

per route across two sessions and finished each route between 2.5 minutes and 7.5 minutes. We

used a camera mounted outside the front windshield of the vehicle to record full videos of those 4

runs (see movies S1, S2, S3 and S4), which were sent to three independent evaluators after each

session to evaluate according to the infraction rubrics. The BCI teledriving infraction components in

Mcity included (1) the proportion of the completed route distance (𝐶), (2) the number of collisions

with obstacles (𝑁𝑐), and (3) the number of lane deviations (𝑁𝑙). All these factors were aggregated

together for a composite BCI teledriving score in Mcity as shown in Eq. 1. It started with an ideal

1.0 base score in each run, which was reduced each time an infraction was committed. 𝑁𝑠 in Eq. 1

was set to zero for this task, because no red traffic light or stop sign was considered.

For the obstacle-course teledriving task with the cursor-and-click-based bimanual BCI control,

we tested four loop-shaped route options containing many components of a standard driving test.

Each route was clockwise or counterclockwise with or without a lane-switch segment. BCI-JJ

navigated the Mach-E vehicle for 9 runs per route across three sessions and usually finished each

run on this obstacle course between 2.5 minutes and 3 minutes. We used the camera mounted within

the vehicle to record full videos for all 36 runs (see movies S6, S7, S8 and S9 for one example run

per route), which were sent to three independent evaluators after each session to evaluate according

to the infraction rubrics. The BCI teledriving infraction components through this obstacle course

included (1) the proportion of the completed route distance (𝐶), (2) the number of collisions with

obstacles (𝑁𝑐), (3) the number of lane deviations (𝑁𝑙), and (4) the number of running stop signs

(𝑁𝑠). All these factors were aggregated together for a composite BCI teledriving score through the

obstacle course as shown in Eq. 1. It started with an ideal 1.0 base score in each run, which was
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reduced each time an infraction was committed.
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Figure S1: Brain implant locations of BCI-JJ. We implanted 1 × 96 channels of NeuroPort

Electrodes (Blackrock Neurotech, Salt Lake City, UT) in his posterior parietal cortex (PPC) and

1 × 96 channels of NeuroPort Electrodes in the hand knob region of his motor cortex (MC). “CS”

stands for the central sulcus. “IPS” stands for the intraparietal sulcus.
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Figure S2: Trial-based reaction accuracy for the simple and braking reaction time tasks

among BCI-JJ and all 20 motor intact participants individually with the same right index

finger effector. In the parenthesis under each participant’s ID, the number represents their age, and

the letter “f” or “m” represents their gender (female or male). The box plots are sorted according to

the average performance of each participant. We applied pairwise comparisons with the Bonferroni

correction from a multiple comparison test using the information contained from one-way ANOVA

among 21 participants. For participants whose box plots are outside the green rectangular area,

their performance was different from BCI-JJ at the corrected 5% significance level. There are

comparisons of reaction accuracy among all 21 participants for (A) the simple reaction time task

and (B) the braking reaction time task.
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Figure S3: Trial-based reaction sensitivity for the simple and braking reaction time tasks

among BCI-JJ and all 20 motor intact participants individually with the same right index

finger effector. In the parenthesis under each participant’s ID, the number represents their age, and

the letter “f” or “m” represents their gender (female or male). The box plots are sorted according to

the average performance of each participant. We applied pairwise comparisons with the Bonferroni

correction from a multiple comparison test using the information contained from one-way ANOVA

among 21 participants. For participants whose box plots are outside the green rectangular area,

their performance was different from BCI-JJ at the corrected 5% significance level. There are

comparisons of reaction sensitivity among all 21 participants for (A) the simple reaction time task

and (B) the braking reaction time task.
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Figure S4: Trial-based reaction specificity for the simple and braking reaction time tasks

among BCI-JJ and all 20 motor intact participants individually with the same right index

finger effector. In the parenthesis under each participant’s ID, the number represents their age, and

the letter “f” or “m” represents their gender (female or male). The box plots are sorted according to

the average performance of each participant. We applied pairwise comparisons with the Bonferroni

correction from a multiple comparison test using the information contained from one-way ANOVA

among 21 participants. For participants whose box plots are outside the green rectangular area,

their performance was different from BCI-JJ at the corrected 5% significance level. There are

comparisons of reaction specificity among all 21 participants for (A) the simple reaction time task

and (B) the braking reaction time task.
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Figure S5: Joystick programmed for the bimanual cursor-and-click driving control of motor

intact participants. They used the joystick in the simulated town driving task modified from the

