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Abstract: 

Cognition relies on transforming sensory inputs into a more generalizable understanding. Mirror 

neurons are proposed to underlie this process, yet they fail to explain many key features of human 

thinking and learning. Here we hypothesize that mirror-like responses are one limited view into a 

more general framework by which internal models of the world are built and used. We recorded 

populations of single neurons in the human posterior parietal cortex as a participant felt or 

observed diverse tactile stimuli. We found that mirror-like responses were fragile and embedded 

within a richer population response that encoded generalizable and compositional features of the 

stimuli. We speculate that populations of neurons support versatile understanding, not through 

mirroring, but instead by encoding representational building blocks of cognition. 

 

One-Sentence Summary: 

Similar neural responses during observed and experienced sensations are mediated by shared 

compositional building blocks, not mirror neurons.  
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Main Text: 

We don't just see the world. We understand it (1-3). From a brief video or even a still image of a 

person in action, we can infer what they are doing, why they are doing it, what they will do next, or 

what they might have done but didn't. A fundamental question in neuroscience is how neural 

populations transform sensory inputs into such deep and versatile understanding.  

Mirror neurons have been proposed to be the neural basis for such understanding, at least for how 

we understand what another person intends or feels (2, 4). In this view, we map the visual 

representation of others' actions, emotions, or sensations, onto our own corresponding neurons and 

thereby attain understanding (2, 4, 5).  However, this hypothesis has received numerous critiques 

(6, 7). For example, if understanding comes from activating our own high-level action 

representations, how can we understand actions we have never performed (e.g., jumping a 

skateboard)? Or could never perform (e.g., flying)? Alternatively, a potential role for these neurons 

may be clouded by an emphasis on interpreting the behavior of single neurons as opposed to neural 

populations (8, 9).  

Alternate theoretical frameworks have emerged in parallel based on the concept that human-like 

learning and thinking is the product of how neural systems build and use internal models of the 

world, what we will call the "cognition through internal models" framework (3, 10). Internal 

models are our brain's representations of ourselves and our physical world: the objects in it, how 

they interact, and how they do not. The power of these internal models lies in defining features, 

such as generalizability and compositionality. Generalizability captures the idea that 

representations apply across contexts and behaviors, providing a common substrate to inform our 

perception, cognition, imagination, and planning across many situations. Compositionality captures 

the idea that multi-faceted representations are constructed as a combination of more basic level 

representations (11, 12). Recent studies have demonstrated compositional encoding at the neural 

population level (13-17) suggesting that a similar scheme might underly neural responses typically 

associated with mirror neurons. Such an encoding architecture is highly versatile and better 

positioned to overcome many of the limitations associated with the mirror hypothesis. 

We have recently recorded populations of single neurons in the human posterior parietal cortex 

(PPC) during motor, sensory, and cognitive behaviors. These neurons encode many diverse body-

related variables such as action verbs, observed actions, motor and sensory imagery, and motor 

plans (18-21). Individual neurons are often complex, yet population-level representations 

demonstrate generalizable encoding across these varied domains in a functional organization we 

termed partially-mixed selectivity (20). Based on these past results, we hypothesize that 

"mirroring" is one view into a more general mechanism by which we create generalizable internal 

representations of the world. To test this hypothesis, we recorded from populations of neurons in 

human PPC while a participant experienced actual touch (to the participant) or observed touch (to 

another individual). We found that when using rich multi-dimensional stimuli, individual neurons 

were not well characterized by mirroring. Instead, at the neural population level, basic-level tactile 

variables related to body location and touch type were encoded as generalizable compositional 

building blocks embedded within latent neural subspaces. Recent work in the cognitive 

neuroscience literature hypothesizes that human learning and thinking are largely enabled by how 

we build and utilize models of the world to understand, explain, imagine, and plan. Human PPC's 

neural population responses support this hypothesis by demonstrating that language, imagination, 

planning, and perception tap into the same underlying neural substrates.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506071doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506071
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

RESULTS 

We recorded populations of single neurons from a microelectrode array implanted in participant 

NS, a tetraplegic individual (spinal injury at cervical levels 3–4; C3/4) participating in a clinical 

brain-machine interface study (Fig S1). NS had well-defined sensory receptive fields that 

responded at short (~60ms) latencies suggesting a role in the bottom-up sensory processing (19). 

Such responses opened the possibility of studying mirror-like phenomena in the sensory domain. 

We performed two primary experiments: the first used a simple paradigm to confirm mirror-like 

properties; the second expanded the number of task dimensions to test whether PPC populations 

support a more general mechanism.  
 

Mirror-like responses in human PPC single neurons 

We found many compelling examples of neurons with mirror-like responses. Supplementary 

Video 1 (link here) shows an example neuron demonstrating specificity and congruency, the 

defining features of mirror responses. Specificity is the selective activation to a restricted set of 

tactile stimuli, evidenced by the neuron responding to touch to her outer shoulder but not her inner 

shoulder. Congruency is defined as having similar neural responses when experiencing or when 

observing tactile stimulation. Supplementary video 2 (link here) shows an additional example. 

We performed a basic sensory mirroring task (Experiment 1 – BSMT, Figure 1A) to quantify the 

existence of sensory mirror-like responses. We recorded an average of 126 ± 20 neurons over 6 

sessions while the participant felt rubbing motions applied to her cheek or shoulder or observed 

rubbing motions applied to an experimenter's cheek or shoulder. This two-factor (body part x 

person) design allowed us to test for specificity and congruency. We found robust coding of 

experienced and observed tactile sensations (Figure 1B, 1C). Many neurons demonstrated mirror-

like responses, firing similarly to touches to the cheek or shoulder (specificity), invariant to 

whether the touches were felt or observed (congruency)  (model analysis, body part specific, 

p<0.05 corrected, Figure 1D). Example neurons showing mirror-like responses are shown in 

Figure 1E. We summarized the response of the entire population during each condition as a vector 

of the mean firing rates while the participant experienced or observed touch. We found that 

population correlations between the observation and experience conditions was higher for 

matching body parts than for mismatched body parts (t-test, p<0.05, Figure 1F). Thus, the 

mirroring phenomena was robust at the neural population level. 

These data provide powerful support that individual neurons can respond in similar ways to 

experienced and observed sensations. However, from this simple paradigm, it is unclear whether 

similar responses to actual and observed sensations are direct evidence for a mirror mechanism, or 

instead, part of a more general mechanism of cognition. Also, already it can be seen that only 12 

percent of neurons demonstrate specificity and congruency, indicating that a large proportion do 

not fit the criteria for mirroring responses.   

Unpacking the population code: multidimensional sensory mirroring task. To better 

understand similar encoding between experienced and observed actions, we performed a second 

experiment (Experiment 2) that augmented the first experiment to include four different types of 

touch (pinch, press, rub, and tap). These touch-types were selected as they resulted in perceptually 

distinct stimuli under observed and actual touch conditions and not based on assumptions about the 
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underlying selectivity of recorded neurons. Thus, in the updated task, three manipulated 

dimensions (body part, touch type, and person) are combined in a full factorial design for 16 total 

conditions. Including the additional dimension allowed us to 1) test whether encoding similar 

variables in similar ways was a ubiquitous property of the neural population; and 2) test whether 

these responses are consistent with a compositional basis, encoding multidimensional sensations as 

a combination of basic sensory properties. We recorded an average of 119 ± 16 neurons over 8 

sessions. 

