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In brief

High-level cortex encodes motor

decisions before awareness, suggesting

that choice is preconsciously

determined. Aflalo et al. show that

preconscious activity is triggered by the

choice to participate in the experiment,

thus fulfilling, not predetermining, choice.

Associated neural dynamics require a

decoder design to align the BMI output

with conscious choice.
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SUMMARY
High-level cortical regions encode motor decisions before or even absent awareness, suggesting that neural
processes predetermine behavior before conscious choice. Such early neural encoding challenges popular
conceptions of human agency. It also raises fundamental questions for brain-machine interfaces (BMIs) that
traditionally assume that neural activity reflects the user’s conscious intentions. Here, we study the timing of
human posterior parietal cortex single-neuron activity recorded from implanted microelectrode arrays rela-
tive to the explicit urge to initiate movement. Participants were free to choose when to move, whether to
move, and what to move, and they retrospectively reported the time they felt the urge to move. We replicate
prior studies by showing that posterior parietal cortex (PPC) neural activity sharply rises hundreds ofmillisec-
onds before the reported urge. However, we find that this ‘‘preconscious’’ activity is part of a dynamic neural
population response that initiates much earlier, when the participant first chooses to perform the task.
Together with details of neural timing, our results suggest that PPC encodes an internal model of the motor
planning network that transforms high-level task objectives into appropriate motor behavior. These new data
challenge traditional interpretations of early neural activity and offer a more holistic perspective on the inter-
play between choice, behavior, and their neural underpinnings. Our results have important implications for
translating BMIs into more complex real-world environments. We find that early neural dynamics are suffi-
cient to drive BMI movements before the participant intends to initiate movement. Appropriate algorithms
ensure that BMI movements align with the subject’s awareness of choice.
INTRODUCTION

A neural prosthesis translates the motor intentions of paralyzed

individuals into control signals for assistive devices.1–4 These

systems have largely assumed that decoded neural signals

reflect the conscious intentions of the user. However, high-level

cortical regions can encode intended actions before conscious

awareness or absent awareness.5–9 The prospect of a neural

prosthetic interface executing movements before or without

the explicit awareness of the individual raises legal, ethical,

and practical challenges for brain-machine interface (BMI) adop-

tion. Despite this, the origins of early ‘‘preconscious’’ activity and

how this activity might interact with a neural prosthesis have not

been explored.

The posterior parietal cortex (PPC) is an important region at

the intersection of action awareness and production as inten-

tions are encoded by early planning activity,3,10–14 stimulation

can induce an urge to initiate movement,15 and damage can

disrupt awareness of movement and body state.16–19 The signif-

icance of this body of literature for neural prosthetics was high-

lighted when, as part of an ongoing clinical study, we developed

a neural prosthetic piano interface using signals from PPC (Video

S1). We trained an algorithm to decode individuated finger
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movements in response to simple cues and mapped decoded

movements to the keys of a virtual piano. However, while playing

the piano, the participant sometimes reported that ‘‘the keys just

automatically hit themselves without me thinking about it. It just

seemed like it (the decoding algorithm) knew the tune and did it

on its own. I did not have to move my fingers to make it happen’’

(Video S2). This example highlights how neural prosthetic

systems decoding neural signals from high-level regions of cor-

tex can execute actions before the user explicitly intends

movement.

Here, we study the timing and nature of single neuron and pop-

ulation activity in the PPC of two tetraplegic individuals partici-

pating in a human neural prosthetic clinical study. Participants

chose when to move and retrospectively reported the time of

the choice. In two follow-up experiments, a participant chose

whether to participate in the task on a trial-by-trial basis or chose

bothwhen tomove andwhatmovement to perform. Results from

these experiments suggest that within our recording regions of

PPC (1) the rapid rise in neural activity before movement aware-

ness and initiation are part of network dynamics associated with

movement planning, (2) cortical activity is better correlated with

motor production than awareness, (3) cortical responses are

contingent on high-level (nonmotor) choices, (4) cortical activity
–10, May 9, 2022 ª 2022 The Authors. Published by Elsevier Inc. 1
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Figure 1. Neural dynamics demonstrate

early encoding of movement intent

(A) Task paradigm.

(B) Population activity from a representative ses-

sion (participant NS) summarized as 1st principal

component of population response (42% variance

explained, mean ± SEM with single-trial examples

of the population response in gray; 200 ms boxcar

smoothing).

(C) Single unit examples illustrating diverse tem-

poral responses (500 ms boxcar smoothing).

Colors identify four basic temporal profiles found

within the population (cluster analysis, Bayesian

information criteria to determine the number of

clusters). Percent of total population falling into

each cluster shown in parenthesis.

(D) Proportion of neurons whose temporal

response is best explained relative to reported

urge to move (W aligned), EMG onset (M aligned),

or neither (no preference), broken up by cluster

identity. Percentages in legend (bottom) refer to

the total percentage of population collapsing

across neural classes identified in (C).