CARLA Leaderboard 2.0. The top left button was clicked with the left index finger to trigger

full-stop braking of the vehicle. The right thumbstick was moved around with the right thumb to

trigger the vehicle’s steering value changes horizontally and its speed value changes vertically.
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Figure S6: Trial-based simulated driving scores among BCI-JJ and all 20 motor intact partic-

ipants individually with the same bimanual cursor-and-click control. In the parenthesis under

each participant’s ID, the number represents their age, and the letter “f” or “m” represents their

gender (female or male). The box plots are sorted according to the average performance of each

participant. We applied pairwise comparisons with the Bonferroni correction from a multiple com-

parison test using the information contained from one-way ANOVA among 21 participants. For

participants whose box plots are outside the green rectangular area, their performance was different

from BCI-JJ at the corrected 5% significance level.
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Table S1: BCI trial-based simple reaction time task metrics, mean (SD), among different

hand effectors of BCI-JJ. We collected 10 runs for each of the six effectors (i.e., right and left

index fingers, ring fingers, and power grips) consisting of 40 GO trials and 10 randomly interleaved

NO-GO catch trials per run. The valid reaction time (RT) ranged from 50 ms to 1000 ms in GO

trials.

Simple Valid RT (ms) Accuracy (%) Sensitivity (%) Specificity (%)

Right index 137 (26.8) 90.8 (4.13) 98.4 (2.82) 73.3 (13.8)

Left index 151 (30.3) 89.4 (5.42) 98.9 (1.47) 68.3 (14.1)

Right Ring 154 (31.0) 88.0 (5.42) 97.7 (3.14) 66.1 (12.3)

Left Ring 157 (38.9) 85.0 (9.35) 98.1 (1.82) 61.4 (17.2)

Right Power 168 (43.3) 93.6 (2.46) 96.4 (2.51) 85.0 (6.19)

Left Power 167 (34.6) 89.8 (4.85) 96.7 (3.47) 71.6 (9.80)
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Table S2: Pairwise comparison 𝑝 values for BCI trial-based simple reaction metrics among

six hand effectors of BCI-JJ. The 𝑝 values were obtained from a multiple comparison test using

the results of one-way ANOVA. We collected 10 runs for each of the six effectors (i.e., right and left

index fingers, ring fingers, and power grips) consisting of 40 GO trials and 10 randomly interleaved

NO-GO catch trials per run. The valid reaction time (RT) ranged from 50 ms to 1000 ms in GO

trials. Bonferroni correction for multiple comparisons was applied by setting the significance level

to the corrected 𝑝 < 0.05.

Simple Valid RT Accuracy Sensitivity Specificity

Right index Left Index 1.9e−6 1 1 1

Right index Right Ring 8.3e−10 1 1 1

Right index Left Ring 4.8e−13 0.39 1 0.62

Right index Right Power 1.2e−32 1 1 0.66

Right index Left Power 2.1e−29 1 1 1

Left index Right Ring 1 1 1 1

Left index Left Ring 0.26 1 1 1

Left index Right Power 9.5e−11 1 0.56 0.073

Left index Left Power 5.2e−9 1 1 1

Right Ring Left Ring 1 1 1 1

Right Ring Right Power 4.8e−7 0.47 1 0.023

Right Ring Left Power 1.1e−5 1 1 1

Left Ring Right Power 1.5e−4 0.020 1 0.0017

Left Ring Left Power 0.0019 0.95 1 1

Right Power Left Power 1 1 1 0.33
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Table S3: BCI trial-based braking reaction time task metrics, mean (SD), between two index

finger effectors of BCI-JJ. We collected 10 runs per right or left index finger consisting of 40

trials per run, with one NO-GO phase and one GO phase in each trial. The valid reaction time (RT)

ranged from 50 ms to 1000 ms in GO phases.