Single neuron responses are heterogeneous. As in the first experiment, we found robust coding 

of experienced and observed tactile sensations (Figure 2A,2B). The response to the different touch 

types could be discriminated for experienced or observed conditions (time-resolved classification, 

Figure 2C). However, the inclusion of additional touch-types highlighted the near-universal 

complexity of single-unit responses: Neurons that appeared to have a simple mirror response for a 

single touch-type were no longer easily reconciled with a mirror neuron account: Figure 2D shows 

a neuron that responds similarly to experienced or observed pinches to the cheek, but not the 

shoulder, consistent with a mirror account. However, testing the same neuron with additional 

touch-types reveals a more complicated pattern (Figure 2E): the neuron is selective for pinches to 

her own cheek but responds to all touch-types during observation. A straightforward interpretation 

of the mirror mechanism would predict that NS would understand all touch-types as a pinch, 

inconsistent with behavioral evidence that the touch types were easily discriminated and the 

finding that observed touch types are discriminable (e.g., Figure 2C). Additional example neurons 

illustrating heterogeneous and complex responses are shown in Figure 2E and Figure S2.  

We used a model selection analysis (21) to categorize patterns of congruency across all sensory 

fields (e.g., the cheek or shoulder, on NS or the experimenter). For each neuron, we fit linear 

tuning models that described the response of the neuron to the four touch-types (selectivity pattern, 

SP) as either congruent or incongruent across sensory fields. There are 51 such possible models 

(Figure S3). Three schematic examples illustrating congruency patterns are shown in Figure 3A-C. 

From among the 51 possibilities, we identified the linear model that best described neural behavior 

using two metrics: Bayesian information criterion (BIC) and cross-validated coefficient of 

determination (cvR2). The percentage of PPC cells that behaved according to each model are 

shown in Figure S4. Figure 3D summarizes the result by grouping responses into eight general 

categories that captured high-level modes of behavior (see Figure S5 for the results split by BIC or 

cvR2 criteria). A summary description of the eight modes can be found in the legend of Figure S3. 

The PPC population was heterogeneous, composed of many complex patterns of congruency 

across sensory fields. With the inclusion of the additional touch-types, only 3% of neurons show 

specificity and congruency for coding the body location that was touched (compared to 12% in the 

simple task, Fig. 1D). This result highlights the fragility of single unit mirror responses as we 

expand the paradigm to include a broader diversity of stimuli. 

Population-level neural subspaces mediate the generalizability of tactile information. The 

mirror mechanism is proposed to link what we see with what we intend or feel. Based on our 

previous data within this PPC substrate, we hypothesized that the mirror mechanism is one 

manifestation of a broader computational strategy by which PPC neurons generalize across task 

dimensions (behavioral contexts). To test this hypothesis, we train a linear model to identify a 

neural subspace that discriminates values along one dimension for fixed values of the other two 

dimensions. Then, we test whether this subspace allows similar discrimination for alternate values 
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of the fixed dimensions. For example, we train the model to discriminate touch-types (dimension 1, 

pinch versus press), for fixed body part (dimension 2, e.g., cheek) and person (dimension 3, e.g., 

NS) and test the ability to discriminate touch-type when switching body part, person, or both body 

part and person (Figure 4A). This analysis provides a population-level generalization of the basic 

mirror neuron test, testing for both specificity (operationalized by finding the population response 

that discriminates between two conditions) and congruency (testing whether this population 

response is congruent between (generalizes across) self and other, or potentially other task 

dimensions.) If the mirror-mechanism is the dominant motif that determines population-level 

encoding, then we would predict preferential congruency/generalization when matching body 

locations and touch-types between self and other. Otherwise, under a more general mechanism for 

shared encoding, we would expect generalizable information to be a ubiquitous phenomenon. 

The results of this analysis are shown in Figures 4B-D. Generalization results are scaled such that 

the distance between the two training conditions is equal to one. Thus a value of one for the test 

data would indicate perfect generalization. Positive values less than one indicate imperfect but 

significant generalization. A value of zero would indicate no generalization. In Figure 4B we show 

generalization results when discrimination subspaces are built around two of the touch-types, pinch 

and press. In the left panel, we show the discriminable population response that distinguishes pinch 

from press generalizes from self to other, both for the cheek (red) and shoulder (green). This is as 

expected from the mirror hypothesis. However, the response pattern generalized even more 

strongly when comparing within the participant's own body (red) or the body of the actor (green) 

(Figure 4B, middle) and generalized equally well when mismatching body parts across person 

(Figure 4B, right). The logical framework of mirror neurons would not work in many of these 

cases since it would suggest that we understand the sensory experiences of our shoulder by 

simulating them within our cheek neurons (or vice versa). Alternatively, at a population level, it 

could suggest that touch-type is encoded as a generalizable property that can be equally well 

applied across self and others or different body segments.  

We found a similar pattern of results when building the discrimination subspaces around body part 

(Figure 4C). In the left panel, we see that the discriminable population response that distinguishes 

observed pinches to the cheek and shoulder generalizes from self to other (red) and similarly for 

presses (green). However, again, we find that generalization is equally strong across the other 

comparisons (Figure 4C middle and right). 

Interestingly, Figure 4D shows a fundamentally different pattern, with generalization in some 

contexts but not all. In other words, touch-type (4B) and body location dimensions (4C) are 

encoded in ways that generalize across all dimensions, while the person dimension only 

generalizes to an appreciable degree when preserving body location (middle panel). Such 

preferential encoding fits with the known functions of our cortical implant site (see discussion).  

To assist interpretation, we repeat the analysis with a population of synthetically generated mirror 

neurons (Figure 4, E-G). The synthetic mirror neurons were designed with previously reported 

tuning complexities (see methods: Synthetic mirror neurons). The results demonstrate 

generalization only for matched conditions across self and other and does not support ubiquitous 

generalization, unlike our PPC population.    

Architecture of knowledge representation in human PPC: structured compositionality. Our 

finding of universal generalization suggests that basic aspects of touch are encoded as 

generalizable properties that apply across multiple contexts. We, therefore, hypothesized that 
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experienced and observed sensations are represented through a combination of simple primitive 

elemental features encoded by the population. We used a demixed-principal components analysis 

(dPCA) to visualize and quantify how much of the population-level response could be understood 

as being composed of a linear combination of these elemental features (e.g., body part or touch 

type). The dPCA analysis decomposed the population response across all test conditions into the 

independent factors (body part, touch type, and person) interaction effects (body part*person, body 

part*touch type, and person*touch type), and a term accounting for a shared neural response to any 

form of touch. Large contributions from the independent factors would be consistent with 

compositionality: that multi-faceted touch representations can be described as combinations of 

their basic-level components.  The interaction terms capture the portion of the response that shows 

a higher degree of specificity. For example, the body part * touch-type interaction captures the 

portion of the neural response that codes for a particular combination of these two variables 

invariant to or generalizable across the third variable (e.g., pinches to the cheek, whether 

experienced or observed).   

