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Representation of internal speech by single 
neurons in human supramarginal gyrus

Sarah K. Wandelt    1,2  , David A. Bjånes1,2,3, Kelsie Pejsa1,2, Brian Lee1,4,5, 
Charles Liu    1,3,4,5 & Richard A. Andersen1,2

Speech brain–machine interfaces (BMIs) translate brain signals into words 
or audio outputs, enabling communication for people having lost their 
speech abilities due to diseases or injury. While important advances in 
vocalized, attempted and mimed speech decoding have been achieved, 
results for internal speech decoding are sparse and have yet to achieve 
high functionality. Notably, it is still unclear from which brain areas 
internal speech can be decoded. Here two participants with tetraplegia 
with implanted microelectrode arrays located in the supramarginal gyrus 
(SMG) and primary somatosensory cortex (S1) performed internal and 
vocalized speech of six words and two pseudowords. In both participants, 
we found significant neural representation of internal and vocalized speech, 
at the single neuron and population level in the SMG. From recorded 
population activity in the SMG, the internally spoken and vocalized words 
were significantly decodable. In an offline analysis, we achieved average 
decoding accuracies of 55% and 24% for each participant, respectively 
(chance level 12.5%), and during an online internal speech BMI task, we 
averaged 79% and 23% accuracy, respectively. Evidence of shared neural 
representations between internal speech, word reading and vocalized 
speech processes was found in participant 1. SMG represented words as well 
as pseudowords, providing evidence for phonetic encoding. Furthermore, 
our decoder achieved high classification with multiple internal speech 
strategies (auditory imagination/visual imagination). Activity in S1 was 
modulated by vocalized but not internal speech in both participants, 
suggesting no articulator movements of the vocal tract occurred during 
internal speech production. This work represents a proof-of-concept for a 
high-performance internal speech BMI.

Speech is one of the most basic forms of human communication, a 
natural and intuitive way for humans to express their thoughts and 
desires. Neurological diseases like amyotrophic lateral sclerosis (ALS) 
and brain lesions can lead to the loss of this ability. In the most severe 

cases, patients who experience full-body paralysis might be left with-
out any means of communication. Patients with ALS self-report loss 
of speech as their most serious concern1. Brain–machine interfaces 
(BMIs) are devices offering a promising technological path to bypass 
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affected inner speech rhyming tasks39. Recently, ref. 16 showed that 
electrode grids over SMG contributed to vocalized speech decoding. 
Finally, vocalized grasps and colour words were decodable from SMG 
from one of the same participants involved in this work23. These stud-
ies provide evidence for the possibility of an internal speech decoder 
from neural activity in the SMG.

The relationship between inner speech and vocalized speech is still 
debated. The general consensus posits similarities between internal 
and vocalized speech processes36, but the degree of overlap is not 
well understood8,35,40–42. Characterizing similarities between vocalized 
and internal speech could provide evidence that results found with 
vocalized speech could translate to internal speech. However, such 
a relationship may not be guaranteed. For instance, some brain areas 
involved in vocalized speech might be poor candidates for internal 
speech decoding.

In this Article, two participants with tetraplegia performed inter-
nal and vocalized speech of eight words while neurophysiological 
responses were captured from two implant sites. To investigate neural 
semantic and phonetic representation, the words were composed of 
six lexical words and two pseudowords (words that mimic real words 
without semantic meaning). We examined representations of various 
language processes at the single-neuron level using recording micro-
electrode arrays from the SMG located in the posterior parietal cortex 
(PPC) and the arm and/or hand regions of the primary somatosensory 
cortex (S1). S1 served as a control for movement, due to emerging evi-
dence of its activation beyond defined regions of interest43,44. Words 
were presented with an auditory or a written cue and were produced 
internally as well as orally. We hypothesized that SMG and S1 activity 
would modulate during vocalized speech and that SMG activity would 
modulate during internal speech. Shared representation between 
internal speech, vocalized speech, auditory comprehension and word 
reading processes was investigated.

Results
Task design
We characterized neural representations of four different language 
processes within a population of SMG and S1 neurons: auditory 

neurological impairment by recording neural activity directly from the 
cortex. Cognitive BMIs have demonstrated potential to restore inde-
pendence to participants with tetraplegia by reading out movement 
intent directly from the brain2–5. Similarly, reading out internal (also 
reported as inner, imagined or covert) speech signals could allow the 
restoration of communication to people who have lost it.

Decoding speech signals directly from the brain presents its own 
unique challenges. While non-invasive recording methods such as 
functional magnetic resonance imaging (fMRI), electroencephalogra-
phy (EEG) or magnetoencephalography6 are important tools to locate 
speech and internal speech production, they lack the necessary tempo-
ral and spatial resolution, adequate signal-to-noise ratio or portability 
for building an online speech BMI7–9. For example, state-of-the-art 
EEG-based imagined speech decoding performances in 2022 ranged 
from approximately 60% to 80% binary classification10. Intracortical 
electrophysiological recordings have higher signal-to-noise ratios and 
excellent temporal resolution11 and are a more suitable choice for an 
internal speech decoding device.

Invasive speech decoding has predominantly been attempted 
with electrocorticography (ECoG)9 or stereo-electroencephalographic 
depth arrays12, as they allow sampling neural activity from different 
parts of the brain simultaneously. Impressive results in vocalized and 
attempted speech decoding and reconstruction have been achieved 
using these techniques13–18. However, vocalized speech has also been 
decoded from localized regions of the cortex. In 2009, the use of a neu-
rotrophic electrode19 demonstrated real-time speech synthesis from 
the motor cortex. More recently, speech neuroprosthetics were built 
from small-scale microelectrode arrays located in the motor cortex20,21, 
premotor cortex22 and supramarginal gyrus (SMG)23, demonstrating 
that vocalized speech BMIs can be built using neural signals from local-
ized regions of cortex.

While important advances in vocalized speech16, attempted 
speech18 and mimed speech17,22,24–26 decoding have been made, highly 
accurate internal speech decoding has not been achieved. Lack of 
behavioural output, lower signal-to-noise ratio and differences in 
cortical activations compared with vocalized speech are speculated to 
contribute to lower classification accuracies of internal speech7,8,13,27,28. 
In ref. 29, patients implanted with ECoG grids over frontal, parietal 
and temporal regions silently read or vocalized written words from 
a screen. They significantly decoded vowels (37.5%) and consonants 
(36.3%) from internal speech (chance level 25%). Ikeda et al.30 decoded 
three internally spoken vowels using ECoG arrays using frequencies in 
the beta band, with up to 55.6% accuracy from the Broca area (chance 
level 33%). Using the same recording technology, ref. 31 investigated 
the decoding of six words during internal speech. The authors demon-
strated an average pair-wise classification accuracy of 58%, reaching 
88% for the highest pair (chance level 50%). These studies were so-called 
open-loop experiments, in which the data were analysed offline after 
acquisition. A recent paper demonstrated real-time (closed-loop) 
speech decoding using stereotactic depth electrodes32. The results 
were encouraging as internal speech could be detected; however, the 
reconstructed audio was not discernable and required audible speech 
to train the decoding model.