(E) Sample neural responses illustrating effector

specific and effector general dynamics beginning

with trial onset (mean ± SEM). Each panel illus-

trates a separate unit. Panels from left to right are

aligned to cue onset, clock onset, and time of re-

ported urge (W).

(F) Percent of the population demonstrating sig-

nificant modulation (p < 0.05 uncorrected, linear

regression) from baseline (black) and significant

differences between effectors (gray) through trial

progression.

(G) Population-level latent dimensions demon-

strating effector independent and specific network

dynamics (cross-validated mean ± 95% CI). The

dashed line represents temporal discontinuity

from concatenating cue-aligned and movement-

aligned signals. We adopt the concatenated

visualization for supervised learning techniques to

emphasize dependencies between time points.

See also Figures S1–S3.
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can occur without awareness of motor intent when in line with

high-level choices, and (5) algorithm selection and design are

essential to ensure that high-level motor intention signals are

appropriately translated into prosthetic control signals. One

interpretation is that PPC contributes to an internal model of

the motor planning network that transforms high-level task goals

into the motor commands necessary to achieve those goals.

Further, our results challenge traditional interpretations of ‘‘pre-

conscious’’ activity by demonstrating that neural population

responses that rise before the participant’s choice to initiate

movement first arise due to the participant’s choice to perform

the task.

RESULTS

We recorded single-neuron activity in two tetraplegic individuals

(N.S. and E.S.) implanted with Neuroport arrays near the junction
2 Current Biology 32, 1–10, May 9, 2022
of the postcentral and intraparietal sulci in the PPC (Figure S1).

We used three complementary paradigms in which participants

performed self-initiated movements to understand the relation-

ship between conscious intent and neural activation. N.S. and

E.S. participated in experiment 1. N.S. participated in experi-

ments 2 and 3.

The timing of single-neuron activity during motor
production and awareness
In the first experiment (Figure 1A), each trial began with a cue in-

structing one of two movements of the contralateral upper limb:

brief shrugs of the shoulder (a movement above the spinal cord

injury) and attempted squeezing of the hand (a movement below

the spinal cord injury). The participant was then free to choose

when they initiated the instructed movement (Figure S2). We

used themethod of Libet6 to allow participants to retrospectively

report when they first experienced the urge to initiate movement.
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Following Libet,6 we refer to this reported time as ‘‘W’’ and the

time of the motor response as ‘‘M.’’

PPC population activity increases before W, supporting previ-

ous findings that changes in neural activity precede awareness

of intent5–9 and extending these results to human PPC (Fig-

ure 1B). Further, the sensitivity to brain state provided by simul-

taneously recorded neural populations reveals that the early

ramping activity seen in trial averages provides an accurate tem-

plate for the population response measured during single trials

(compare black and light gray traces of Figure 1B). However, in-

dividual neuron responses were diverse. Cluster analysis identi-

fied subpopulations becoming engaged before W (Pre W±) but

also around the time of W (Peri W) or after (Post W) (Figure 1C).

This cascade of neural activations in time points to complicated

neural mechanisms underlying the process of voluntary

movement initiation and is consistent with delayed-movement

experiments in nonhuman primates (NHPs)20–22 but previously

unreported for voluntary movement initiation in humans.

Conscious intent and movement initiation are two events

confounded in time. Early rising activity (Figure 1C [bottom

row]) has been hypothesized to trigger the urge to initiate move-

ment as activity passes a threshold.7,23 However, this activity

may reflect a parallel process, whereby movement is prepared

for execution without a direct relation to awareness (e.g., move-

ments can be performed without a concomitant awareness).24,25

To address whether neural signals are more closely related to

motor production or subjective experience,we looked at the rela-

tive timing of these signals. We can address this question

because the time intervals betweenMandWvaried (Figure S2B),

with a range comparable to simple reaction time tasks.26 We

used the following logic: if a neural signal is time locked to motor

production (M), then aligning neural signals to the time of

conscious intent (W) will misalign the temporal profiles leading

to greater trial-to-trial variability and vice versa (Figure S3). All

neuron typeswerebetter explained in relation to the timeofmotor

initiation or demonstrated no preference (Figure 1D). Neurons

showing no preference had significantly lower signal to noise

(depth of modulation/variance) and thus likely reflect detection

difficulty insteadof amixture ofWandMalignment. These results

cannot be easily explained by increased measurement error

when using the clock to report onset times (Figure S3). Together,

our results suggest that early rising activity better reflects mech-

anisms related to motor production and not awareness as such.