Braking Valid RT (ms) Accuracy (%) Sensitivity (%) Specificity (%)

Right index 290 (64.9) 99.2 (0.919) 99.7 (0.949) 98.3 (1.89)

Left index 338 (82.2) 99.9 (0.316) 1 (0) 99.7 (0.949)

Table S4: Two-sample 𝑡-test 𝑝 values for trial-based braking reaction metrics, when equal

variances were not assumed, between the right and left index finger effectors of BCI-JJ. We

collected 10 runs per right or left index finger consisting of 40 trials per run, with one NO-GO phase

and one GO phase in each trial. The valid reaction time (RT) ranged from 50 ms to 1000 ms in

GO phases. We used a left-tailed 𝑡-test to test against the alternative hypothesis that the population

mean of the valid RT for the right index finger effector of BCI-JJ was less than that for his left

index finger effector. We used a both-tailed 𝑡-test to test against the alternative hypothesis that the

population means for each performance measure were not equal between right and left index finger

effectors of BCI-JJ. If 𝑝 < 0.05, the metrics had a significant impact on the performance.

Braking Valid RT Accuracy Sensitivity Specificity

Right index Left Index 8.2e−19 0.044 0.34 0.056
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Table S5: Trial-based simple reaction metrics, mean (SD), among BCI-JJ and 20 motor intact

participants as a control group and as each individual with the same right index finger effector.

We collected 10 runs from BCI-JJ and 4 runs from each motor intact participant (M01–M20). In

the parenthesis after each participant’s ID, the number represents their age, and the letter “f” or

“m” represents their gender (female or male). The valid reaction time (RT) ranged from 50 ms to

1000 ms in GO trials.

Simple Valid Accuracy Sensitivity Specificity
RT (ms) (%) (%) (%)

BCI-JJ (50m) 137 (26.8) 90.8 (4.13) 98.4 (2.82) 73.3 (13.8)

Motor Intact M01–M20 165 (52.3) 96.2 (3.97) 99.5 (1.24) 87.5 (12.5)

M01 (42f) 182 (73.0) 97.5 (2.52) 100 (0) 89.7 (9.53)

M02 (48f) 182 (35.3) 99.0 (1.15) 99.4 (1.25) 97.7 (4.55)

M03 (52m) 148 (54.2) 91.5 (3.79) 99.3 (1.32) 72.6 (10.4)

M04 (36m) 166 (46.2) 99.0 (1.15) 100 (0) 95.5 (5.25)

M05 (52f) 182 (38.0) 100 (0) 100 (0) 100 (0)

M06 (35f) 154 (33.3) 96.0 (4.32) 98.0 (3.95) 89.4 (7.92)

M07 (48f) 129 (23.0) 90.0 (1.63) 100 (0) 66.8 (3.65)

M08 (47f) 149 (42.9) 96.5 (1.91) 98.7 (1.46) 89.7 (9.53)

M09 (50f) 229 (90.8) 96.5 (3.00) 98.7 (1.52) 89.4 (7.92)

M10 (50m) 133 (23.6) 92.0 (7.12) 100 (0) 75.0 (18.6)

M11 (44m) 146 (37.3) 96.5 (1.91) 100 (0) 85.5 (6.75)

M12 (43m) 147 (30.7) 95.0 (2.58) 98.7 (1.48) 84.5 (11.7)

M13 (62f) 143 (30.0) 97.0 (2.58) 100 (0) 87.8 (9.95)