While, to our knowledge, internal speech has not previously been 
decoded from SMG, evidence for internal speech representation in 
the SMG exists. A review of 100 fMRI studies33 not only described SMG 
activity during speech production but also suggested its involvement in 
subvocal speech34,35. Similarly, an ECoG study identified high-frequency 
SMG modulation during vocalized and internal speech36. Additionally, 
fMRI studies have demonstrated SMG involvement in phonologic pro-
cessing, for instance, during tasks while participants reported whether 
two words rhyme37. Performing such tasks requires the participant to 
internally ‘hear’ the word, indicating potential internal speech repre-
sentation38. Furthermore, a study performed in people suffering from 
aphasia found that lesions in the SMG and its adjacent white matter 
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Fig. 1 | Multielectrode implant locations. a,b, SMG implant locations 
in participant 1 (1 × 96 multielectrode array) (a) and participant 2 (1 × 64 
multielectrode array) (b). c,d, S1 implant locations in participant 1 (2 × 96 
multielectrode arrays) (c) and participant 2 (2 × 64 multielectrode arrays) (d).
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comprehension, word reading, internal speech and vocalized speech 
production. In this manuscript, internal speech refers to engaging a 
prompted word internally (‘inner monologue’), without correlated 
motor output, while vocalized speech refers to audibly vocalizing a 
prompted word. Participants were implanted in the SMG and S1 on the 
basis of grasp localization fMRI tasks (Fig. 1).

The task contained six phases: an inter-trial interval (ITI), a cue 
phase (cue), a first delay (D1), an internal speech phase (internal), a 

second delay (D2) and a vocalized speech phase (speech). Words were 
cued with either an auditory or a written version of the word (Fig. 2a). 
Six of the words were informed by ref. 31 (battlefield, cowboy, python, 
spoon, swimming and telephone). Two pseudowords (nifzig and bin-
dip) were added to explore phonetic representation in the SMG. The 
first participant completed ten session days, composed of both the 
auditory and the written cue tasks. The second participant completed 
nine sessions, focusing only on the written cue task. The participants 
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Fig. 2 | Neurons in the SMG represent language processes. a, Written words 
and sounds were used to cue six words and two pseudowords in a participant 
with tetraplegia. The ‘audio cue’ task was composed of an ITI, a cue phase during 
which the sound of one of the words was emitted from a speaker (between 842 
and 1,130 ms), a first delay (D1), an internal speech phase, a second delay (D2) 
and a vocalized speech phase. The ‘written cue’ task was identical to the ‘audio 
cue’ task, except that written words appeared on the screen for 1.5 s. Eight 
repetitions of eight words were performed per session day and per task for 
the first participant. For the second participant, 16 repetitions of eight words 

were performed for the written cue task. b–e, Example smoothed firing rates of 
neurons tuned to four words in the SMG for participant 1 (auditory cue, python 
(b), and written cue, telephone (c)) and participant 2 (written cue, nifzig (d), 
and written cue, spoon (e)). Top: the average firing rate over 8 or 16 trials (solid 
line, mean; shaded area, 95% bootstrapped confidence interval). Bottom: one 
example trial with associated audio amplitude (grey). Vertically dashed lines 
indicate the beginning of each phase. Single neurons modulate firing rate during 
internal speech in the SMG.
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were instructed to internally say the cued word during the internal 
speech phase and to vocalize the same word during the speech phase.

For each of the four language processes, we observed selective 
modulation of individual neurons’ firing rates (Fig. 2b–e). In general, 
the firing rates of neurons increased during the active phases (cue, 
internal and speech) and decreased during the rest phases (ITI, D1 
and D2). A variety of activation patterns were present in the neural 
population. Example neurons were selected to demonstrate increases 

in firing rates during internal speech, cue and vocalized speech. Both 
the auditory (Fig. 2b) and the written cue (Fig. 2c–e) evoked highly 
modulated firing rates of individual neurons during internal speech.

These stereotypical activation patterns were evident at the 
single-trial level (Fig. 2b–e, bottom). When the auditory recording 
was overlaid with firing rates from a single trial, a heterogeneous neu-
ral response was observed (Supplementary Fig. 1a), with some SMG 
neurons preceding or lagging peak auditory levels during vocalized 
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Fig. 3 | Neuronal population activity modulates for individual words. a, The 
average percentage of tuned neurons to words in 50-ms time bins in the SMG 
over the trial duration for ‘auditory cue’ (blue) and ‘written cue’ (green) tasks for 
participant 1 (solid line, mean over ten sessions; shaded area, 95% confidence 
interval of the mean). During the cue phase of auditory trials, neural data were 
aligned to audio onset, which occurred within 200–650 ms following initiation 
of the cue phase. b, The average percentage of tuned neurons computed on 
firing rates per task phase, with 95% confidence interval over ten sessions. Tuning 
during action phases (cue, internal and speech) following rest phases (ITI, D1 and 
D2) was significantly higher (paired two-tailed t-test, d.f. 9, PITI_CueWritten < 0.001, 
Cohen’s d = 2.31; PITI_CueAuditory = 0.003, Cohen’s d = 1.25; PD1_InternalWritten = 0.008, 
Cohen’s d = 1.08; PD1_InternalAuditory < 0.001, Cohen’s d = 1.71; PD2_SpeechWritten < 0.001, 

Cohen’s d = 2.34; PD2_SpeechAuditory < 0.001, Cohen’s d = 3.23). c, The number of 
neurons tuned to each individual word in each phase for the ‘auditory cue’ and 
‘written cue’ tasks. d, The average percentage of tuned neurons to words in 50-ms 
time bins in the SMG over the trial duration for ‘written cue’ (green) tasks for 
participant 2 (solid line, mean over nine sessions; shaded area, 95% confidence 
interval of the mean). Due to a reduced number of tuned units, only the ‘written 
cue’ task variation was performed. e, The average percentage of tuned neurons 
computed on firing rates per task phase, with 95% confidence interval over nine 
sessions. Tuning during cue and internal phases following rest phases ITI and 
D1 was significantly higher (paired two-tailed t-test, d.f. 8, PITI_CueWritten = 0.003, 
Cohen’s d = 1.38; PD1_Internal = 0.001, Cohen’s d = 1.67). f, The number of neurons 
tuned to each individual word in each phase for the ‘written cue’ task.
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speech. In contrast, neural activity from primary sensory cortex (S1) 
only modulated during vocalized speech and produced similar firing 
patterns regardless of the vocalized word (Supplementary Fig. 1b).

Population activity represented selective tuning for 
individual words
Population analysis in the SMG mirrored single-neuron patterns 
of activation, showing increases in tuning during the active task 
phases (Fig. 3a,d). Tuning of a neuron to a word was determined 
by fitting a linear regression model to the firing rate in 50-ms time 
bins (Methods). Distinctions between participant 1 and participant 
2 were observed. Specifically, participant 1 exhibited strong tuning, 
whereas the number of tuned units was notably lower in participant 
2. Based on these findings, we exclusively ran the written cue task 
with participant number 2. In participant 1, representation of the 
auditory cue was lower compared with the written cue (Fig. 3b, cue). 
However, this difference was not observed for other task phases. 
In both participants, the tuned population activity in S1 increased 
during vocalized speech but not during the cue and internal speech 
phases (Supplementary Fig. 3a,b).

To quantitatively compare activity between phases, we assessed 
the differential response patterns for individual words by examin-
ing the variations in average firing rate across different task phases 
(Fig. 3b,e). In both participants, tuning during the cue and internal 
speech phases was significantly higher compared with their preced-
ing rest phases ITI and D1 (paired t-test between phases. Participant 
1: d.f. 9, PITI_CueWritten < 0.001, Cohen’s d = 2.31; PITI_CueAuditory = 0.003, 
Cohen’s d = 1.25; PD1_InternalWritten = 0.008, Cohen’s d = 1.08; PD1_InternalAudi-

tory < 0.001, Cohen’s d = 1.71. Participant 2: d.f. 8, PITI_CueWritten = 0.003, 
Cohen’s d = 1.38; PD1_Internal = 0.001, Cohen’s d = 1.67). For participant 
1, we also observed significantly higher tuning to vocalized speech 
than to tuning in D2 (d.f. 9, PD2_SpeechWritten < 0.001, Cohen’s d = 2.34; 
PD2_SpeechAuditory < 0.001, Cohen’s d = 3.23). Representation for all words 
was observed in each phase, including pseudowords (bindip and nifzig) 
(Fig. 3c,f). To identify neurons with selective activity for unique words, 
we performed a Kruskal–Wallis test (Supplementary Fig. 3c,d). The 
results mirrored findings of the regression analysis in both participants, 
albeit weaker in participant 2. These findings suggest that, while neural 
activity during active phases differed from activity during the ITI phase, 
neural responses of only a few neurons varied across different words 
for participant 2.