What are the origins of neural activity changes that
precede awareness?
In prior studies, activity preceding movement awareness is

described as having ‘‘preconscious’’ origins; however, this label

does not help us understand how systems of neurons give rise to

behavior and experience. From a systems neuroscience

perspective, the increase in neural activity must be the conse-

quence of preceding neural computations (e.g., related to cue

processing, context, high-level intent). Our motivation for

including the effector cue was to introduce a known moment

when movement-related information could first be encoded in

the cortex. We hypothesized that analysis of neural activity at

this moment would help contextualize activity arising around W.

Figure 1E shows neural responses from the effector cue

throughmovement production for both shrug and squeeze trials.
As above, many neurons exhibit rapid changes in activity hun-

dreds of milliseconds before W (right portion of each subpanel).

However, tracing the neural responses backward in time shows

that rapid changes at the end of the trial are connected to tem-

poral or effector-specific modulation beginning at cue presenta-

tion (Figures 1E and 1F). We used a cross-validated variant of

demixed principal component analysis (dPCA),27 a supervised

dimensionality reduction technique, to analyze the temporal evo-

lution of PPC activity at the population level (Figure 1G). These

population responses are presumed to capture the underlying

latent variables that define a cortical region.28–30 These principal

components demonstrate that the neural dynamics that precede

the urge to initiate movement occurs within a latent neural sub-

space that is first engaged immediately after the movement is

encoded (e.g., in each panel, latent population activity first mod-

ulates directly following the cue and then modulates further,

often in anticipation of W). Early task-relevant modulation sug-

gests that neural modulation aroundW is a consequence of neu-

ral processes initiated at (or before) trial onset and thus are the

consequence of the participants’ decision to perform the task

as instructed.

The latent dimensions (Figure 1G) contain an effector-specific

component (demixed components 2&4; consistent with an

evolving motor plan) and an effector-general component (dem-

ixed compoents 1&3; potentially encoding global urgency,

movement likelihood, timing intervals, or other effector-indepen-

dent quantities), again drawing parallels with work in NHPs.31–33

Both effector-specific and general components emerged in

anticipation of W.

Is early activity the consequence of high-level intent?
To test the hypothesis that neural activity before W is a conse-

quence of the participant’s decision to perform the task, we

had participant N.S. choose, on a trial-by-trial basis, whether

to perform a trial (‘‘opt out task’’; Figure 2A). We wanted the

opt out decision to occur before the effector cue (e.g., before

the subject knew which effector to move) to dissociate the

high-level intent to perform the trial from motor planning signals.

Therefore, the participant was instructed to abort the trial if the

opt out choice was not made before a beep played 1.5 s before

the effector cue. We reasoned that if neural dynamics are the

consequence of NS’s high-level choice, then neural dynamics

would only occur during trials N.S. chose to perform.

N.S. aborted one trial (total trials = 286) because she had not

chosen to participate by the beep. When N.S. chose to perform

a trial (65.2% of trials), we measured selective neural responses

consistent with task objectives at the time of the effector cue;

conversely, this activity was not encoded or quickly suppressed

when N.S. chose to forgo a trial (Figures 2B and 2C). Thus, the

observed neural dynamics are a consequence of the partici-

pant’s choice to perform the task. We did not find neural encod-

ing of the choice to perform a given trial before the effector cue

(Figure 2D).

Are early planning dynamics a byproduct of the task
paradigm?
What is the timing of motor planning signals when subjects are

free to choose what to move in the absence of task structure?

In the above paradigms, the effector cue provides a known
Current Biology 32, 1–10, May 9, 2022 3



Figure 2. Volitional neural dynamics connect trial-onset to movement production

(A) Task paradigm.

(B) Single unit examples illustrate how neural behavior depends on the participant’s choice (N trials = 20 ± 4, mean ± SEM).

(C) Percent of the population (p < 0.05 uncorrected, linear regression) exhibiting differential modulation to effector cue contingent on high-level response.

(D) Population decoding of the participant’s choice to participate on a trial-to-trial basis (cross-validated mean ± 95% CI). Asterix indicates significant decoding

(shuffle test.).
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moment when the motor plan is first encoded. However, this

explicit external cue may create neural behavior that otherwise

would not occur in more typical circumstances, such as if the

subject was free to choose which effector to move. It also pro-

motes awareness of the cued effector. To mitigate against these

limitations, we asked participant N.S. to choose which of three

movements to perform and the timing of the movement within

a simple task environment (Figure 3A; see also Stetson and

Andersen13). N.S. was given minimal instruction; however, she

was asked to (1) initiate movement immediately upon deciding

which movement to perform and (2) to ‘‘avoid repeated

sequences of movements’’ such that the movements were

‘‘spontaneous and unpredictable.’’ To allow for a more natural,

self-paced flow of movements, we did not require N.S. to report

the time of the experienced choice. The goal of this task variant

was 2-fold: first, to test whether rising activity just before move-

ment would also be observed in more natural testing conditions,

and two, to measure when intention-related activity emerges

when not explicitly cued.