M14 (61m) 210 (57.7) 98.5 (1.00) 98.8 (1.44) 97.9 (4.17)

M15 (60f) 197 (64.0) 99.0 (1.15) 100 (0) 95.5 (5.25)

M16 (49m) 139 (35.2) 89.0 (3.46) 100 (0) 65.1 (6.73)

M17 (55m) 161 (31.7) 98.5 (1.91) 99.4 (1.28) 95.5 (5.25)

M18 (58f) 177 (31.8) 99.0 (1.15) 100 (0) 95.5 (5.25)

M19 (53m) 162 (44.3) 96.0 (2.83) 99.4 (1.25) 86.4 (12.1)

M20 (53m) 154 (28.1) 97.5 (2.52) 100 (0) 89.7 (9.53)
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Table S6: Two-sample 𝑡-test 𝑝 values for trial-based simple reaction metrics, when equal

variances were not assumed, between BCI-JJ and the motor intact control group with the

same right index finger effector. We collected 10 runs from BCI-JJ and 4 runs from each of the

20 motor intact participants whose average age was the same as the age of BCI-JJ. There was no

gender bias within the motor intact control group. During each run, there were 40 GO trials and

10 randomly interleaved NO-GO catch trials. The valid reaction time (RT) ranged from 50 ms to

1000 ms in GO trials. We used a left-tailed 𝑡-test to test against the alternative hypothesis that the

population mean of the valid RT for BCI-JJ was less than that for the motor intact control group

of 20 participants. We used a both-tailed 𝑡-test to test against the alternative hypothesis that the

population means for each performance measure were not equal between BCI-JJ and the motor

intact control group. If 𝑝 < 0.05, the metrics had a significant impact on the performance.

Simple Valid RT Accuracy Sensitivity Specificity

BCI-JJ Motor Intact 3.3e−53 2.3e−3 0.26 0.010
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Table S7: Pairwise comparison 𝑝 values for trial-based simple reaction metrics between BCI-

JJ and each of the 20 motor intact control participants with the same right index finger

effector. The 𝑝 values were obtained from a multiple comparison test using the results of one-

way ANOVA. We collected 10 runs from BCI-JJ and 4 runs from each motor intact participant

(M01–M20). In the parenthesis after each participant’s ID, the number represents their age, and

the letter “f” or “m” represents their gender (female or male). The valid reaction time (RT) ranged

from 50 ms to 1000 ms in GO trials. Bonferroni correction for multiple comparisons was applied

by setting the significance level to the corrected 𝑝 < 0.05.

Simple Valid RT Accuracy Sensitivity Specificity

BCI-JJ (50m) M01 (42f) 1.1e−23 0.0767 1 0.97

BCI-JJ (50m) M02 (48f) 1.9e−24 0.0041 1 0.0091

BCI-JJ (50m) M03 (52m) 1 1 1 1

BCI-JJ (50m) M04 (36m) 7.5e−10 0.0041 1 0.038

BCI-JJ (50m) M05 (52f) 4.5e−24 5.0e−4 1 0.0021

BCI-JJ (50m) M06 (35f) 0.0092 1 1 1

BCI-JJ (50m) M07 (48f) 1 1 1 1

BCI-JJ (50m) M08 (47f) 1 0.45 1 0.97

BCI-JJ (50m) M09 (50f) 1.1e−96 0.45 1 1

BCI-JJ (50m) M10 (50m) 1 1 1 1

BCI-JJ (50m) M11 (44m) 1 0.45 1 1

BCI-JJ (50m) M12 (43m) 1 1 1 1

BCI-JJ (50m) M13 (62f) 1 0.19 1 1

BCI-JJ (50m) M14 (61m) 1.6e−62 0.011 1 0.0081

BCI-JJ (50m) M15 (60f) 2.1e−43 0.0041 1 0.038

BCI-JJ (50m) M16 (49m) 1 1 1 1

BCI-JJ (50m) M17 (55m) 1.3e−6 0.0112 1 0.038

BCI-JJ (50m) M18 (58f) 2.8e−19 0.0041 1 0.038

BCI-JJ (50m) M19 (53m) 4.4e−7 1 1 1

BCI-JJ (50m) M20 (53m) 0.0164 0.077 1 0.97
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Table S8: Trial-based braking reaction metrics, mean (SD), among BCI-JJ and 20 motor

intact participants as a control group and as each individual with the same right index

finger effector. We collected 10 runs from BCI-JJ and 5 runs from each motor intact participant