The neural population in the SMG simultaneously represented 
several distinct aspects of language processing: temporal changes, 
input modality (auditory, written for participant 1) and unique words 
from our vocabulary list. We used demixed principal component 
analysis (dPCA) to decompose and analyse contributions of each 
individual component: timing, cue modality and word. In Fig. 4, 
demixed principal components (PCs) explaining the highest amount 
of variance were plotted by projecting data onto their respective 
dPCA decoder axis.

For participant 1, the ‘timing’ component revealed that temporal 
dynamics in the SMG peaked during all active phases (Fig. 4a). In con-
trast, temporal S1 modulation peaked only during vocalized speech 
production, indicating a lack of synchronized lip and face movement 
of the participant during the other task phases. While ‘cue modal-
ity’ components were separable during the cue phase (Fig. 4b), they 
overlapped during subsequent phases. Thus, internal and vocalized 
speech representation may not be influenced by the cue modality. 
Pseudowords had similar separability to lexical words (Fig. 4c). The 
explained variance between words was high in the SMG and was close 
to zero in S1. In participant 2, temporal dynamics of the task were 
preserved (‘timing’ component). However, variance to words was 
reduced, suggesting lower neuronal ability to represent individual 
words in participant 2. In S1, the results mirrored findings from S1 in 
participant 1 (Fig. 4d,e, right).

Internal speech is decodable in the SMG
Separable neural representations of both internal and vocalized speech 
processes implicate SMG as a rich source of neural activity for real-time 
speech BMI devices. The decodability of words correlated with the 
percentage of tuned neurons (Fig. 3a–f) as well as the explained dPCA 
variance (Fig. 4c,e) observed in the participants. In participant 1, all 
words in our vocabulary list were highly decodable, averaging 55% 
offline decoding and 79% (16–20 training trials) online decoding from 
neurons during internal speech (Fig. 5a,b). Words spoken during the 
vocalized phase were also highly discriminable, averaging 74% offline 
(Fig. 5a). In participant 2, offline internal speech decoding averaged 24% 
(Supplementary Fig. 4b) and online decoding averaged 23% (Fig. 5a), 
with preferential representation of words ‘spoon’ and ‘swimming’.

In participant 1, trial data from both types of cue (auditory and 
written) were concatenated for offline analysis, since SMG activity 
was only differentiable between the types of cue during the cue phase 
(Figs. 3a and 4b). This resulted in 16 trials per condition. Features were 
selected via principal component analysis (PCA) on the training data-
set, and PCs that explained 95% of the variance were kept. A linear 
discriminant analysis (LDA) model was evaluated with leave-one-out 
cross-validation (CV). Significance was computed by comparing results 
with a null distribution (Methods).

Significant word decoding was observed during all phases, except 
during the ITI (Fig. 5a, n = 10, mean decoding value above 99.5th per-
centile of shuffle distribution is P < 0.01, per phase, Cohen’s d = 0.64, 
6.17, 3.04, 6.59, 3.93 and 8.26, confidence interval of the mean ± 1.73, 
4.46, 5.21, 5.67, 4.63 and 6.49). Decoding accuracies were significantly 
higher in the cue, internal speech and speech condition, compared 
with rest phases ITI, D1 and D2 (Fig. 5a, paired t-test, n = 10, d.f. 9, for all 
P < 0.001, Cohen’s d = 6.81, 2.29 and 5.75). Significant cue phase decod-
ing suggested that modality-independent linguistic representations 
were present early within the task45. Internal speech decoding averaged 
55% offline, with the highest session at 72% and a chance level of ~12.5% 
(Fig. 5a, red line). Vocalized speech averaged even higher, at 74%. All 
words were highly decodable (Fig. 5c). As suggested from our dPCA 
results, individual words were not significantly decodable from neural 
activity in S1 (Supplementary Fig. 4a), indicating generalized activity 
for vocalized speech in the S1 arm region (Fig. 4c).

For participant 2, SMG significant word decoding was observed 
during the cue, internal and vocalized speech phases (Supplementary 
Fig. 4b, n = 9, mean decoding value above 97.5th/99.5th percentile of 
shuffle distribution is P < 0.05/P < 0.01, per phase Cohen’s d = 0.35, 1.15, 
1.09, 1.44, 0.99 and 1.49, confidence interval of the mean ± 3.09, 5.02, 
6.91, 8.14, 5.45 and 4.15). Decoding accuracies were significantly higher 
in the cue and internal speech condition, compared with rest phases ITI 
and D1 (Supplementary Fig. 4b, paired t-test, n = 9, d.f. 8, PITI_Cue = 0.013, 
Cohen’s d = 1.07, PD1_Internal = 0.01, Cohen’s d = 1.11). S1 decoding mir-
rored results in participant 1, suggesting that no synchronized face 
movements occurred during the cue phase or internal speech phase 
(Supplementary Fig. 4c).

High-accuracy online speech decoder
We developed an online, closed-loop internal speech BMI using an 
eight-word vocabulary (Fig. 5b). On three separate session days, training 
datasets were generated using the written cue task, with eight repeti-
tions of each word for each participant. An LDA model was trained on 
the internal speech data of the training set, corresponding to only 
1.5 s of neural data per repetition for each class. The trained decoder 
predicted internal speech during the online task. During the online 
task, the vocalized speech phase was replaced with a feedback phase. 
The decoded word was shown in green if correctly decoded, and in 
red if wrongly decoded (Supplementary Video 1). The classifier was 
retrained after each run of the online task, adding the newly recorded 
data. Several online runs were performed on each session day, corre-
sponding to different datapoints on Fig. 5b. When using between 8 and 
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Fig. 4 | dPCA highlighting SMG’s involvement in language processing.  
a–e, dPCA was performed to investigate variance within three marginalizations: 
‘timing’, ‘cue modality’ and ‘word’ for participant 1 (a–c) and ‘timing’ and ‘word’ 
for participant 2 (d and e). Demixed PCs explaining the highest variance within 
each marginalization were plotted over time, by projecting the data onto their 
respective dPCA decoder axis. In a, the ‘timing’ marginalization demonstrates 
SMG modulation during cue, internal speech and vocalized speech, while S1 
only represents vocalized speech. The solid blue lines (8) represent the auditory 
cue trials, and dashed green lines (8) represent written cue trials. In b, the 
‘cue modality’ marginalization suggests that internal and vocalized speech 

representation in the SMG are not affected by the cue modality. The solid blue 
lines (8) represent the auditory cue trials, and dashed green lines (8) represent 
written cue trials. In c, the ‘word’ marginalization shows high variability for 
different words in the SMG, but near zero for S1. The colours (8) represent 
individual words. For each colour, solid lines represent auditory trials and dashed 
lines represent written cue trials. d is the same as a, but for participant 2.  
The dashed green lines (8) represent written cue trials. e is the same as c, but 
for participant 2. The colours (8) represent individual words during written cue 
trials. The variance for different words in the SMG (left) was higher than in S1 
(right), but lower in comparison with SMG in participant 1 (c).
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14 repetitions per words to train the decoding model, an average of 59% 
classification accuracy was obtained for participant 1. Accuracies were 
significantly higher (two-sample two-tailed t-test, n(8–14) = 8, n(16–20) = 5, 
d.f. 11, P = 0.029) the more data were added to train the model, obtain-
ing an average of 79% classification accuracy with 16–20 repetitions 
per word. The highest single run accuracy was 91%. All words were well 
represented, illustrated by a confusion matrix of 304 trials (Fig. 5d). 
In participant 2, decoding was statistically significant, but lower com-
pared with participant 1. The lower number of tuned units (Fig. 3a–f) 
and reduced explained variance between words (Fig. 4e, left) could 

account for these findings. Additionally, preferential representation 
of words ‘spoon’ and ‘swimming’ was observed.