The largest percentage of the population variance relates to the shared neural response to any form 

of touch (Figure 5A). This response is difficult to interpret but may relate to factors like general 

behavioral engagement or encoding that some form of touch has occurred. Otherwise, the three 

main effects account for the bulk of the variance, with larger contributions from body part and 

touch type as consistent with Figure 4D. 

To ensure that dPCA is capturing generalizable features of the neural population code, we 

performed a generalization test of the dPCA components. To this end, we performed a two-factor 

dPCA on two dimensions of the data for a single level of the third dimension. We then applied the 

learned mapping to the held-out level of the third dimension. The results are shown in Figure 5B 

for each possible combination of the two-factor dPCA. The top row tests generalization across 

levels of person for the two-factor body part x touch-type dPCA. The middle row tests 

generalization across levels of body part for the two-factor touch-type x person dPCA. The bottom 

row tests generalization across levels of touch type for the two-factor body part x person dPCA. As 

expected, we find that the main components of body part and touch type generalize, consistent with 

the hypothesis that PPC populations encode generalizable basic components of sensations. Similar 

to Figure 4, the person dimension is qualitatively different, only showing generalization across 

levels of touch-type, but not body-part. Finally, we repeated this dPCA analysis for our synthetic 

mirror neurons. As shown in Figure 5C, mirror neurons enable generalization across self and other 

(top row) but not for any other split of the data.  
 

DISCUSSION 

Mirror neurons reconsidered. Mirror neurons are the foundation of an influential theory for how 

we understand the actions and experiences of others (2). At a broad level, the mirror hypothesis 

claims that neurons within high-level regions responsible for planning our own motor behavior or 

processing bodily sensations or emotions are also involved in understanding the intentions and 

experiences of others. Our data are consistent with this view. The mirror hypothesis also proposes 

a particular mechanism by which understanding is achieved: the "mirror mechanism" (2, 4). In this 

view, individual neurons in higher-order motor cortices encode action goals, or analogous signals 

in other modalities (4). These neurons are assumed to be imbued with meaning under the 

assumption that we must understand our own actions or experiences. Thus, by extending access to 

these neurons to what we observe, the mirror mechanism can directly impart understanding (2). 
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Our results argue against this view by demonstrating: 1) that single neurons exhibiting mirror-like 

properties become increasingly rare as the complexity of the task increases suggesting the theory 

cannot scale to real-world complexity and 2) that neural population behavior is better described by 

shared representations that can be decomposed into basic building blocks than specifically enabling 

mirroring between self and other. To the first point, a number of recent studies have shown that 

mirroring-like behavior can be mediated by populations of neurons (9, 22-24), with contributions 

from neurons that do not directly exhibit the congruency associated with classic mirror neurons(9). 

However, the population extension of mirror neurons cannot address many of the core critiques of 

the theory (6, 7). Instead, per point two, our basic view connects more directly with developing 

theories of how human-like cognition relies on the nature of mental representations, outlined next. 

Potential basis for cognitive models of the world. A recent branch of cognitive neuroscience has 

proposed that human-like learning and thinking are primarily built on the internal models we 

construct of the world.(3, 10) These models play a ubiquitous role, providing a common substrate 

to inform our perception, cognition, imagination, and planning. The neural basis for this cognition 

through internal models framework remains largely unexplored, though preliminary neuroimaging 

evidence points to a role for PPC (10, 25). Our results, demonstrating shared representations that 

can be decomposed into basic building blocks, support this computational architecture, and provide 

preliminary insight into its neural implementation within human PPC. This framework provides a 

unifying account of many of our recent results, suggesting that language, imagination, planning, 

and perception tap into the same underlying shared internal models.(18, 20, 26, 27) Understanding 

our neural results in this framework also helps to address limitations associated with mirror 

neurons, as discussed below.    

What does our data add to the cognition through internal models framework? First, the neural 

populations that underly our putative internal models are consistent with grounded or embodied 

notions of cognition. The tactile responses in the current study have parametrically encoded tactile 

receptive fields that activate within 60ms of physical contact (28), consistent with a bottom-up 

(sensory-driven) role in tactile processing. These responses can be contrasted with the highly-

selective and long-latency (260-400ms) responses reported for "concept cells" within the medial 

temporal lobe (29). The fact that tactile imagery (28) and observation engage sensory-like 

populations suggests that tactile cognition is intricately tied to our somatosensory experiences and 

argues against purely "symbolist" views of cognition (30). These tactile responses are likely not 

raw representations of sensory inputs: neural responses in anterior regions of the PPC are 

consistent with state estimators that compensate for sensory delays and merge visual and 

somatosensory inputs (31, 32). Our results suggest that neural populations that help estimate the 

state of one's own body may provide inductive biases that constrain and shape our cognitive 

understanding to be consistent with our own body knowledge.  

Second, within a local neural population, the compositional nature of the population response is 

structured: tactile variables related to touch type and body location generalize for any split of the 

data, consistent with establishing a compositional basis, while the identity of who is being touched 

does not (Figure 4, 5). Presumably, models around identity are constructed in varied regions of the 

temporal cortex, including the medial temporal cortex (33) and the temporal-parietal junction (34). 

Overall, this pattern of results is consistent with systems-level architectures that construct 

understanding through the interplay of diverse but interconnected regions (35-40) and suggest that 

the state of the world is encoded as a distributed population code within and across brain regions.  
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Practical differences with the mirror neuron account: generalization and temporal dependence. 

By the mirror account, single neurons encode our own action goals, and the mirror mechanism 

extends access to these representations to observation (41). As stated above, such a mechanism 

does not allow for understanding action goals outside our own repertoire. In our account, high-

level cortical regions encode representational building blocks that can be combined in novel ways 

to understand novel stimuli. For example, we would predict that if our participant was asked to 

imagine what it would feel like if we pinched her tail (something clearly outside the participant's 

direct experience as she lacks a tail), we would find that the neural subspace associated with 

pinches would be activated along with cortical representations of tails, presumably derived from 

regions of the temporal cortex (42).  

The mirror account assumes a temporal dependence: individuals learn motor representations that 

can subsequently be accessed during observation (2). In our formulation, such temporal precedence 

is not necessary. Individuals can form representational building blocks using any possible 

information source. To use an example from Patricia Churchland, even if I have never milked a 

cow, I can readily build understanding by watching someone else milk a cow. The underlying 

neural representations can then help me quickly understand milking a goat or help inform my own 

attempts at milking a cow (43). No doubt, our actions and experiences provide unique and 

unreproducible forms of knowledge. Just as the description of a sunset cannot replace witnessing a 

sunset, it is likely that observing pinches cannot replace the experience of having been pinched. 

Thus, our own experiences can change the nature of our internal representations but are not a 

prerequisite to form these representations. As evidence, even individuals with congenital 

somatosensory deprivation can form relatively natural internal representations of the body (44).  