(M01–M20). In the parenthesis after each participant’s ID, the number represents their age, and

the letter “f” or “m” represents their gender (female or male). The valid reaction time (RT) ranged

from 50 ms to 1000 ms in GO phases.

Braking Valid Accuracy Sensitivity Specificity
RT (ms) (%) (%) (%)

BCI-JJ (50m) 290 (64.9) 99.2 (0.919) 99.7 (0.949) 98.3 (1.89)

Motor Intact M01–M20 370 (89.5) 99.6 (0.770) 99.8 (0.809) 99.3 (1.35)

M01 (42f) 391 (115) 99.7 (0.516) 100 (0) 99.0 (1.55)

M02 (48f) 397 (73.5) 99.8 (0.447) 100 (0) 99.4 (1.34)

M03 (52m) 411 (122) 98.8 (1.64) 99.4 (1.34) 98.4 (2.30)

M04 (36m) 336 (74.5) 99.8 (0.447) 100 (0) 99.4 (1.34)

M05 (52f) 400 (56.8) 99.6 (0.548) 100 (0) 98.8 (1.64)

M06 (35f) 288 (40.9) 100 (0) 100 (0) 100 (0)

M07 (48f) 313 (60.3) 100 (0) 100 (0) 100 (0)

M08 (47f) 348 (68.9) 99.8 (0.447) 100 (0) 99.4 (1.34)

M09 (50f) 465 (105) 99.6 (0.548) 100 (0) 98.8 (1.64)

M10 (50m) 382 (57.5) 100 (0) 100 (0) 100 (0)

M11 (44m) 337 (80.5) 99.2 (1.30) 100 (0) 98.4 (2.30)

M12 (43m) 329 (67.3) 100 (0) 100 (0) 100 (0)

M13 (62f) 335 (66.7) 99.6 (0.548) 100 (0) 98.8 (1.64)

M14 (61m) 436 (87.4) 97.8 (1.10) 96.6 (0.894) 98.8 (1.64)

M15 (60f) 369 (99.8) 99.7 (0.516) 100 (0) 99.0 (1.55)

M16 (49m) 385 (79.2) 100 (0) 100 (0) 100 (0)

M17 (55m) 336 (50.4) 100 (0) 100 (0) 100 (0)

M18 (58f) 408 (84.1) 99.6 (0.548) 100 (0) 98.8 (1.64)

M19 (53m) 389 (80.8) 100 (0) 100 (0) 100 (0)

M20 (53m) 346 (43.6) 99.6 (0.548) 100 (0) 99.0 (1.41)
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Table S9: Two-sample 𝑡-test 𝑝 values for trial-based braking reaction metrics, when equal

variances were not assumed, between BCI-JJ and the motor intact control group with the

same right index finger effector. We collected 10 runs from BCI-JJ and 5 runs from each of the 20

motor intact participants whose average age was the same as the age of BCI-JJ. There was no gender

bias within the motor intact control group. There were 40 trials per run, with one NO-GO phase

and one GO phase in each trial. The valid reaction time (RT) ranged from 50 ms to 1000 ms in GO

phases. We used a left-tailed 𝑡-test to test against the alternative hypothesis that the population mean

of the valid RT for BCI-JJ was less than that for the motor intact control group of 20 participants.

We used a both-tailed 𝑡-test to test against the alternative hypothesis that the population means for

each performance measure were not equal between BCI-JJ and the motor intact control group. If

𝑝 < 0.05, the metrics had a significant impact on the performance.