Shared representations between internal speech, written 
words and vocalized speech
Different language processes are engaged during the task: auditory 
comprehension or visual word recognition during the cue phase, and 
internal speech and vocalized speech production during the speech 
phases. It has been widely assumed that each of these processes is part 
of a highly distributed network, involving multiple cortical areas46.  
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Fig. 5 | Words can be significantly decoded during internal speech in the 
SMG. a, Offline decoding accuracies: ‘audio cue’ and ‘written cue’ task data 
were combined for each individual session day, and leave-one-out CV was 
performed (black dots). PCA was performed on the training data, an LDA model 
was constructed, and classification accuracies were plotted with 95% confidence 
intervals, over the session means. The significance of classification accuracies 
were evaluated by comparing results with a shuffled distribution (averaged 
shuffle results over 100 repetitions indicated by red dots; P < 0.01 indicates 
that the average mean is >99.5th percentile of shuffle distribution, n = 10). In 
participant 1, classification accuracies during action phases (cue, internal and 
speech) following rest phases (ITI, D1 and D2) were significantly higher (paired 
two-tailed t-test: n = 10, d.f. 9, for all P < 0.001, Cohen’s d = 6.81, 2.29 and 5.75).  
b, Online decoding accuracies: classification accuracies for internal speech were 
evaluated in a closed-loop internal speech BMI application on three different 
session days for both participants. In participant 1, decoding accuracies were 

significantly above chance (averaged shuffle results over 1,000 repetitions 
indicated by red dots; P < 0.001 indicates that the average mean is >99.95th 
percentile of shuffle distribution) and improved when 16–20 trials per words 
were used to train the model (two-sample two-tailed t-test, n(8–14) = 8, d.f. 11, 
n(16–20) = 5, P = 0.029), averaging 79% classification accuracy. In participant 2, 
online decoding accuracies were significant (averaged shuffle results over 1,000 
repetitions indicated by red dots; P < 0.05 indicates that average mean is >97.5th 
percentile of shuffle distribution, n = 7) and averaged 23%. c, An offline confusion 
matrix for participant 1: confusion matrices for each of the different task phases 
were computed on the tested data and averaged over all session days. d, An online 
confusion matrix: a confusion matrix was computed combining all online runs, 
leading to a total of 304 trials (38 trials per word) for participant 1 and 448 online 
trials for participant 2. Participant 1 displayed comparable online decoding 
accuracies for all words, while participant 2 had preferential decoding for the 
words ‘swimming’ and ‘spoon’.
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In this work, we observed significant representation of different lan-
guage processes in a common cortical region, SMG, in our participants. 
To explore the relationships between each of these processes, for par-
ticipant 1 we used cross-phase classification to identify the distinct 
and common neural codes separately in the auditory and written cue 
datasets. By training our classifier on the representation found in one 

phase (for example, the cue phase) and testing the classifier on another 
phase (for example, internal speech), we quantified generalizability 
of our models across neural activity of different language processes 
(Fig. 6). The generalizability of a model to different task phases was 
evaluated through paired t-tests. No significant difference between 
classification accuracies indicates good generalization of the model, 
while significantly lower classification accuracies suggest poor gen-
eralization of the model.

The strongest shared neural representations were found between 
visual word recognition, internal speech and vocalized speech (Fig. 6b). 
A model trained on internal speech was highly generalizable to both 
vocalized speech and written cued words, evidence for a possible shared 
neural code (Fig. 6b, internal). In contrast, the model’s performance 
was significantly lower when tested on data recorded in the auditory 
cue phase (Fig. 6a, training phase internal: paired t-test, d.f. 9, PCue_Internal  
< 0.001, Cohen’s d = 2.16; PCue_Speech < 0.001, Cohen’s d = 3.34). These dif-
ferences could stem from the inherent challenges in comparing visual 
and auditory language stimuli, which differ in processing time: instanta-
neous for text versus several hundred milliseconds for auditory stimuli.

We evaluated the capability of a classification model, initially 
trained to distinguish words during vocalized speech, in its ability to 
generalize to internal and cue phases (Fig. 6a,b, training phase speech). 
The model demonstrated similar levels of generalization during inter-
nal speech and in response to written cues, as indicated by the lack of 
significance in decoding accuracy between the internal and written 
cue phase (Fig. 6b, training phase speech, cue–internal). However, the 
model generalized significantly better to internal speech than to rep-
resentations observed during the auditory cue phase (Fig. 6a, training 
phase speech, d.f. 9, PCue_Internal < 0.001, Cohen’s d = 2.85).

Neuronal representation of words at the single-neuron level was 
highly consistent between internal speech, vocalized speech and writ-
ten cue phases. A high percentage of neurons were not only active 
during the same task phases but also preserved identical tuning to at 
least one word (Fig. 6c,d). In total, 82–85% of neurons active during 
internal speech were also active during vocalized speech. In 71–79% 
of neurons, tuning was preserved between the internal speech and 
vocalized speech phases (Fig. 6c). During the cue phase, 78% of neurons 
active during internal speech were also active during the written cue 
(Fig. 6d, right). However, a lower percentage of neurons (47%) were 
active during the auditory cue phase (Fig. 6d, left). Similarly, 71% of 
neurons preserved tuning between the written cue phase and the 
internal speech phase, while 42% of neurons preserved tuning between 
the auditory cue phase and the internal speech phase.

Together with the cross-phase analysis, these results suggest 
strong shared neural representations between internal speech,  
vocalized speech and the written cue, both at the single-neuron and 
at the population level.