Compositionality. Compositionality captures the basic idea that we construct representations 

through a combination of more primitive components. For example, a car can be encoded as a 

combination of wheels, body, engine, seating, steering mechanism, etc. The same elements can be 

recombined in different ways to form related representations, such as a bus or motorcycle. Two 

primary approaches have been used to test for compositionality in neural populations: matrix 

factorization and parts-whole based approaches. The nature of our stimuli naturally lent itself to the 

matrix-factorization based approach (see methods, task description) and may be necessary to 

ensure that adequate context. For example, the pantomimed gesture of two fingers pressing 

together may not equate to a "pinch." To this point, observation of motor movements devoid of 

goals is insufficient to drive action observation neurons (4). Nonetheless, questions about what 

constitutes a sufficient stimulus and delving further into the mechanisms of compositionality are 

exciting directions for future studies. 

Compositionality does not imply a specific neural architecture. For example, "concept cells," 

neurons described in the medial temporal lobe (45) that respond to a preferred stimulus (e.g. a 

particular individual) independent of sensory modality or presentation details (e.g., image, written 

word, sound) can form a compositional basis. For example, the concept of "Star Wars" may be 

formed by an ensemble of cells encoding subconcepts such as "Luke Skywalker," "Darth Vader," 

etc (46). We have previously described a partially-mixed architecture. Unlike concept cells, PPC 

neurons respond to many diverse stimuli in seemingly random ways at an individual cell level. For 

example, a cell encoding hand movements was as likely as not to encode a shoulder movement 

(20, 47). Nonetheless, neurons exhibit clear structure at a population level, forming associations 

between related variables, consistent with this work. One possibility is that compositionality built 

on partially-mixed representations helps embody or tie our understanding to our lived experiences. 
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Relationship to alternative accounts of mirror neurons. Following critiques of the mirror 

hypothesis (7, 48, 49), alternative explanations for cells that fire to both performed and observed 

movements have focused on a role for the visual guidance of movement, e.g., by mediating motor 

imitation, observational learning, or planning in response to the actions of others (41). These are 

compelling as animals clearly use such observation to guide their motor behavior. It is less clear 

how well such explanations can account for our data: There is no simple corollary for generating 

an endogenous sensory experience in response to the sensory experiences of others. In our view, 

the compositional building blocks provide useful representations that can inform all relevant 

aspects of behavior. In the motor domain, this can include e.g. action understanding, but also 

guiding motor behavior based on the actions of others. Interestingly, the degree of population-level 

similarity between executed and observed actions appears smaller than what we have found in the 

sensory domain (41). One intriguing hypothesis is that the number of possible ways observed 

actions can inform our cognition and behavior (e.g., understanding, imitation, learning, motor 

planning) is substantially larger than the sensory case leading to more multi-faceted neural 

responses that limit gross measures of population similarity.   

Relevance to BMI. Numerous clinical trials have shown that individuals with paralysis can use 

signals from motor regions of the brain to control external devices, such as robotic limbs or 

computer cursors (18, 50). The underlying brain signals are low-dimensional and roughly encode 

movement direction smoothly, enabling researchers to collect sufficient data to train a decoding 

algorithm in a few minutes. Future BMIs could decode high-level concepts, visual imagery, or 

emotional state. The dimensionality of these signals (e.g., the space of all mental images) is far 

larger than basic movements. However, if these high-dimensional datasets are encoded using 

generalizable relatively low-dimensional basis sets, then the ability to read out these high-

dimensional signals may be tractable. To this end, proof-of-concept studies have already 

demonstrated the ability to decode high-fidelity faces or the semantic content of visual scenes from 

rich low-dimensional basis sets (17, 51, 52). The current study suggests that complex high-level 

concepts can be constructed as the linear superposition of basic level representations (e.g., touch 

type or body location) that are decodable from limited datasets. This offers hope that future BCIs 

can communicate the contents of our minds more directly, providing truly novel forms of 

communication. 
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Figures: 

 
Figure 1. Evidence for mirror-like responses for actual and observed touch in human PPC  

A, Task design testing neural responses during experienced and observed touch to the cheek and shoulder. 

The cue (hidden from the participant) instructed experimenters on which tactile stimulus to deliver during 

the stimulus phase. B, Percent of neurons demonstrating significant modulation from the inter-trial-interval 

baseline (p<0.05, FDR corrected, mean ± 95% CI, 10 trials per condition, 757 neurons). Gray dots represent 

single session results. Act = actual; obs = observed. C, Population measure of the strength of representation 

as measured by the distance of neural population response from the baseline ITI period baseline 

(Mahalanobis distance, mean ± 95% CI across sessions). Gray dots represent single session results.  D, Pie 

chart categorizing neurons according to their individual response properties: body part specific (invariant 

to whether touch was actual or observed, i.e. mirror-like), person-specific (invariant to body part), invariant 

(responsive to all conditions), or idiosyncratic (other patterns). E, Example neurons showing mirror-like 

responses (mean±SEM, n=10 trials.) Each column shows the response for one neuron to actual (top row) 

and observed touch (bottom row.) F, Cross-validated correlation of population responses within and 

between conditions. Colors represent the correlation strength, as in the scale.  
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2. Single neurons discriminate many types of actual and observed touch  

A, Percent of neurons demonstrating significant modulation from the inter-trial-interval baseline (p<0.05, 

FDR corrected, mean ± 95% CI, 10 trials per condition, 757 neurons). Gray dots represent single session 

results. B, Population measure of the strength of representation as measured by the distance of neural 

population response from the baseline ITI period baseline (Mahalanobis distance, mean ± 95% CI across 

sessions). Gray dots represent single session results. C, Time-resolved, cross-validated classification 

accuracy discriminating the four touch-types within each sensory field (mean ± 95% CI computed across 

sessions). D, Sample neuron response to pinch across all sensory fields as a function of time (mean ± SEM, 

n=10 trials.) E, Response for the same example neuron from panel D across the four sensory fields, now 

including all touch types. Touch types are color-coded, as indicated. Other details are as in panel D. F, 

Additional example neurons (see also Figure S2). Each column depicts the response for one unit to each 

sensory field (rows). Details as in panels D. Act, actual; Obs, observed; s, seconds; Ac, actual cheek; Oc, 

observed cheek; As, actual shoulder; Os, observed shoulder; Hz, hertz 
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Figure 3. Single neurons are complex and heterogeneous 

A-C, Schematic illustrations of three of the 51 possible linear models describing how a neuron's firing rate 

response to the four touch-types (selectivity pattern, SP) is congruent or incongruent across the four sensory 

fields (Ac, As, Oc, Os, see legend). A more complete description can be found in Fig. S3. D, Histogram 

showing the percentage of PPC neurons that behaved according to each category of models (see also Figure 