Braking Valid RT Accuracy Sensitivity Specificity

BCI-JJ Motor Intact 1.4e−79 0.18 0.74 0.14
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Table S10: Pairwise comparison 𝑝 values for trial-based simple reaction metrics between

BCI-JJ and each of the 20 motor intact control participants with the same right index finger

effector. The 𝑝 values were obtained from a multiple comparison test using the results of one-

way ANOVA. We collected 10 runs from BCI-JJ and 5 runs from each motor intact participant

(M01–M20). In the parenthesis after each participant’s ID, the number represents their age, and

the letter “f” or “m” represents their gender (female or male). The valid reaction time (RT) ranged

from 50 ms to 1000 ms in GO trials. Bonferroni correction for multiple comparisons was applied

by setting the significance level to the corrected 𝑝 < 0.05.

Braking Valid RT Accuracy Sensitivity Specificity

BCI-JJ (50m) M01 (42f) 3.5e−52 1 1 1

BCI-JJ (50m) M02 (48f) 1.2e−52 1 1 1

BCI-JJ (50m) M03 (52m) 8.8e−64 1 1 1

BCI-JJ (50m) M04 (36m) 3.3e−9 1 1 1

BCI-JJ (50m) M05 (52f) 1.1e−55 1 1 1

BCI-JJ (50m) M06 (35f) 1 1 1 1

BCI-JJ (50m) M07 (48f) 0.13 1 1 1

BCI-JJ (50m) M08 (47f) 2.1e−15 1 1 1

BCI-JJ (50m) M09 (50f) 1.4e−133 1 1 1

BCI-JJ (50m) M10 (50m) 2.7e−39 1 1 1

BCI-JJ (50m) M11 (44m) 1.0e−9 1 1 1

BCI-JJ (50m) M12 (43m) 2.1e−6 1 1 1

BCI-JJ (50m) M13 (62f) 6.5e−9 1 1 1

BCI-JJ (50m) M14 (61m) 5.1e−94 0.054 3.0e−19 1

BCI-JJ (50m) M15 (60f) 2.5e−29 1 1 1

BCI-JJ (50m) M16 (49m) 1.7e−41 1 1 1

BCI-JJ (50m) M17 (55m) 1.4e−9 1 1 1

BCI-JJ (50m) M18 (58f) 4.3e−64 1 1 1

BCI-JJ (50m) M19 (53m) 1.6e−45 1 1 1

BCI-JJ (50m) M20 (53m) 1.2e−14 1 1 1
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Table S11: Simulated driving scores and infractions, mean (SD), and two-sample 𝑡-test 𝑝

values between BCI-JJ and the motor intact control group using the same bimanual control.

We collected 10 runs from BCI-JJ and 2 runs from each of the 20 motor intact participants whose

average age was the same as the age of BCI-JJ. There was no gender bias within the motor intact

control group. During each run of navigating a virtual vehicle in a simulated town environment

with busy traffic and a route modified from the CARLA Leaderboard 2.0, a participant used the

right thumb for cursor movement to control its steering and speed and the left index finger for clicks

to control its full-stop braking. The simulated driving scores ranged from 0 to 1.0. The proportion

of the completed route distance (i.e., 𝐶 for route completion) could be a decimal between 0 and

1.0 with 1.0 as full completion of the route. The rest infraction components, which described the

occurrences of collisions, running red lights, and lane deviations (i.e., 𝑁𝑐, 𝑁𝑙 and 𝑁𝑠 respectively)

per run, were all nonnegative numbers. We used a right-tailed 𝑡-test to test against the alternative

hypothesis that the population mean of the simulated driving score for BCI-JJ was greater than that

for the motor intact control group of 20 participants. We used a both-tailed 𝑡-test to test against

the alternative hypothesis that the population means for each infraction component were not equal

between BCI-JJ and the motor intact control group. If 𝑝 < 0.05, the metrics had a significant impact

on the performance.