Intervals between movements were broadly distributed (Fig-

ure 3B). Movement choices were well balanced across the avail-

able options, and the transitions between options were well

sampled (Figure 3C). The behavior of individual neurons demon-

strated diverse and complex temporal patterns (Figure 3D)

consistent with the earlier structured tasks (e.g., Figures 1C

and 1E). To understand timing, we aligned neural data to move-

ment onset and used classification analyses to decode both the

current executed movement and the next movement. Data were

median split into long and short intermovement intervals (Fig-

ure 3B [median = 1.9 s]) and analyzed separately to understand

the influence of movement intervals. In line with the results dis-

cussed above, information about the current movement begins

to rise sharply�1 s before initiation (Figure 3E [blue]). Information

about the next movement began nearly coincident with the

execution of the current movement (�130 ± 90 ms for short-in-

terval trials and 56 ± 90 ms for long-interval trials, Figure 3E
4 Current Biology 32, 1–10, May 9, 2022
[red]). In the case of long interval trials, this early coding occurs

a minimum of 1.9 s before movement initiation, nearly a second

before the ramping responses in the instructed paradigms above

(Figures 1 and 2). Such early encoding suggests that implicit

neural computations support behavior when the subject is free

to choose both the time and type of action.

In theory, statistical regularities in transitions between actions

could drive significant decoding of the forthcoming movement

based on neural coding of the current movement. To address

this possibility, we repeated the classification analysis (Figure 3E)

after regressing out activity attributable to the current action. The

pattern of results remained the same (�114 ± 100 ms for short-

interval trials and 32 ± 90 ms for long-interval trials).

Early activity and consequences for neural decoding
Can early engagement of the motor planning network explain

decoder activation before the explicit intention to initiate move-

ment? We looked at how population-level activity collected in

experiment 1 (Figure 1) dynamically evolved in a space directly

relevant to neural classification. We computed the normalized

Mahalanobis distance between neural population activity re-

corded through the course of a trial in relation to neural activity

recorded during the intertrial interval (ITI) and movement execu-

tion (Go) epochs (Figures 4A and 4B). Relative distances in Ma-

halanobis space underlies classification using linear discriminant

analysis and can thus directly measure the factors that drive

classification. We focused our analysis on shoulder trials to

ensure the absence of electromyogram (EMG) activity before

W (therefore, any activity before W must reflect internal pro-

cesses and not overt movement). Directly after the cue, wemea-

sure a phasic response toward the population state associated

with the Go epoch, presumably reflecting the encoding of the

motor plan. The neural population then reaches a steady state,

on average, holding a position approximately midway to the de-

cision boundary that separates neural states associated with the

ITI and Go epochs. Next, before movement, the population drifts



Figure 3. Early coding of motor intentions in a simplified choice task

(A) Task. The subject was free to move the shoulder or attempt movement of the thumb or index whenever she felt the urge to do so. There was no task structure

outside the brief (250 ms) change of annulus color from gray to green immediately after the movement had been detected following movement onset.

(B) Histogram of intervals between voluntarily initiated movements.

(C) Behavior during the free-choice task. Top: transition probabilities between actions. Bottom: percent of trials each action was performed (mean ± SEM

computed across sessions).

(D) Single unit examples aligned to the verbal report of current movement onset (mean ± SEM).

(E) Accuracy decoding current and next action in the voluntary movement sequence split by interval duration (mean ± SEM across six sessions).
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toward the execution response until approximately 1 s before

movement initiation, at which point the ramping described above

occurs (Figure 4C). We show cross-validated classification anal-

ysis of the same data in Figure 4D. The described neural dy-

namics can drive early decoding before the explicit intention to

initiate action. This early decoding does not reflect indiscriminate

errors rooted in noisy data; instead, early decoding reflected the

network dynamics associated with a specificmotor plan.We find

that more sophisticated decoding approaches, in our case care-

fully structured hidden Markov models informed by the neural

dynamics of our task, align the output of the neural decoder

with the explicit timing of the user’s intent (STAR Methods sec-

tion improving classification; Figures 4D and S4; Video S3).

DISCUSSION

Several studies in human subjects have established that

changes in neural activity occur before awareness of the urge

to initiate movement.5–9,18 These results are compelling and

controversial because they suggest that unconscious neural

processes predetermine behavior before an individual

consciously processes the decision.5 However, our results sug-

gest that many examples of ‘‘preconscious’’ activity may instead

reflect the mechanistic process by which high-level goals are

transformed into the motor commands that achieve those goals.