S3-5). Ac, actual cheek touch; As, actual shoulder touch; Oc, observed cheek touch, Os, observed shoulder 

touch; fr. firing rate 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.06.506071doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506071
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 4. Population-level subspaces mediate the generalization of tactile information.  
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A, Schematic illustration of the subspace analysis to test the generalizability of tactile information. In this 

example, we learn a linear mapping that discriminates actual pinch and press to the participant’s cheek from 

population neural activity. We then test how well the mapping is able to discriminate data collected while 

the participant observes pinch and press to the experimenter's cheek. Generalization is quantified by 

measuring the Mahalanobis distance between conditions in the observed (test) data normalized by the 

distance between conditions in the actual touch (training) data. B, Results of the subspace analysis when 

testing how touch-type information generalizes across the other two dimensions: body part and person. The 

normalized generalization (y-axis) is shown for each tested subspace (x-axis). On the x-axis below each 

group of bars is a condensed schematic (from panel A), showing the train and test pairs. The red and green 

lines illustrate two separate but related tests for generalizability. The bars show the mean generalization 

(horizontal black line) ± 95% CI computed across sessions. C, Similar to panel B, except here the 

generalizability of body part information is being tested across touch type and person. D, Similar to panels 

B and C, except here the generalizability of person information is being tested across body part and touch 

type. Norm, normalized. E-F, Similar to B-D but for synthetically generated neural data.   
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Figure 5. Compositional architecture of PPC responses to touch 

A, Results of a demixed principal component analysis (dPCA) performed on the population data. Each 

panel shows the linear projection of the neural population response onto an axis that describes how neural 

firing relates to task variables, along with the percentage of the population variance that is explained by the 

task variable. In each panel, the projection is shown as a function of time (x-axis), along a dimensionless 

y-axis, coded by color and line type as labeled. B, Generalizability of learned neural subspaces. Each row 

shows the results of a dPCA in which the population representations of four conditions (in the legend) were 

decomposed along two dimensions (labeled y-axis; each panel) for a fixed value of the third dimension. 

The learned mapping was tested on the held-out value of the third dimension. The mean value across 

sessions (and both directions of the third dimension)  95% CI for each condition is shown, as a function 

of time (x-axis). C, Same analysis as in B, except performed on synthetic mirror neurons. CP, cheek pinch; 

CPr, cheek press; SP, shoulder pinch; SPr, shoulder press; AP, actual pinch; APr, actual press; OP, observed 

pinch; OPr, observed press; AC, actual cheek; OC, observed cheek; AS, actual shoulder; OS, observed 

shoulder; s, seconds. 
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MATERIALS AND METHODS 

 

1. Subject details 

All data were recorded from NS, a 62-year-old tetraplegic female participating in a brain-machine 

interface (BMI) clinical trial. She has a high-cervical spinal cord injury (SCI) between cervical 

levels three and four, sustained approximately 10 years prior to the study, and with no preserved 

sensory or motor function below the shoulder. She was implanted with two 96-channel Neuroport 

Arrays (Blackrock microsystems model numbers 4382 and 4383) 6 years post-injury, in the left 

hemisphere. Informed consent was obtained, and she understood the nature, objectives, and 

potential risks of the surgical procedure and the subsequent clinical studies. All procedures were 

approved by the Institutional Review Boards (IRBs) at the California Institute of Technology (IRB 

#18-0401), the University of California, Los Angeles (IRB #13-000576-AM-00027), and Casa 

Colina Hospital and Centers for Healthcare (IRB #00002372). 
 

2. Experimental setup 

All experiments were conducted at Casa Colina Hospital and Centers for Healthcare. NS was 

seated in a motorized wheelchair in a well-lit room. A 27-inch LCD monitor was positioned behind 

NS (visible to the experimenters but not to NS) to cue the experimenters when to deliver tactile 

stimuli. Cue presentation was controlled by the psychophysics toolbox (Brainard, 1997) for 

MATLAB (MathWorks).83  
 

3 Physiological recordings 

NS was implanted with one Neuroport array at the junction of the intraparietal sulcus (IPS) and 

postcentral sulcus (PCS), a region we refer to as PC-IP.34 The other array was implanted in the left 

superior parietal lobule (SPL). Following surgery, the SPL implant did not function. Only data 

recorded from PC-IP were used in this study. Both arrays were explanted approximately two years 

after data in this study were collected.  
 

Neural activity recorded from the array was amplified, digitized, and sampled at 30 kHz using a 

neural signal processor. This system has received Food and Drug Administration (FDA) clearance 

for <30 days of recordings. We received an investigational device exemption (IDE) from the FDA 

(IDE #G120096, G120287) to extend the implant duration for the purposes of the BMI clinical 

study.  
 

Putative neuron action potentials were detected at threshold crossings of -3.5 times the root-mean-

square of the high-pass filtered (250 Hz full bandwidth signal. Each waveform was made of 48 

samples (1.6 ms), with 10 samples prior to triggering and 38 samples after. Single- and multi-unit 

activity was sorted using Gaussian mixture modeling on the first three principal components of the 

detected waveforms35. To minimize noise-related effects, we used, as selection criteria, a mean 

firing rate greater than 0.5 Hz and signal to noise ratio (SNR) >0.5.  
 

4 Task procedures 
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1 Basic sensory mirroring task (BSMT; relevant for Figure 1). This task was performed to 

establish the shared responsiveness of PPC neurons to felt and observed touch. NS sat facing an 

experimenter (actor). One experimenter stood behind the actor, and another behind NS. The task 

involved touch to one of two body parts (cheek, shoulder), to one of two persons (subject, or 

actor). Touch was provided as rubs performed bilaterally by the experimenter standing behind the 

person being stimulated, at approximately 2 rubs per second, for 3 seconds. Cheek touches were 

rubs parallel to the jawline (from cheekbone to chin and back again). Shoulder touches were rubs 

along the top of the shoulder, from near the neck to the outside of the shoulder and back. The task 

was performed on 6 individual recording sessions, with 10 trials per condition. In all, 805 units 

were recorded, of which 756 met the selection criteria.  
 

2 Multidimensional sensory mirroring task (MSMT; relevant for all Figures except 1). This task 

was performed to understand mechanisms by which neural information is shared across 

populations of PPC neurons to support felt and observed touch. The basic setup was like the 

previous task. Here, however, we manipulated three dimensions: 2 body parts (cheek, shoulder), 

provided to 2 persons (NS, actor), in one of four touch-types (pinch, press, rub, tap). As in the 

BSMT, touch stimuli were provided at approximately 2 per second, for 3 seconds. Rubs were as 

described. Pinches were performed in a non-painful manner with the thumb, index, and middle 

fingers. Presses were performed with the index and middle fingers and taps by the tips of the index 

and middle fingers. Prior to performing the experimental session, we verified that the participant 

was able to differentiate the different stimuli, whether observed or felt. This task was performed on 

8 recording sessions, with 10 trials per condition. In all 806 units were recorded, of which 741 met 

the selection criteria.  
 

The use of three factors was essential to enable testing for compositionality in the neural code. 