Robust decoding of multiple internal speech strategies within 
the SMG
Strong shared neural representations in participant 1 between written, 
inner and vocalized speech suggest that all three partly represent the 
same cognitive process or all cognitive processes share common neu-
ral features. While internal and vocalized speech have been shown to 
share common neural features36, similarities between internal speech 
and the written cue could have occurred through several different 
cognitive processes. For instance, the participant’s observation of 
the written cue could have activated silent reading. This process has 
been self-reported as activating internal speech, which can involve 
‘hearing’ a voice, thus having an auditory component42,47. However, the 
participant could also have mentally pictured an image of the written 
word while performing internal speech, involving visual imagination 
in addition to language processes. Both hypotheses could explain the 
high amount of shared neural representation between the written cue 
and the internal speech phases (Fig. 6b).
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Fig. 6 | Shared representations between internal speech, vocalized speech 
and written word processing. a, Evaluating the overlap of shared information 
between different task phases in the ‘auditory cue’ task. For each of the ten 
session days, cross-phase classification was performed. It consisted in training 
a model on a subset of data from one phase (for example, cue) and applying it 
on a subset of data from ITI, cue, internal and speech phases. This analysis was 
performed separately for each task phase. PCA was performed on the training 
data, an LDA model was constructed and classification accuracies were plotted 
with a 95% confidence interval over session means. Significant differences in 
performance between phases were evaluated between the ten sessions (paired 
two-tailed t-test, FDR corrected, d.f. 9, P < 0.001 for all, Cohen’s d ≥ 1.89). For 
easier visibility, significant differences between ITI and other phases were not 
plotted. b, Same as a for the ‘written cue’ task (paired two-tailed t-test, FDR 
corrected, d.f. 9, PCue_Internal = 0.028, Cohen’s d > 0.86; PCue_Speech = 0.022, Cohen’s 
d = 0.95; all others P < 0.001 and Cohen’s d ≥ 1.65). c, The percentage of neurons 
tuned during the internal speech phase that are also tuned during the vocalized 
speech phase. Neurons tuned during the internal speech phase were computed as 
in Fig. 3b separately for each session day. From these, the percentage of neurons 
that were also tuned during vocalized speech was calculated. More than 80% of 
neurons during internal speech were also tuned during vocalized speech (82% 
in the ‘auditory cue’ task, 85% in the ‘written cue’ task). In total, 71% of ‘auditory 
cue’ and 79% ‘written cue’ neurons also preserved tuning to at least one identical 
word during internal speech and vocalized speech phases. d, The percentage of 
neurons tuned during the internal speech phase that were also tuned during the 
cue phase. Right: 78% of neurons tuned during internal speech were also tuned 
during the written cue phase. Left: a smaller 47% of neurons tuned during the 
internal speech phase were also tuned during the auditory cue phase. In total, 
71% of neurons preserved tuning between the written cue phase and the internal 
speech phase, while 42% of neurons preserved tuning between the auditory cue 
and the internal speech phase.
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We therefore compared two possible internal sensory strategies 
in participant 1: a ‘sound imagination’ strategy in which the partici-
pant imagined hearing the word, and a ‘visual imagination’ strategy 
in which the participant visualized the word’s image (Supplementary 
Fig. 5a). Each strategy was cued by the modalities we had previously 
tested (auditory and written words) (Table 1). To assess the similarity 
of these internal speech processes to other task phases, we conducted 
a cross-phase decoding analysis (as performed in Fig. 6). We hypoth-
esized that, if the high cross-decoding results between internal and 
written cue phases primarily stemmed from the participant engaging 
in visual word imagination, we would observe lower decoding accura-
cies during the auditory imagination phase.

Both strategies demonstrated high representation of the 
four-word dataset (Supplementary Fig. 5b, highest 94%, chance level 
25%). These results suggest our speech BMI decoder is robust to mul-
tiple types of internal speech strategy.

The participant described the ‘sound imagination’ strategy as 
being easier and more similar to the internal speech condition of the 
first experiment. The participant’s self-reported strategy suggests 
that no visual imagination was performed during internal speech. 
Correspondingly, similarities between written cue and internal speech 
phases may stem from internal speech activation during the silent 
reading of the cue.

Discussion
In this work, we demonstrated a decoder for internal and vocalized 
speech, using single-neuron activity from the SMG. Two chronically 
implanted, speech-abled participants with tetraplegia were able to 
use an online, closed-loop internal speech BMI to achieve on average 
79% and 23% classification accuracy with 16–32 training trials for an 
eight-word vocabulary. Furthermore, high decoding was achievable 
with only 24 s of training data per word, corresponding to 16 trials 
each with 1.5 s of data. Firing rates recorded from S1 showed general-
ized activation only during vocalized speech activity, but individual 
words were not classifiable. In the SMG, shared neural representa-
tions between internal speech, the written cue and vocalized speech 
suggest the occurrence of common processes. Robust control could 
be achieved using visual and auditory internal speech strategies. Rep-
resentation of pseudowords provided evidence for a phonetic word 
encoding component in the SMG.

Single neurons in the SMG encode internal speech
We demonstrated internal speech decoding of six different words 
and two pseudowords in the SMG. Single neurons increased their 
firing rates during internal speech (Fig. 2, S1 and S2), which was also 
reflected at the population level (Fig. 3a,b,d,e). Each word was rep-
resented in the neuronal population (Fig. 3c,f). Classification accu-
racy and tuning during the internal speech phase were significantly 
higher than during the previous delay phase (Figs. 3b,e and 5a, and 
Supplementary Figs. 3c,d and 4b). This evidence suggests that we did 
not simply decode sustained activity from the cue phase but activity 
generated by the participant performing internal speech. We obtained 
significant offline and online internal speech decoding results in 
two participants (Fig. 5a and Supplementary Fig. 4b). These find-
ings provide strong evidence for internal speech processing at the 
single-neuron level in the SMG.

Neurons in S1 are modulated by vocalized but not internal 
speech
Neural activity recorded from S1 served as a control for synchronized 
face and lip movements during internal speech. While vocalized speech 
robustly activated sensory neurons, no increase of baseline activity was 
observed during the internal speech phase or the auditory and written 
cue phases in both participants (Fig. 4, S1). These results underline no 
synchronized movement inflated our decoding accuracy of internal 
speech (Supplementary Fig. 4a,c).

A previous imaging study achieved significant offline decoding 
of several different internal speech sentences performed by patients 
with mild ALS6. Together with our findings, these results suggest that a 
BMI speech decoder that does not rely on any movement may translate 
to communication opportunities for patients suffering from ALS and 
locked-in syndrome.

Different face activities are observable but not decodable in 
arm area of S1
The topographic representation of body parts in S1 has recently been 
found to be less rigid than previously thought. Generalized finger 
representation was found in a presumably S1 arm region of interest 
(ROI)44. Furthermore, an fMRI paper found observable face and lip activ-
ity in S1 leg and hand ROIs. However, differentiation between two lip 
actions was restricted to the face ROI43. Correspondingly, we observed 
generalized face and lip activity in a predominantly S1 arm region for 
participant 1 (see ref. 48 for implant location) and a predominantly S1 
hand region for participant 2 during vocalized speech (Fig. 4a,d and 
Supplementary Figs. 1 and 4a,b). Recorded neural activity contained 
similar representations for different spoke words (Fig. 4c,e) and was 
not significantly decodable (Supplementary Fig. 4a,c).

Shared neural representations between internal and vocalized 
speech
The extent to which internal and vocalized speech generalize is still 
debated35,42,49 and depends on the investigated brain area36,50. In this 
work, we found on average stronger representation for vocalized (74%) 
than internal speech (Fig. 5a, 55%) in participant 1 but the opposite effect 
in participant 2 (Supplementary Fig. 4b, 24% internal, 21% vocalized 
speech). Additionally, cross-phase decoding of vocalized speech from 
models trained on data during internal speech resulted in comparable 
classification accuracies to those of internal speech (Fig. 6a,b, inter-
nal). Most neurons tuned during internal speech were also tuned to at 
least one of the same words during vocalized speech (71–79%; Fig. 6c). 
However, some neurons were only tuned during internal speech, or 
to different words. These observations also applied to firing rates of 
individual neurons. Here, we observed neurons that had higher peak 
rates during the internal speech phase than the vocalized speech phase 
(Supplementary Fig. 1: swimming and cowboy). Together, these results 
further suggest neural signatures during internal and vocalized speech 
are similar but distinct from one another, emphasizing the need for 
developing speech models from data recorded directly on internal 
speech production51.

Similar observations were made when comparing internal speech 
processes with visual word processes. In total, 79% of neurons were 
active both in the internal speech phase and the written cue phase, and 
79% preserved the same tuning (Fig. 6d, written cue). Additionally, high 
cross-decoding between both phases was observed (Fig. 6b, internal).

Shared representation between speech and written cue 
presentation
Observation of a written cue may engage a variety of cognitive pro-
cesses, such as visual feature recognition, semantic understanding 
and/or related language processes, many of which modulate similar 
cortical regions as speech45. Studies have found that silent reading 
can evoke internal speech; it can be modulated by a presumed author’s 

Table 1 | Internal strategy task

Task variation Cue modality Internal strategy

Auditory–sound Auditory Sound imagination

Written–visual Written Visual imagination

Auditory–visual Auditory Visual imagination

Written–sound Written Sound imagination
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speaking speed, voice familiarity or regional accents35,42,47,52,53. Dur-
ing silent reading of a cued sentence with a neutral versus increased 
prosody (madeleine brought me versus MADELEINE brought me), one 
study in particular found that increased left SMG activation correlated 
with the intensity of the produced inner speech54.