In this view, the pivotal decision occurs when the brain self-

configured to perform a movement in the future.14,34–36 It is for

this reason that we have adopted theword ‘‘implicit’’ as opposed

to ‘‘preconscious’’ when referencing neural responses immedi-

ately preceding ‘‘W.’’ In other words, using the term ‘‘precon-

scious’’ submits to the logic that the neural events of

consequence immediately precedemovement initiation. Howev-

er, taking a more holistic view, the activity before ‘‘W’’ may be

better described as post- or peri-conscious as it comes after

and is the consequence of the decision to perform the task.

This implicit activity is analogous to our motor system. The

conscious intent to drink a cup of coffee is automatically
transformed into the spatiotemporal muscle activation patterns

necessary to reach and grasp. Just as we are unaware of the

neural processes that produce appropriate muscle activations,

these data indicate that we are unaware of the internal details

of the neural computations that support the production of future

behaviors.

We refer to activity preceding the urge to initiate a movement

as implicit; however, the participants are likely aware of which

movements they will soon perform in experiments 1 and 2 (Fig-

ures 1 and 2). What is presumed implicit is the mechanistic pro-

cess by which high-level task rules combine with environmental

information (e.g., task cues) to produce movements at variable

times in the future. The complex and diverse dynamics we see

at the single neuron level (e.g., Figure 1E) likely play a role in

this transformation (see below), but how these dynamics

generate behavior is beyond our awareness. Further, experiment

3 (Figure 3) suggests that neural responses can be fully implicit.

In the simple task, long-interval trials (those occurring greater

than 1.9 s) occur outside the 1-s window that characterizes

ramping activity before awareness in the Libet paradigm. During

the interval of time when the motor plan transforms into

movement, a new motor plan for the forthcoming movement is

encoded into the planning network, and this activity occurs

in the temporal window presumed to be outside awareness.

However, this activity is still an expression of the participant’s

will to perform the task. Early encoding in the simple task is

similar to NHP neural activity during well-rehearsed motor

sequences.37–40 Taken together, one speculation is that early

implicit encoding of future motor acts may explain why N.S.

felt the notes played themselves in the piano task.

PPC may encode the internal state of the motor
production network
We analyzed trial-to-trial variability in the timing of neural signals

relative to awareness (‘‘W’’) and movement onset (as measured

by EMG onset). We found that neural activity is better explained

relative to movement onset, suggesting that our recorded neural
Current Biology 32, 1–10, May 9, 2022 5



Figure 4. Early network dynamics can explain the ‘‘preconscious’’

triggering of the neural decoder

(A) Schematic. Through the course of a trial neural activity transitions from

resting levels (ITI) to the response measured during execution (Go) (thin black

line). This activity can be quantified by the geometric distance to the ITI and Go

activity patterns (DGO, DITI).

(B) Schematic. DGO and DITI can be used to calculate a continuous measure of

similarity to ITI and Go.

(C) Distance analysis applied to actual data for shrug (red) and squeeze (green)

trials (mean ± 95%CI). The dashed line represents temporal discontinuity from

concatenating cue-aligned and movement-aligned signals.

(D) Decode analysis using LDA applied to the same data as (C). Each column

shows the percentage of trials each class was decoded for a single time bin

(500 ms nonoverlapping bins). Populations dynamics observed in (C) are

sufficient to generate early decodes of shrug actions (e.g., following cue and

before reported urge).

(E) Decode analysis using amodified algorithm and training protocol applied to

the same data as (D) can restrict decoding actions to the time of intended

execution.

See also Figure S4 and Video S3.
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population is involved in motor planning and execution but not

directly tied to awareness. Although our control study (Figure S4)

helps to strengthen this conclusion, the fact that temporal mea-

surements were different in kind, e.g., clock monitoring versus

EMG measurements, complicates a definitive conclusion on

this point. However, an association with planning/execution

but not awareness is consistent with and provides a deeper un-

derstanding of deficits following PPC damage.19 In their paper,

Sirigu et al. report that individuals with damage to PPC preserve

an ability to initiate movement and report a conscious urge to

initiate movement. However, patients retrospectively report

that the urge to move is roughly coincident with movement

onset, whereas control subjects report the urge occurring
6 Current Biology 32, 1–10, May 9, 2022
�200 ms before movement onset, approximately when we see

a steep ramping of PPC activity. The lesion study and our single

unit results suggest that PPC encodes the internal state of the

motor production network in a way that anticipates motor pro-

duction, thus enabling early detection of a forthcoming move-

ment. In other words, PPC participants cannot predict their

own movements because they lack the anticipatory PPC neural

activity reported in our study. This interpretation suggests that

the previously described role of PPC in state estimation during

movement16,41–44 is broader than previously described and en-

compasses state estimation during planning formation through

movement execution. Anticipatory signaling of the conversion

of motor plans to motor initiation would have clear adaptive ad-

vantages. Environmental contexts are continually changing, and

a movement programmed in the past may not be appropriate in

an updated context. Anticipatory signals may ensure that a pre-

viously encoded motor plan remains relevant and allow an indi-

vidual to cancel the movement otherwise. Anticipatory signals

may also assist when assigning causal attribution to movement,

e.g., to ensure that the brain knows themovement has an endog-

enous origin.45

We found that premovement PPC activity, which drives popu-

lation neural activity closer to the classifier decision boundary

(Figure 4; Video S3), can spuriously trigger a BMI classifier.