There are two primary approaches that have been used to test for compositionality in neural 

populations: matrix factorization and parts-whole based approaches. In the matrix factorization 

approach, population activity is measured while the participant views complex stimuli composed 

of varied combinations of different constituent elements (13, 14, 16, 17). The resulting activity 

patterns are then subjected to some form of matrix decomposition to test whether the stimuli are 

explainable as combinations of the constituent elements. For example, a stimulus set may consist 

of images of young men and women and old men and women. The resulting brain activity would 

then be decomposed to test whether neural responses can be represented as combinations of age 

and gender dimensions. In the parts-whole approach, population activity is measured while the 

participant views stimuli of the parts and the whole separately (15). Brain responses evoked by the 

parts are then combined to see if they predict the brain response to the whole. For example, a 

stimulus set may consist of the words "old," "man," and "grandpa." Response to "old" and "man" 

are then summed to see if they predict "grandpa." This latter approach has intuitive appeal as it has 

a direct relationship to the underlying theory – the whole is the sum of its parts. However, 

representing the parts is not trivial for certain classes of stimuli. One cannot simply show an image 

of "old"; there must be an embodiment – an image of something old. Additionally, it is unclear 

whether parts, devoid of their surrounding context, would or should be processed as such. For 

example, the pantomimed gesture of two fingers pressing together may not equate to a "pinch." To 

this point, observation of motor movements devoid of goals are insufficient to drive action 

observation neurons (4). These latter cases naturally lend themselves to the matrix factorization 
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approach – e.g. to show stimuli of the "old something" and use an appropriate analysis technique to 

separate the neural signature of "old" from the neural signature of the "something." This approach 

carries the possibility of overfitting the data, finding a separation that is not a true generalizable 

feature of the data. To mitigate against this possibility, it is essential to record a dataset that allows 

any identified structure to be validated against data that was not used to train the algorithm. Such 

an approach requires a sufficient number of factors, at minimum three, so that the matrix 

decomposition can across at minimum two factors and tested across varied levels of the third 

factor.  
 

 

 Quantification and statistical analysis 

5.1 Linear analysis (relevant for Figure 1B, Figure 2A). For each unit, we fit a linear model 

describing its firing rate as a function of response to each test condition. Response was defined 

as the mean firing rate between 0.5 after onset of the stimulus phase and ending 0.5 s thereafter. 

These times were chosen to correspond to the period of time during active tactile stimulation, 

offset to account for experimenter delays in presenting the stimulus. The baseline was defined as 

the neural firing rate during the 1 s prior to stimulus presentations. The linear model was 

computed as:  

 

𝐹𝑅 = ∑ 𝛽𝑐
𝑐

X𝑐 +  𝛽0 

Where 𝐹𝑅 is the firing rate, X𝑐 is the vector of indicator variables for test condition c, 𝛽𝑐 is the 

estimated scalar weighting coefficient for each condition, and 𝛽0 is a constant offset term. A 

neuron was considered responsive to a particular condition if the t-statistic for its associated beta 

coefficient was significant (p<0.05, false discovery rate (FDR) corrected for multiple comparisons).  

 

5.2 Discriminability index (relevant for Figure 1C, Figure 2B). To quantify how well neural activity 

can be discriminated from baseline (pre-stimulus) activity, we used a cross-validated mahalonbis 

distance measure. As with the linear analysis described above, the stimulation phase window was 

defined as 0.5 after onset of the stimulus phase and ending 0.5 s thereafter, and baseline was 

defined as the 1 s prior to stimulus presentation). The firing rate of all recorded neurons was 

concatenated into a vector, denoted by A. The firing rate of each neuron during the baseline 

phase was similarly concatenated to form a vector, denoted by 𝐵. Next, a non-dimensional 

distance was computed as: 

 

𝐷𝐼 =
𝐴̅ − 𝐵̅

√𝜎𝐴
2 + 𝜎𝐵

2

2

 

 

Where 𝐴̅ is the mean of the firing rate vector 𝐴, 𝐵̅ is the mean of the firing rate vector 𝐵, 𝜎𝐴 is the 

standard deviation of the vector 𝐴, and 𝜎𝐵 is the standard deviation of the vector 𝐵.  

 

5.3 Time-resolved classification (relevant for Figure 2C). Classification was performed using linear 

discriminant analysis (LDA) with the following parameter choices: (1) only the mean firing rates 

differ for unit activity in response to each test condition (covariance of the normal distributions are 
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the same for each condition) and (2) firing rates for each unit are independent (covariance of the 

normal distribution is diagonal). The classifier took as input a matrix of firing rates for all sorted 

units. The analysis was not limited to significantly modulated units to avoid 'peeking' effects.84 The 

analysis was performed independently for each recording session, and results were then 

averaged across days. In Figure 2C, this analysis was performed in a sliding-time window 

manner (300 ms each window, stepped at 10 ms intervals), beginning 0.5 s prior to the stimulation 

onset. Classification performance is reported as the prediction accuracy of a stratified leave-one-

out cross-validation analysis.  

 

5.4 Correlation (relevant for Figure 1F). We performed cross-validated correlation to compare the 

neural representations of various test conditions (stimulus presentations) against each other in a 

pairwise manner. We quantified the neural representations as a vector of firing rates, one vector 

for each condition with each vector element summarizing the response of an individual unit. 

Neural activity was summarized as the mean firing rate during the stimulation phase window, 

defined as before (0.5 s after onset of the stimulus phase to 0.5 s after it ended). Firing rate 

vectors were constructed by averaging the responses across 50–50 splits of trial repetitions. The 

mean responses across different splits were correlated within and across conditions, then the 

splits were regenerated, and the correlation computed 250 times. The within-condition correlations 

assist in our interpretation of the across-sensory field  correlations by allowing us to quantify the 

theoretical maxima of the similarity measure (e.g., if the within-condition correlation is measured at 

0.6, then an across condition of 0.6 suggests the maximal level of similarity as allowed by the trial-

to-trial variability of the signal). 

 

5.5. Event-related averages (relevant for Figure 1E, Figure 2D, Figure 2E, Figure 2F, Figure S2). 

For each unit, neural activity was averaged within 750 ms intervals starting from 0.5 s prior 

stimulation onset, stepping to 2.5 s after, in 100 ms step intervals. Responses were grouped by 

condition, and a mean and standard error on the mean (SEM) were computed for each time 

window and for each condition.  

 

5.6 Modeling the single neuron response properties to various test conditions (BSMT) (relevant for 

Figure 1D). This analysis was performed to understand how individual neurons responded to four 

formats:  actual cheek touch (Ac), actual shoulder touch (As), observed cheek touch (Oc), and 

observed shoulder touch (Os). Various possibilities exist. For example, the neuron might respond 

to actual touch to both body parts but not to any observed touch. Alternatively, it could respond to 

both actual and observed touch to the one body part but not to the other. We can model the firing 

rate for a given unit as:  

 

𝑓𝑟 =  𝛼 ∙ 𝐴𝑐 +  𝛽 ∙ 𝐴𝑠  +  𝛾 ∙ 𝑂𝑐  +  𝛿 ∙ 𝑂𝑠 

 

Where 𝑓𝑟 is the firing rate for the unit, 𝐴𝑐, 𝐴𝑠, 𝑂𝑐, 𝑂𝑠 are the four formats, and 𝛼, 𝛽, 𝛾, and 𝛿 are 

the weighting coefficients for each sensory field , respectively. If the unit does not respond to a 

sensory field , then the dot product of the unit's weighting coefficient and the sensory field  

collapses to a scalar value. If a unit responds to two formats in a congruent manner, then the 

weighting coefficient for these two formats will be identical. For the analysis, we allowed a 
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weighting coefficient to be either 0 or 1, such that that across 4 formats, there are a total of 16 

possible models for each neuron. We fit the parameters of each of the 16 models using standard 

linear regression techniques (see above), and the results were compared. As selection criteria to 

evaluate the "best" model from all candidate models, we used the Bayesian information criterion 

(BIC) and cross-validated coefficient of determination (cvR2). The models were grouped according 

to four categories: invariant (in which the weighting coefficient was identical across all formats), 

body part specific (in which the weighting coefficient was invariant for matched body parts, but 

not for mismatched body parts), person specific (in which the weighting coefficient was invariant 

for touch to the same person) or idiosyncratic (all other combinations).  