Our data demonstrated high cross-phase decoding accuracies 
between both written cue and speech phases in our first participant 
(Fig. 6b). Due to substantial shared neural representation, we hypoth-
esize that the participant’s silent reading during the presentation of the 
written cue may have engaged internal speech processes. However, 
this same shared representation could have occurred if visual pro-
cesses were activated in the internal speech phase. For instance, the 
participant could have performed mental visualization of the written 
word instead of generating an internal monologue, as the subjective 
perception of internal speech may vary between individuals.

Investigating internal speech strategies
In a separate experiment, participant 1 was prompted to execute dif-
ferent mental strategies during the internal speech phase, consisting 
of ‘sound imagination’ or ‘visual word imagination’ (Supplementary 
Fig. 5a). We found robust decoding during the internal strategy phase, 
regardless of which mental strategy was performed (Supplementary 
Fig. 5b). This participant reported the sound strategy was easier to 
execute than the visual strategy. Furthermore, this participant reported 
that the sound strategy was more similar to the internal speech strat-
egy employed in prior experiments. This self-report suggests that the 
patient did not perform visual imagination during the internal speech 
task. Therefore, shared neural representation between internal and 
written word phases during the internal speech task may stem from 
silent reading of the written cue. Since multiple internal mental strat-
egies are decodable from SMG, future patients could have flexibility 
with their preferred strategy. For instance, people with a strong visual 
imagination may prefer performing visual word imagination.

Audio contamination in decoding result
Prior studies examining neural representation of attempted or vocal-
ized speech must potentially mitigate acoustic contamination of elec-
trophysiological brain signals during speech production55. During 
internal speech production, no detectable audio was captured by the 
audio equipment or noticed by the researchers in the room. In the 
rare cases the participant spoke during internal speech (three trials), 
the trials were removed. Furthermore, if audio had contaminated the 
neural data during the auditory cue or vocalized speech, we would 
have probably observed significant decoding in all channels. However, 
no significant classification was detected in S1 channels during the 
auditory cue phase nor the vocalized speech phase (Supplementary 
Fig. 2b). We therefore conclude that acoustic contamination did not 
artificially inflate observed classification accuracies during vocalized 
speech in the SMG.

Single-neuron modulation during internal speech with a 
second participant
We found single-neuron modulation to speech processes in a second 
participant (Figs. 2d,e and 3f, and Supplementary Fig. 2d), as well as 
significant offline and online classification accuracies (Fig. 5a and Sup-
plementary Fig. 4b), confirming neural representation of language 
processes in the SMG. The number of neurons distinctly active for 
different words was lower compared with the first participant (Fig. 2e 
and Supplementary Fig. 3d), limiting our ability to decode with high 
accuracy between words in the different task phases (Fig. 5a and Sup-
plementary Fig. 4b).

Previous work found that single neurons in the PPC exhibited 
a common neural substrate for written action verbs and observed 
actions56. Another study found that single neurons in the PPC also 
encoded spoken numbers57. These recordings were made in the 

superior parietal lobule whereas the SMG is in the inferior parietal 
lobule. Thus, it would appear that language-related activity is highly 
distributed across the PPC. However, the difference in strength of 
language representation between each participant in the SMG sug-
gests that there is a degree of functional segregation within the SMG37.

Different anatomical geometries of the SMG between participants 
mean that precise comparisons of implanted array locations become 
difficult (Fig. 1). Implant locations for both participants were informed 
from pre-surgical anatomical/vasculature scans and fMRI tasks designed 
to evoke activity related to grasp and dexterous hand movements48. 
Furthermore, the number of electrodes of the implanted array was 
higher in the first participant (96) than in the second participant (64). 
A pre-surgical assessment of functional activity related to language 
and speech may be required to determine the best candidate implant 
locations within the SMG for online speech decoding applications.

Impact on BMI applications
In this work, an online internal speech BMI achieved significant decod-
ing from single-neuron activity in the SMG in two participants with 
tetraplegia. The online decoders were trained on as few as eight repeti-
tions of 1.5 s per word, demonstrating that meaningful classification 
accuracies can be obtained with only a few minutes’ worth of training 
data per day. This proof-of-concept suggests that the SMG may be able 
to represent a much larger internal vocabulary. By building models 
on internal speech directly, our results may translate to people who 
cannot vocalize speech or are completely locked in. Recently, ref. 26 
demonstrated a BMI speller that decoded attempted speech of the 
letters of the NATO alphabet and used those to construct sentences. 
Scaling our vocabulary to that size could allow for an unrestricted 
internal speech speller.

To summarize, we demonstrate the SMG as a promising candidate 
to build an internal brain–machine speech device. Different internal 
speech strategies were decodable from the SMG, allowing patients 
to use the methods and languages with which they are most comfort-
able. We found evidence for a phonetic component during internal 
and vocalized speech. Adding to previous findings indicating grasp 
decoding in the SMG23, we propose the SMG as a multipurpose BMI area.

Methods
Experimental model and participant details
Two male participants with tetraplegia (33 and 39 years) were 
recruited for an institutional review board- and Food and Drug 
Administration-approved clinical trial of a BMI and gave informed con-
sent to participate (Institutional Review Board of Rancho Los Amigos 
National Rehabilitation Center, Institutional Review Board of California 
Institute of Technology, clinical trial registration NCT01964261). This 
clinical trial evaluated BMIs in the PPC and the somatosensory cortex 
for grasp rehabilitation. One of the primary effectiveness objectives of 
the study is to evaluate the effectiveness of the neuroport in controlling 
virtual or physical end effectors. Signals from the PPC will allow the 
subjects to control the end effector with accuracy greater than chance. 
Participants were compensated for their participation in the study and 
reimbursed for any travel expenses related to participation in study 
activities. The authors affirm that the human research participant 
provided written informed consent for publication of Supplementary 
Video 1. The first participant suffered a spinal cord injury at cervical 
level C5 1.5 years before participating in the study. The second partici-
pant suffered a C5–C6 spinal cord injury 3 years before implantation.

Method details
Implants. Data were collected from implants located in the left SMG 
and the left S1 (for anatomical locations, see Fig. 1). For description of 
pre-surgical planning, localization fMRI tasks, surgical techniques and 
methodologies, see ref. 48. Placement of electrodes was based on fMRI 
tasks involving grasp and dexterous hand movements.
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The first participant underwent surgery in November 2016 to 
implant two 96-channel platinum-tipped multi-electrode arrays 
(NeuroPort Array, Blackrock Microsystems) in the SMG and in the 
ventral premotor cortex and two 7 × 7 sputtered iridium oxide film 
(SIROF)-tipped microelectrode arrays with 48 channels each in the 
hand and arm area of S1. Data were collected between July 2021 and 
August 2022. The second participant underwent surgery in October 
2022 and was implanted with SIROF-tipped 64-channel microelectrode 
arrays in S1 (two arrays), SMG, ventral premotor cortex and primary 
motor cortex. Data were collected in January 2023.

Data collection. Recording began 2 weeks after surgery and continued 
one to three times per week. Data for this work were collected between 
2021 and 2023. Broadband electrical activity was recorded from the Neu-
roPort Arrays using Neural Signal Processors (Blackrock Microsystems). 
Analogue signals were amplified, bandpass filtered (0.3–7,500 Hz) and 
digitized at 30,000 samples s−1. To identify putative action potentials, 
these broadband data were bandpass filtered (250–5,000 Hz) and thres-
holded at −4.5 the estimated root-mean-square voltage of the noise. For 
some of the analyses, waveforms captured at these threshold crossings 
were then spike sorted by manually assigning each observation to a 
putative single neuron; for others, multiunit activity was considered. 
For participant 1, an average of 33 sorted SMG units (between 22 and 56) 
and 83 sorted S1 units (between 59 and 96) were recorded per session. 
For participant 2, an average of 80 sorted SMG units (between 69 and 
92) and 81 sorted S1 units (between 61 and 101) were recorded per ses-
sion. Auditory data were recorded at 30,000 Hz simultaneously to the 
neural data. Background noise was reduced post-recording by using 
the noise reduction function of the program ‘Audible’.