This finding is seemingly at odds with studies in the monkey pri-

mary (M1) and premotor cortices. Kauffman et al.22 report that

planning activity is orthogonal to movement execution activity.

This orthogonality is theorized to enable planning without gener-

ating overt behavior, the very problem we see in our classifier

output. However, PPC is further removed from the motor output

pathway and thus may employ different encoding strategies. For

example, PPC may simplify telegraphing upcoming motor be-

haviors by providing similar output for planning and execution

states. Other differences, such as species differences, the influ-

ence of long-standing injury, or methodological differences, may

also contribute.

A node in the intention network
Although the Libet paradigm is presented as a single task, it in-

cludes two dissociable subtasks: a movement initiation task

and a report task. The movement initiation task requires that

the participant encode a motor program to initiate movement

at variable and unpredictable times in the future. The reporting

task requires that the participant create a ‘‘theory-of-mind’’

construct to report subjective experience. Our findings (that sin-

gle-trial population activity arises 100 s of ms before W and neu-

ral timing best correlates to movement initiation rather than W)

suggest that PPC neurons at the implanted location are related

to the first task but not the second. Consistent with this view,

neurons encode which movement the participant will perform

before the participant is aware of the choice within a simple

movement choice task (e.g., Figure 3).

The clear suggestion is that neurons responsible for construct-

ing our subjective experience must rely on different populations

of neurons located in other parts of the brain. This view is consis-

tent with an emerging picture of the neural basis of conscious-

ness and its neuroanatomical substrates. The PPC is a large

and functionally heterogenous.46,47 Our recording location within

the anterior-superior aspect of PPC is primarily associated with
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planning and monitoring body movements, as discussed

above.47 In contrast, posterior-inferior portions of PPC contain

neural populations important for constructing our subjective

experience of the world.47–49 For example, electrical stimulation

of the inferior parietal cortex induces the subjective experience

of wanting to move or having moved, neuroimaging identifies

neural correlates of awareness, and lesions disrupt awareness

while otherwise preserving basic information processing. One

possibility is that our recorded neural population provides inputs

to inferior portions of PPC and thus contributes to, but is not

directly responsible for, the participant’s subjective experience

of the task.

Our results are also consistent with a functional dissociation

between high-level intent and motor planning. In recent work,

we have found that PPC encodes a diverse array of variables

related to movement intention and body state, including motor

plans and trajectories, movements from diverse regions of the

body, cognitive-motor strategy, observed actions, action se-

mantics, and experienced and cognitive tactile sensations.50–53

These results suggest that PPCmay encode all task-related vari-

ables. However, somewhat to our surprise, data from the opt out

task suggest that more anterior subregions of the PPC that we

have implanted may have a limited role in representing more ab-

stract, nonmotor forms of intent. In the opt out task, the subject

was asked to choose, on a trial-by-trial basis, whether to perform

the trial. This choice represents an example of a nonmotor deci-

sion because selecting a goal or desired outcome (e.g., I will or

will not participate) occurs before knowledge of the specific mo-

tor act necessary to attain the goal (e.g., before the effector cue).

We could not decode the decision before the effector cue, sug-

gesting that our subregion of PPC does not encode nonmotor

forms of intention. The separation of motor planning and nonmo-

tor forms of intent is consistent with hierarchical intention

models. In these models, the frontal cortex (e.g., prefrontal, orbi-

tofrontal) or more posterior regions of PPC encode abstract de-

cision variables, whereas areas closer to the central sulcus

encode variables related to motor planning, body state, and

movement execution.54,55

Relation to previous work on the early rising activity
There are two primary accounts for the early rise in neural activity

that precedes movement onset and awareness. The original ac-

count of Libet assumes that a subconscious decision triggers

movement preparation and initiation reflected in the early rising

neural responses.6 Critically, the decision is assumed to occur

at the first detectable rise of the ‘‘readiness potential,’’ a signa-

ture of spontaneously generated movements that appears 1 s

before movement initiation. A second account, by Schurger

et al.,34 proposes a stochastic decision model by which neural

activity undergoes a continuous random walk in the premove-

ment period. Movement is quickly initiated, within �150 ms,

when the random walk crosses a decision threshold. The pre-

sumed timing of threshold crossing and reports of W is roughly

coincident in time, indicating that the subjective experience of

the decision occurs as the decision is made (not significantly

earlier, as suggested by Libet). By this account, the early ramp-

ing activity is not the consequence of a decision but the final

segment of the random walk that carries the neural state to the

threshold.
Our results and interpretation are conceptually in agreement

with the mechanistic formulation of Schurger et al. and subse-

quent studies by Murakami and colleagues.34,56–58 In particular,

these authors provide plausible accounts of how the high-level

task goal of initiating movement at variable and unspecified

times in the future can be implemented in neural populations.