 

5.7 Modeling the single neuron response properties to various test conditions (MSMT) (relevant 

for Figure 3, Figure S3, Figure S4). This analysis is like the earlier modeling analysis for the 

BSMT, except it has been expanded to accommodate for more test conditions. To understand the 

breakdown of individual units that create the population response, we first defined four formats: 

actual cheek touch (Ac), actual shoulder touch (As), observed cheek touch (Oc), and observed 

shoulder touch (Os). An individual neuron could respond to one or more formats. If it responds to 

more than one sensory field, it could respond with a congruent selectivity pattern (SP; the precise 

pattern of responses) to each of the four touch types (pinch, press, rub, tap) within the sensory 

field, or with an incongruent SP. Across the four formats, the firing rate for a given unit can be 

described mathematically as:  

 

𝑓𝑟 =  𝛼 ∙ 𝐴𝑐 +  𝛽 ∙ 𝐴𝑠  +  𝛾 ∙ 𝑂𝑐  +  𝛿 ∙ 𝑂𝑠 

 

Where 𝑓𝑟 is the firing rate for the unit, 𝐴𝑐, 𝐴𝑠, 𝑂𝑐, 𝑂𝑠 are the four formats, and 𝛼, 𝛽, 𝛾, and 𝛿 are 

the weighting coefficients for each sensory field , respectively. If the unit does not respond to a 

sensory field, then the dot product of the unit's weighting coefficient and the sensory field  

collapses to a scalar value. Within this type of a linear model, if a unit responds to formats with an 

identical SP, then the weighting coefficient for all those formats will have an identical weighting 

coefficient. In all, there are 51 unique models for all the ways in which SPs can be expressed 

across formats.   

 

To determine how SPs compared across formats, we fit the parameters of each of the 51 models 

using standard linear regression techniques (see above), and the results were compared. As 

selection criteria to evaluate the "best" model from all candidate models, we used the Bayesian 

information criterion (BIC) and cross-validated coefficient of determination (cvR2). Results are 

summarized as the number of units that are best described by a particular model.  

 

5.8 Generalizability analysis (relevant for Figure 4). This analysis was performed to understand 

how neural information belonging to one domain (e.g., body part) generalizes across another 

domain (e.g., touch type or person). For this analysis, we restricted the tested touch types to pinch 

and press only. Additional combinations of touch type, e.g. pinch and rub were tested and resulted 

in the same pattern of results. Restricting to two touch-types resulted in three data matched 

dimensions: touch type (pinch, press), body part (cheek, shoulder), and person (actual touch, or 

observed touch). In all, there are 8 test conditions.  
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We quantified the neural response to each condition as a vector of firing rates, one vector for each 

condition, with each element in each vector summarizing the response of an individual unit. All 

sorted units were used in this analysis. As in other analyses, neural activity was summarized as 

the mean firing rate beginning 0.5 s after onset of stimulation phase and ending 0.5 s after its 

conclusion. Next, we identified population-level neural subspaces that optimally differentiate 

between pairs of conditions (training conditions) and tested how well these subspaces 

differentiate between pairs of test conditions. For example, in Figure 4A, we identified a subspace 

that optimally differentiates between the two touch types, pinch and press, during actual touch the 

participant's cheek and asked: how well does this subspace also differentiate between touch-

types when observing them applied to the cheek? To create the subspaces, we linearly regressed 

(using partial least squares regression) the vectors for the pair of training conditions, such that the 

cross-validated Mahalonbis distance between the two conditions was maximized. We then used 

this model to project the held-out test data into the same subspace and computed the 

Mahalanobis distance between conditions. This computed distance was normalized to the cross-

validated distance of the training data and thus the resulting metric expresses how well the test 

conditions are separable relative to the training conditions. In this way, the analysis is able to tell 

us how well a neural subspace that optimially distinguishes the training conditions is able to apply 

o the test conditions. A value of 1 indicates that the neural subspace that maximally separates the 

training data (e.g., measured during actual touch) perfectly generalizes to the held-out test data 

(e.g. measured during observation). This basic computation was performed in reverse as well, 

such that in this example, a subspace was created that optimally differentiated between observed 

cheek pinch and presses, and tested to identify separability between actual cheek pinches and 

presses. The results in both directions were averaged and recorded as the normalized 

generalizability of information for presentation purposes (in this example case, the generalizability 

of information separating touch-types across actual and observed touch). The generalizability 

was computed for each day independently and averaged across recording sessions. Confidence 

intervals were estimated using a bootstrap procedure.  

 

5.9 Generalizability analysis applied to synthetic mirror neurons (relevant for Figure 4E-G).The 

generalizability analysis was performed on both real neural data, as well as a population of 

synthetically generated mirror neurons. We generated neurons with response properties that 

allowed single neurons to unambiguously associate observed and actual touches. The neurons 

were generated by assigning identical firing rates to actual and observed touch to a randomly 

chosen body part, and a randomly chosen touch type (between pinch and press). A vector of firing 

rates (of length 10, for ten trials) was constructed, with a mean of 1, and a standard deviation of 

1.2, for that pair of conditions, and 0 for all other pairs of conditions. To reflect the inherent 

complexity of real-world populations recorded in mirror neuron experiments85, we also created 

neurons selective to actual touches only, observed touches only, and observed and actual 

touches with different response profiles.  This population of synthetic neurons was then used as 

the dataset for the generalizability analysis (Figure 4E-G). We also ran the analyses with only the 

population of cells that showed congruency between observed and actual responses. Results 

were identical, save that measured slightly higher generalization values for the mirror conditions, 

as expected.      
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5.10 Demixed principal components analysis (relevant for Figure 5). Demixed-principal 

component analyses (dPCA) is an analysis technique that decomposes population neural data 

along user-defined neural dimensions (marginalizations) that capture variance related to task 

variables 86. This decomposition provides insight into the structure in neural data as it relates to 

the experimentally manipulated variables. We used all sorted units in this analysis. dPCA takes as 

input a matrix that describes firing rates to each of the test conditions for each trial as a function of 

time (i.e., all combinations of experimental variables, 16 conditions in the MSMT task). Neural 

activity was averaged within 750 ms intervals starting from 0.5 s prior to the onset of the 

stimulation phase, stepping to 0.25 s after the stimulus offset, in 50 ms step intervals, to the time 

of stimulus offset. In our current study, we were interested in understanding how much of the 

population variance was explained by independent dimensions (i.e., body-part, touch type, and 

person being touched) as well as by interaction terms (touch type x body-part, body-part x person, 

touch type x person, and touch type x person x body-part). Thus, we used all 7 possible 

marginalizations within this analysis.  