Experimental tasks
We implemented different tasks to study language processes in the 
SMG. The tasks cued six words informed by ref. 31 (spoon, python, 
battlefield, cowboy, swimming and telephone) as well as two pseudow-
ords (bindip and nifzig). The participants were situated 1 m in front of 
a light-emitting diode screen (1,190 mm screen diagonal), where the 
task was visualized. The task was implemented using the Psychophys-
ics Toolbox58–60 extension for MATLAB. Only the written cue task was 
used for participant 2.

Auditory cue task. Each trial consisted of six phases, referred to in 
this paper as ITI, cue, D1, internal, D2 and speech. The trial began with 
a brief ITI (2 s), followed by a 1.5-s-long cue phase. During the cue phase, 
a speaker emitted the sound of one of the eight words (for example, 
python). Word duration varied between 842 and 1,130 ms. Then, after a 
delay period (grey circle on screen; 0.5 s), the participant was instructed 
to internally say the cued word (orange circle on screen; 1.5 s). After a 
second delay (grey circle on screen; 0.5 s), the participant vocalized 
the word (green circle on screen, 1.5 s).

Written cue task. The task was identical to the auditory cue task, 
except words were cued in writing instead of sound. The written word 
appeared on the screen for 1.5 s during the cue phase. The auditory 
cue was played between 200 ms and 650 ms later than the written cue 
appeared on the screen, due to the utilization of varied sound outputs 
(direct computer audio versus Bluetooth speaker).

One auditory cue task and one written cue task were recorded on 
ten individual session days in participant 1. The written cue task was 
recorded on seven individual session days in participant 2.

Control experiments. Three experiments were run to investigate 
internal strategies and phonetic versus semantic processing.

Internal strategy task. The task was designed to vary the internal 
strategy employed by the participant during the internal speech phase. 

Two internal strategies were tested: a sound imagination and a visual 
imagination. For the ‘sound imagination’ strategy, the participant was 
instructed to imagine what the sound of the word sounded like. For the 
‘visual imagination’ strategy, the participant was instructed to perform 
mental visualization from the written word. We also tested if the cue 
modality (auditory or written) influenced the internal strategy. A subset 
of four words were used for this experiment. This led to four different 
variations of the task.

The internal strategy task was run on one session day with par-
ticipant 1.

Online task. The ‘written cue task’ was used for the closed-loop experi-
ments. To obtain training data for the online task, a written cue task 
was run. Then, a classification model was trained only on the internal 
speech data of the task (see ‘Classification’ section). The closed-loop 
task was nearly identical to the ‘written cue task’ but replaced the 
vocalized speech phase by a feedback phase. Feedback was provided by 
showing the word on the screen either in green if correctly classified or 
in red if wrongly classified. See Supplementary Video 1 for an example 
of the participant performing the online task. The online task was run 
on three individual session days.

Error trials. Trials in which participants accidentally spoke during the 
internal speech part (3 trials) or said the wrong word during the vocal-
ized speech part (20 trials) were removed from all analysis.

Total number of recording trials. For participant 1, we collected 
offline datasets composed of eight trials per word across ten sessions. 
Trials during which participant errors occurred were excluded. In 
total, between 156 and 159 trials per word were included, with a total 
of 1,257 trials for offline analysis. On four non-consecutive session 
days, the auditory cue task was run first, and on six non-consecutive 
days, the written cue task was run first. For online analysis, datasets 
were recorded on three different session days, for a total of 304 trials. 
Participant 2 underwent a similar data collection process, with offline 
datasets comprising 16 trials per word using the written cue modality 
over nine sessions. Error trials were excluded. In total, between 142 
and 144 trials per word were kept, with a total of 1,145 trials for offline 
analysis. For online analysis, datasets were recorded on three session 
days, leading to a total of 448 online trials.

Quantification and statistical analysis
Analyses were performed using MATLAB R2020b and Python, version 
3.8.11.

Neural firing rates. Firing rates of sorted units were computed as the 
number of spikes occurring in 50-ms bins, divided by the bin width and 
smoothed using a Gaussian filter with kernel width of 50 ms to form an 
estimate of the instantaneous firing rates (spikes s−1).

Linear regression tuning analysis. To identify units exhibiting selec-
tive firing rate patterns (or tuning) for each of the eight words, linear 
regression analysis was performed in two different ways: (1) step by 
step in 50-ms time bins to allow assessing changes in neuronal tuning 
over the entire trial duration; (2) averaging the firing rate in each task 
phase to compare tuning between phases. The model returns a fit that 
estimates the firing rate of a unit on the basis of the following variables:

FR =
W
∑
w=1

βwXw + β0,

where FR corresponds to the firing rate of the unit, β0 to the offset term 
equal to the average ITI firing rate of the unit, X is the vector indicator 
variable for each word w, and βw corresponds to the estimated regres-
sion coefficient for word w. W was equal to 8 (battlefield, cowboy, 
python, spoon, swimming, telephone, bindip and nifzig)23.
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In this model, β symbolizes the change of firing rate from baseline 
for each word. A t-statistic was calculated by dividing each β coefficient 
by its standard error. Tuning was based on the P value of the t-statistic 
for each β coefficient. A follow-up analysis was performed to adjust for 
false discovery rate (FDR) between the P values61,62. A unit was defined as 
tuned if the adjusted P value is <0.05 for at least one word. This defini-
tion allowed for tuning of a unit to zero, one or multiple words during 
different timepoints of the trial. Linear regression was performed for 
each session day individually. A 95% confidence interval of the mean 
was computed by performing the Student’s t-inverse cumulative dis-
tribution function over the ten sessions.

Kruskal–Wallis tuning analysis. As an alternative tuning definition, 
differences in firing rates between words were tested using the Kruskal–
Wallis test, the non-parametric analogue to the one-way analysis of 
variance (ANOVA). For each neuron, the analysis was performed to 
evaluate the null hypothesis that data from each word come from the 
same distribution. A follow-up analysis was performed to adjust for 
FDR between the P values for each task phase61,62. A unit was defined as 
tuned during a phase if the adjusted P value was smaller than α = 0.05.

Classification. Using the neuronal firing rates recorded during the 
tasks, a classifier was used to evaluate how well the set of words could 
be differentiated during each phase. Classifiers were trained using aver-
aged firing rates over each task phase, resulting in six matrices of size 
n, m, where n corresponds to the number of trials and m corresponds 
to the number of recorded units. A model for each phase was built using 
LDA, assuming an identical covariance matrix for each word, which 
resulted in best classification accuracies. Leave-one-out CV was per-
formed to estimate decoding performance, leaving out a different trial 
across neurons at each loop. PCA was applied on the training data, and 
PCs explaining more than 95% of the variance were selected as features 
and applied to the single testing trial. A 95% confidence interval of the 
mean was computed as described above.

Cross-phase classification. To estimate shared neural representa-
tions between different task phases, we performed cross-phase clas-
sification. The process consisted in training a classification model (as 
described above) on one of the task phases (for example, ITI) and to test 
it on the ITI, cue, imagined speech and vocalized speech phases. The 
method was repeated for each of the ten sessions individually, and a 95% 
confidence interval of the mean was computed. Significant differences 
in classification accuracies between phases decoded with the same 
model were evaluated using a paired two-tailed t-test. FDR correction 
of the P values was performed (‘Linear regression tuning analysis’)61,62.