Thismechanistic account is completely lacking from Libet’s orig-

inal formulation yet is necessary to fully appreciate how early

rising activity relates to human agency. We add to this story by

showing that these neural programs are instantiated based on

the high-level goals of the participant. However, we find that

the single-trial population-level activity of consistent temporal

shape rises earlier than the 150 ms proposed by Schurger and

colleagues.34 Thus, our work is consistent with the idea that a

distinct neural event leading to movement occurs hundreds of

milliseconds before awareness. In our view, themechanistic pro-

cess leads to movement initiation, a process that precedes and

is decoupled from awareness, as discussed above. Further, we

find that the early neural activity is encoded as a motor plan,

showing effector specific differences and not an abstract

decision.59,60

Schurger et al. and Murakami et al. provide two separate

mechanistic accounts for how movement timing is specified. In

Schurger et al., single-trial timing results from different realiza-

tions of a stochastic leaky-accumulator model with identical

initial conditions. In Murakami et al., the timing of future move-

ments is specified at trial-onset by neurons that set the rate of

the accumulator model. We did not find evidence that movement

timing is determined at trial onset. However, our results may sim-

ply be a product of our recording region in the dorsal-anterior

portion of PPC. For example, in a study in which monkeys

made movements at different intervals in the future, dorsal-ante-

rior parts of the monkey PPC looked similar to our recordings,

although a more ventral-posterior portions of PPC showed vary-

ing rates of ramping beginning at trial onset.35 Future studies

recording from additional regions of the cortex are needed to

address how humans program the timing of future actions.

Implications for neural prosthetics
When using a BMI to control computer devices, deviations of de-

coded control signals from the presumed intentions of the user

are often attributed to the intrinsic noisiness of neural signals.

However, recent work challenges this assumption by demon-

strating that much of the neural fluctuations typically attributed

to ‘‘noise’’ are correlated to often unmeasured subtle and high-

dimensional features of the animal’s behavior.61,62 Especially in

humans, such neural variability is likely also driven by internal

processing related to conscious thoughts or subconscious pro-

cessing. Understanding the sources and impact of these drivers

of neural variability will be increasingly crucial as BMI systems

are taken outside constrained laboratory experiments and tested

in complex real-world environments. In our case, we find that

early task-related neural dynamics are sufficient to drive BMI

movements before the participant intends action.

We show that specific decoding approaches allow decoded

output to reflect the participants’ explicit motor intent accurately.

Further, our results demonstrate that the relative timing of neural

signals, explicit intent, and motor execution can become an al-

gorithm design choice. Future work can explore how different
Current Biology 32, 1–10, May 9, 2022 7
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decoder settings within closed-loop experiments interact with

the subjective experience of using a BMI, such as feelings of

agency. Beyond questions of timing, behaviors that have been

long rehearsed, such as typing, occur without awareness of

the motor acts and require decoding implicit signals. In contrast,

other unpracticed behaviors may require conscious control.63

Both how neurons track our explicit intentions and the ways

they do not are important to understanding and implementing

a neural prosthetic system that enables effortless control across

a range of environmental conditions.
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Data and code availability
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d This paper does not report original code, but our customMATLAB code is available from the authors upon reasonable request.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject N.S. is a female human participant with a C3-C4 spinal lesion (motor complete). N.S. has nomotor control or sensation below

her upper trapezius. Subject E.G.S. is a male human participant with a C3-C4 spinal lesion (motor complete). E.G.S. has no motor

control or sensation below his upper trapezius. All procedures were approved by the California Institute of Technology, University of

California, Los Angeles, Rancho los Amigos National Rehabilitation Center, and Casa Colinas Centers for Rehabilitation Internal

Review Boards. Informed consent was obtained fromNS & EGS after the nature of the study and possible risks were explained. Con-

sent to publish patient photos was obtained from NS and EGS. These studies were conducted after receiving permission from US

Food and Drug Administration (Investigational Device Exemption), and data collected for this study is part of a registered clinical trial

(additional information about the clinical trial is available at https://clinicaltrials.gov/ct2/show/NCT01958086). Study sessions

occurred at Casa Colinas Centers for Rehabilitation and Rancho los Amigos National Rehabilitation Center.

METHOD DETAILS

Data acquisition
Behavioral setup

NS & EGS performed all tasks seated in their motorized wheelchair. Tasks were displayed on a 28 inch (NS) or 47 inch (EGS) LCD

monitor. The monitors were positioned to occupy approximately 20 degrees of visual angle. Stimulus presentation was controlled

using the Psychophysics Toolbox (23) for MATLAB.