BCI-JJ Motor Intact (𝑡-test 𝑝-value)

Simulated Driving Score 0.924 (0.115) 0.823 (0.160) 0.017

Route Completion (𝐶) 1 (0) 1 (0) NaN

Number of Collisions (𝑁𝑐) 0.200 (0.422) 0.775 (0.862) 5.2e−3

Number of Lane Deviations (𝑁𝑙) 0.100 (0.316) 0.075 (0.267) 0.82

Number of Running Red Lights (𝑁𝑠) 0.300 (0.483) 0.350 (0.700) 0.79
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Caption for Movie S1: BCI teledriving of a commercial Ford Mustang Mach-E via Route 1

in Mcity by BCI-JJ using the unilateral cursor control. We used a camera mounted outside the

front windshield of the vehicle in Michigan for continuous recording of the view ahead and real-

time video feedback to BCI-JJ (top-right) in California. As shown on the overlay (bottom-middle),

the cursor movement was decoded with BCI-JJ’s right thumb for steering and speed control of

the vehicle. If the vehicle was about to collide with some dangerous obstacle and/or experienced

more than two seconds of aggregated lags, the safety driver inside the vehicle (bottom-left) would

take over the vehicle control for a few seconds to move it back to the right track before the BCI

teledriving could resume. Route 1 map (bottom-right) has the current segment labeled in dark

purple. The video is played back at 4 times the speed of the original recording.

Caption for Movie S2: BCI teledriving of a commercial Ford Mustang Mach-E via Route 2

in Mcity by BCI-JJ using the unilateral cursor control. We used a camera mounted outside the

front windshield of the vehicle in Michigan for continuous recording of the view ahead and real-

time video feedback to BCI-JJ (top-right) in California. As shown on the overlay (bottom-middle),

the cursor movement was decoded with BCI-JJ’s right thumb for steering and speed control of

the vehicle. If the vehicle was about to collide with some dangerous obstacle and/or experienced

more than two seconds of aggregated lags, the safety driver inside the vehicle (bottom-left) would

take over the vehicle control for a few seconds to move it back to the right track before the BCI

teledriving could resume. Route 2 map (bottom-right) has the current segment labeled in dark

purple. The video is played back at 4 times the speed of the original recording.
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Caption for Movie S3: BCI teledriving of a commercial Ford Mustang Mach-E via Route 3

in Mcity by BCI-JJ using the unilateral cursor control. We used a camera mounted outside the

front windshield of the vehicle in Michigan for continuous recording of the view ahead and real-

time video feedback to BCI-JJ (top-right) in California. As shown on the overlay (bottom-middle),

the cursor movement was decoded with BCI-JJ’s right thumb for steering and speed control of the

vehicle. If the vehicle was about to collide with some dangerous obstacle and/or experienced more

than two seconds of aggregated lags, the safety driver inside the vehicle would take over the vehicle

control for a few seconds to move it back to the right track before the BCI teledriving could resume.

Route 3 map (bottom-right) has the current segment labeled in dark purple. The video is played

back at 4 times the speed of the original recording.

Caption for Movie S4: BCI teledriving of a commercial Ford Mustang Mach-E via Route 4

in Mcity by BCI-JJ using the unilateral cursor control. We used a camera mounted outside

the front windshield of the vehicle in Michigan for continuous recording of the view ahead and

real-time video feedback to BCI-JJ (top-right) in California. The cursor movement was decoded

with BCI-JJ’s right thumb for steering and speed control of the vehicle. If the vehicle was about

to collide with some dangerous obstacle and/or experienced more than two seconds of aggregated

lags, the safety driver inside the vehicle (bottom-left) would take over the vehicle control for a few

seconds to move it back to the right track before the BCI teledriving could resume. Route 4 map