Classification performance significance testing. To assess the sig-
nificance of classification performance, a null dataset was created by 
repeating classification 100 times with shuffled labels. Then, different 
percentile levels of this null distribution were computed and compared 
to the mean of the actual data. Mean classification performances higher 
than the 97.5th percentile were denoted with P < 0.05 and higher than 
99.5th percentile were denoted with P < 0.01.

dPCA analysis. dPCA was performed on the session data to study 
the activity of the neuronal population in relation to the external task 
parameters: cue modality and word. Kobak et al.63 introduced dPCA as a 
refinement of their earlier dimensionality reduction technique (of the 
same name) that attempts to combine the explanatory strengths of LDA 
and PCA. By deconstructing neuronal population activity into individ-
ual components, each component relates to a single task parameter64.

This text follows the methodology outlined by Kobak et al.63. 
Briefly, this involved the following steps for N neurons:

First, unlike in PCA, we focused not on the matrix, X, of the original 
data, but on the matrices of marginalizations, Xϕ. The marginalizations 

were computed as neural activity averaged over trials, k, and some task 
parameters in analogy to the covariance decomposition done in mul-
tivariate analysis of variance. Since our dataset has three parameters: 
timing, t, cue modality, c (for example, auditory or visual), and word, 
w (eight different words), we obtained the total activity as the sum of 
the average activity with the marginalizations and a final noise term

Xtcwk = X̄ + X̄t + X̄c + X̄tc⏟⎵⏟⎵⏟
X̄tc

+ X̄w + X̄tw⏟⎵⏟⎵⏟
X̄tw

+ X̄cw + X̄tcw⏟⎵⎵⏟⎵⎵⏟
X̄tcw

+ϵtcwk.

The above notation of Kobak et al. is the same as used in factorial 
ANOVA, that is, Xtcwk  is the matrix of firing rates for all neurons, < •>ab 
is the average over a set of parameters a,b,…, X̄ =< Xtcwk>tcwk , 
X̄t =< Xtcwk − X̄>cwk, X̄tc =< Xtcwk − X̄ − X̄t − X̄c − X̄w>wk  and so on. Finally, 
ϵtcwk = Xtcwk− < Xtcwk>k.

Participant 1 datasets were composed of N = 333 (SMG), N = 828 
(S1) and k = 8. Participant 2 datasets were composed of N = 547 (SMG), 
N = 522 (S1) and k = 16. To create balanced datasets, error trials were 
replaced by the average firing rate of k − 1 trials.

Our second step reduced the number of terms by grouping them 
as seen by the braces in the equation above, since there is no benefit in 
demixing a time-independent pure task, a, term X̄a from the time–task 
interaction terms X̄ta since all components are expected to change with 
time. The above grouping reduced the parametrization down to just five 
marginalization terms and the noise term (reading in order): the mean 
firing rate, the task-independent term, the cue modality term, the word 
term, the cue modality–word interaction term and the trial-to-trial noise.

Finally, we gained extra flexibility by having two separate linear 
mappings Fφ for encoding and Dφ for decoding (unlike in PCA, they are 
not assumed to be transposes of each other). These matrices were 
chosen to minimize the loss function (with a quadratic penalty added 
to avoid overfitting):

Lϕ = ‖Xϕ − FϕDϕX‖
2 + μ‖FϕDϕ‖

2

Here, μ = (λ‖X‖)2, where λ was optimally selected through tenfold CV 
in each dataset.

We refer the reader to Kobak et al. for a description of the full 
analytic solution.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are openly available via 
Zenodo at https://doi.org/10.5281/zenodo.10697024 (ref. 65). Source 
data are provided with this paper.

Code availability
The custom code developed for this study is openly available via 
Zenodo at https://doi.org/10.5281/zenodo.10697024 (ref. 65).
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Neuroport System Blackrock Microsystems 
 

Data analysis Matlab 2022a,b. Python 3.10.8, Psychophysics Toolbox extension for MATLAB (2018)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The custom code developed for this study is openly available at https://doi.org/10.5281/zenodo.10697024. The data supporting the findings of this study are openly 
available at https://doi.org/10.5281/zenodo.10697024.
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender These data were not reported for privacy concerns for the participant. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

These data were not reported for privacy concerns for the participant. 

Population characteristics These data were not reported for privacy concerns for the participant. 

Recruitment Participants were recruited through our collaborating hospitals according to IRB approved inclusion and exclusion criterion.

Ethics oversight Institutional Review Board of Rancho Los Amigos National Rehabilitation Center, Institutional Review Board of California 
Institute of Technology

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Data were quantitative experimental. Neuronal firing rates were recorded while a participant performed an internal and vocalized 
speech task. Recorded data were both analysed offline and in real time. 

Research sample Two human participants affected by tetraplegia performed internal and vocalized speech tasks. For participant 1, an average of 33 
sorted SMG units (between 22–56) and 83 sorted S1 units (between 59–96) were recorded per session. For participant 2, an average 
of 80 sorted SMG units (between 69–92) and 81 sorted S1 units (between 61 – 101) were recorded per session. For participant 1, 
offline datasets were composed of 8 trials per word across ten sessions. Trials during which participant errors occurred were 
excluded. In total, between 156-159 trials per word were included, with a total of 1257 trials for offline analysis. Two experimental 
conditions were run, an Auditory cue condition and a Written cue condition. On four nonconsecutive session days, the Auditory cue 
task was run first, and on six nonconsecutive days, the Written cue task was run first. For online analysis, datasets were recorded on 
three different session days, for a total of 304 trials. Participant 2 offline dataset was composed of 16 trials per word using the 
written cue modality over nine sessions. Error trials were excluded. In total, between 142-144 trials per word were kept, with a total 
of 1145 trials for offline analysis. For online analysis, datasets were recorded on three session days, leading to a total of 448 online 
trials.

Sampling strategy For offline and online experiments, sessions were repeated on different session days. On each session day, results were significantly 
above chance, demonstrating stable results. Chance was determined by randomizing trial labels 100 times, creating a null 
distribution. Number of sessions, session length and number of trials was maximized according to  participant availability and 
stamina.

Data collection Data were recorded with Blackrock Neuroport arrays. Blackrock NSP (Neural signal processor) system and headstages were used. 
Two researchers were present during all data collection, blindness was not applicable.

Timing Data were collected between July 2021 and December 2022 for participant 1. For participant 2, data were recorded in January 2023.

Data exclusions Data were not excluded from the analysis, except if participants were unable to continue experiments due to intense fatigue.

Non-participation No participant dropped out.

Randomization Participants were not allocated into experimental groups. In both participant we evaluated internal speech representation in the 
supramarginal gyrus. 

Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NCT01964261

Study protocol The study protocol is not available to the public, but information is present at clinicaltrials.gov. 

Data collection The first participant was implanted in November 2016. Data were collected between July 2021 and December 2022. Participant 2 
was implanted in October 2022. For participant 2, data were recorded in January 2023. Sessions were recorded at participants 
residence.

Outcomes We hypothesized that neurons in the supramarginal gyrus modulate to internal speech processed. To evaluate our hypothesis, we 
recorded from groups of neurons (22–56 per session day for participant 1, 69–92 for participant 2), and evaluated tuning to 
internally spoken words using a linear regression analysis and a Kruskal Wallis test. Results were compared to a null distribution over 
9 and 10 session days respectively. We further hypothesized that we could decode internal speech offline and in real time. 
Classification performances during internal and vocalized speech processes were evaluated by performing a LDA classifier and to 
comparing results to a null distribution that involved shuffling labels 100 (offline)  or 1000 (online) times on each individual session 
day. 
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