 

5.11 Generalizability analysis for demixed principal components analysis (relevant for Figure 5B-

C). 

Our interpretation of the dPCA analysis assumes that neural subspaces associated with task 

variables are generalizable, capturing aspects of the data that would apply to different contexts and 

stimuli. For example, the neural subspace associated with the main effect of body location should 

code for that body location whether touch is actual or observed, and for all forms of touch. In order 

to validate whether the discovered subspaces are indeed generalizable, we repeated the dPCA 

analysis, but now explicitly testing for generalizability of the different components. To this end, we 

trained a two-factor dPCA on multiple levels of two dimensions of the data for a single fixed value 

of the third dimension. We then test the subspaces using entirely held-out data, from the alternate 

value of the third dimension. For example, training the dPCA using data acquired during actual 

touch (e.g. for multiple touch types and body-locations) and applying the solution on data acquired 

during observed touch. If the dPCA accurately accounts for the neural variability in the held-out 

data, then we can interpret the subspaces as being a generalizable feature of the neural population. 

We performed this generalization analysis for all ways of partitioning the three dimensions into 

two training and one test dimension. Further, we performed the same set of tests using a synthetic 

mirror neuron population. The mirror neuron population was constructed identically as described 

above in section 5.9 expect that we gave neural response temporal dynamics. Temporal dynamics 

were created by assuming no neural modulation up until .5 seconds and then assuming a stationary 

response through the "stimulus period". 
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Supplementary Figures 

 

Figure S1: Microelectrode array implantation location. Related to Figures 1&2. Individual participant 

anatomy with the location of the microelectrode array implant.  
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Figure S2. Individual neurons exhibit complex and variable response patterns. Related to 
figure 2. 
A-N, Firing rate as a function of time for example neurons illustrating diverse responses to tactile 
stimuli across the different sensory fields (columns; Ac, actual cheek touch; Oc, observed cheek 
touch; As, actual shoulder touch; Os, observed shoulder touch). Within each panel, the neural 
response to each of the four touch types is shown (colors as in legend), as the mean firing rate 
(y-axis) ± SEM, n=10 trials, as a function of time (x-axis). Ac, actual cheek; Oc, observed cheek; 
As, actual shoulder; Os, observed shoulder; Hz, hertz; s, seconds. 
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Figure S3. Schematic illustration describing congruency in selectivity patterns across 
sensory fields. Related to figure 3. A, All 51 possible linear models that could describe an 
individual neuron's response (selectivity pattern, SP) to the four different touch types. The '=' 
symbol denotes congruency in SP between the sensory field listed before and after the symbol, 
and the '&' symbol denotes incongruent SPs. The 51 possible models are grouped into 8 
categories for interpretative purposes, labeled accordingly. Ac, actual cheek touch; As, actual 
shoulder touch; Oc, observed cheek touch; Os, observed shoulder touch. B, Schematic 
illustrations of each category of the 51 possible linear models. Each panel shows one example 
case for the columns shown in panel A, as labeled underneath each panel. The examples illustrate 
cases in which the SP is congruent between actual and observed touch to the cheek but 
unresponsive to shoulder touch (body-part mirroring), the SP is congruent across all sensory 
fields (invariant), and congruent within-person (i.e., for actual cheek and actual shoulder touch) 
but incongruent from actual to observed touch (person). The mathematical description of each 
model is shown above each illustration. In the analysis, congruency is operationalized by using 
the same linear-model coefficients to describe responses to multiple sensory fields. Incongruency 
uses distinct linear model coefficients. An abbreviated name for the model is shown below each 
panel. The '=' symbol denotes congruency in SP between the sensory field listed before and after 
the symbol, and the '&' symbol denotes incongruent SPs across sensory fields. See figure S3 for 
a full list of models and examples for each category of behavior. Ac, actual cheek touch; As, actual 
shoulder touch; Oc, observed cheek touch, Os, observed shoulder touch; fr, firing rate. 
Description of the eight summary models: The eight models can be understood as follows: 
Body Part Mirror describes models in which there is unambiguous congruency between actual 
and observed touch, specific to a body part. Invariant describes the case in which neural 
responses are congruent across all sensory fields. Person describes neurons where there is a 
congruent response to the different body parts within an individual, but incongruency between 
actual and observed touch. Body part other describes neurons with congruency between actual 
and observed touch to one body part, but some form of incongruency between body parts thus 
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creating ambiguity about the stimulus at the single neuron level. Three and two field congruent 
describes neurons showing congruency across 3 or 2 of the 4 sensory fields, but are not well-
described by the other models (e.g., an example would be congruency between actual shoulder 
and observed cheek responses.) One field describes neurons that show discriminable responses 
between touch types for only one field. Idiosyncratic describes neurons that show incongruent 
responses to two or more sensory fields.  

 

 
 

Figure S4. Categorization of all single-units into 51 possible patterns of correspondence 
across sensory fields. Related to figure 3. 
A, Histogram showing the percentage of PPC neurons that behaved according to each of the 51 
possible linear models. The abbreviated form of the model is listed below each bar. As in Figure 
S3, the '=' symbol denotes congruency in SP between the sensory fields listed before and after 
the symbol, and the '&' symbol denotes incongruency. Bars are color-coded by category (see 
figure 3). Ac, actual cheek touch; As, actual shoulder touch; Oc, observed cheek touch, Os, 
observed shoulder touch. B-C, Similar to A except categorizations are shown for Bayesian 
information criteria (BIC) and the cross-validated coefficient of determination (cvR2) separately. 
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Figure S5. Summary of categorizing single-units into 51 possible patterns of 

correspondence across sensory fields based on BIC and 𝒄𝒗𝑹𝟐. Related to figure 3. 
A, Histogram showing the percentage of PPC neurons that behaved according to each of the 8 
categories of linear models (see Fig S3). Here the breakdown is shown based on using the 
Bayesian Information Criterion (BIC) as the metric for evaluating which of the 51 models best 
matched each neuron's behavior. The category name is listed below each bar. B, Similar to A, 

except here the breakdown is based on the cross-validated coefficient of determination (𝑐𝑣𝑅2).  
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Movie Captions  

Movie S1: Example of a neuron demonstrating a mirror-like response. This example neuron 

activated when NS felt a touch to her outer shoulder but did not activate when she felt a touch to 

her inner shoulder. This represents an example of the specificity of neural response. In addition, the 

neuron activated when NS visually observed a touch to the experimenter’s outer shoulder but did 

not activate when observed a touch to the experimenter’s inner shoulder. The fact that response 

properties of experienced and observed tactile sensations were similar demonstrates the 

congruency of the neural response. 

 

Movie S2: Example of a neuron demonstrating a mirror-like response. This example neuron 

activated when NS felt a touch on her cheek and when she observed a touch on another person's 

cheek, but not when she observed a touch on the cheek of a Styrofoam head. 
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