(bottom-right) has the current segment labeled in dark purple. The video is played back at 4 times

the speed of the original recording.
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Caption for Movie S5: Side-by-side comparisons of the average simulated town driving perfor-

mance between BCI-JJ and a motor intact participant using the bimanual cursor-and-click

control. We showed two example runs from BCI-JJ and one motor intact participant on the town

route modified from the CARLA Leaderboard 2.0. Among all the collected runs, these two example

runs had their simulated driving scores closest to the average scores for BCI-JJ and the motor intact

control group. We retrieved the cursor movement and click information from either the BCI decoder

for BCI-JJ or the joystick for motor intact participants. With the overlay instance floating above the

vehicle simulation window, each participant got real-time visual feedback of their cursor and click

control, the view ahead of the vehicle, and the side views. The cursor movement with the right

thumb controlled steering and speed of the virtual vehicle, whereas the clicks with the left index

finger controlled its full-stop braking. Each route map (top) corresponding to each participant’s

driving recording has the current segment labeled in dark purple. The video is played back at 4

times the speed of the original recording.
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Caption for Movie S6: BCI teledriving of a commercial Ford Mustang Mach-E through the

obstacle course clockwise with a lane-switch segment by BCI-JJ using the bimanual cursor-

and-click control. The example run had its teledriving score closest to the average scores for this

route option. We used the camera mounted within the vehicle in Michigan for continuous recording

of the view ahead and real-time video feedback to BCI-JJ (top-right) in California. As shown on the

overlay (bottom-middle), the cursor movement was decoded with BCI-JJ’s right thumb for steering

and speed control of the vehicle, whereas the click information was decoded with his left index

finger for its full-stop braking. The route map (bottom-right) has the chosen direction of the loop

and the chosen lane switch option labeled with the black arrow. The video is played back at 2 times

the speed of the original recording.

Caption for Movie S7: BCI teledriving of a commercial Ford Mustang Mach-E through the

obstacle course clockwise without any lane switch by BCI-JJ using the bimanual cursor-and-

click control. The example run had its teledriving score closest to the average scores for this route

option. We used the camera mounted within the vehicle in Michigan for continuous recording of

the view ahead and real-time video feedback to BCI-JJ (top-right) in California. As shown on the

overlay (bottom-middle), the cursor movement was decoded with BCI-JJ’s right thumb for steering

and speed control of the vehicle, whereas the click information was decoded with his left index

finger for its full-stop braking. The route map (bottom-right) has the chosen direction of the loop

and the chosen lane switch option labeled with the black arrow. The video is played back at 2 times

the speed of the original recording.
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Caption for Movie S8: BCI teledriving of a commercial Ford Mustang Mach-E through the

obstacle course counterclockwise with a lane-switch segment by BCI-JJ using the bimanual

cursor-and-click control. The example run had its teledriving score closest to the average scores

for this route option. We used the camera mounted within the vehicle in Michigan for continuous

recording of the view ahead and real-time video feedback to BCI-JJ (top-right) in California. As

shown on the overlay (bottom-middle), the cursor movement was decoded with BCI-JJ’s right

thumb for steering and speed control of the vehicle, whereas the click information was decoded

with his left index finger for its full-stop braking. The route map (bottom-right) has the chosen

direction of the loop and the chosen lane switch option labeled with the black arrow. The video is

played back at 2 times the speed of the original recording.

Caption for Movie S9: BCI teledriving of a commercial Ford Mustang Mach-E through the

obstacle course counterclockwise without any lane switch by BCI-JJ using the bimanual

cursor-and-click control. The example run had its teledriving score closest to the average scores

for this route option. We used the camera mounted within the vehicle in Michigan for continuous

recording of the view ahead and real-time video feedback to BCI-JJ (top-right) in California. As

shown on the overlay (bottom-middle), the cursor movement was decoded with BCI-JJ’s right

thumb for steering and speed control of the vehicle, whereas the click information was decoded

with his left index finger for its full-stop braking. The route map (bottom-right) has the chosen

direction of the loop and the chosen lane switch option labeled with the black arrow. The video is

played back at 2 times the speed of the original recording.
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