Physiological recordings

Both NS and EGS were implanted with two 96-channel Neuroport arrays in putative homologues of area AIP and Brodmann’s Area

5d.3 Neural activity was amplified, digitized, and recorded at 30KHz with the Neuroport neural signal processor (NSP). The Neuroport

System, comprising the arrays and NSP, has received FDA clearance for <30 days acute recordings. We received FDA IDE clearance

(IDE #G120096, G120287) for extending the duration of the implant for purposes of a brain-machine interface clinical study using

signals from posterior parietal cortex.

Unit activity was detected using thresholding at -3.5 times the root-mean-square after high-pass filtering (250Hz cut-off) the full-

bandwidth signal. Single and multiunit activity was sorted using k-mediods clustering using the gap criteria64 to determine the total

number of neural clusters. Clustering was performed on the first n principal components where n was selected to account for 95% of
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waveform variance. Results of offline sorting were reviewed and modified if the automated routine produced overly counterintuitive

results following standard practice.65 On average, 121 sorted units were recorded fromNS per session and 29 from EGS per session.

Electromyogram (EMG) activity was recorded over the right trapezius muscle using Delsys EMG electrodes. Raw EMG activity was

fed as an analog signal into the NSP and recorded time-locked to neural signals at a sampling rate of 2000 Hz. EMG signals were

band-pass filtered (5th order Butterworth filter with cut-off frequencies of 5 and 250 Hz), full-wave rectified, and box-car smoothed

using a 50 ms smoothing window.

Task descriptions
Modified Libet paradigm

Weused themethod introduced by Libet to enable the subject to retrospectively self-report the time they first experienced the urge to

initiate a movement.6 In a slight modification to the original paradigm, following an intertrial interval, the subject was cued to one of

two possible actions (shrug of the contralateral shoulder or attempted squeezing of the contralateral hand) should be performed on a

given trial (Figure 1A). Other aspects of the task were similar to that of Libet and subsequent studies,e.g.5–7,9,19 An analog clock was

presented with the initial position of the dial randomly (uniform distribution) selected. The dial rotated clockwise about the clock at 2.3

seconds per revolution. The subject was asked to withhold movement at least one complete clock cycle, at which point the partic-

ipant was free to choose when to move. The instruction was given to ‘‘Keep your eyes on the clock but otherwise try to relax. When

you first feel the urge tomove, perform themovement, and note the position of the dial on the clock face when you first felt the urge to

move. After you have completed the movement, let us know that you are done.’’ At this point, the experimenter took control of the

clock dial, positioned it according to the subject’s reported time of awareness, and confirmed with the participant that this was the

position of the dial when they first felt the urge to move. A minimum of 30 trials (15 trials per condition) were recorded per session. A

total of 5 sessions in NS and two sessions in EGS were acquired. The distribution of time intervals the subjects withheld movement

relative to the onset of the clock is shown in Figure S1.

A sensory temporal estimation task was used to approximate the measurement error in the basic Libet paradigm. The subject was

instructed to use the position of the clock dial to report the time of an event using the methods described above. However, in the

sensory test, the subject was asked to report the time of a short sound stimulus (250ms auditory beep) that was played between

2.3 and 9.2 seconds (randomly sampled from a uniform distribution) after the clock presentation. Other aspects of presentation,

such as the revolution rate of the clock, random initial starting position, etc., were identical to the baseline Libet task. A total of 2

sessions in NS and one session in EGS were acquired.

Opt-out paradigm

TheOpt-Out taskwasdesigned to understand how the subject’s high-level intention to participate in the experimentmodulated neural

activity observedduring taskperformance. TheOpt-Out paradigm is similar to the basic Libet Paradigmdescribed above. However, in

this variant, we instructed the subject to choosewhether to execute the trial or ‘‘opt-out’’ on a trial-to-trial basis. The subject passively

observed the clock as usual during opt-out trials until the trial timed out after 16 seconds. The timeout periodwas chosen based on the

participant’s choice behavior in the Libet task (Figure S2). We increased the inter-trial interval to five seconds during the opt-out task

and asked the subject to decide to participate or not before the effector-cue screen. We asked the subject to report if they could not

make up their mind before a beep played 1.5 seconds before the effector cue. In this event, the trial was aborted, and a new trial was

initiated. The subject aborted 1 of 286 total trials and confirmed after each session that the decision to perform the trial was made

before the effector cue for all non-aborted trials. A minimum of 60 trials were recorded per session. Three sessions were recorded

in subject NS. Due to the free-choice nature of the opt-out experiment, one concern is that NS did not follow the instructions. For

example, NSmayhavewaited for the effector cue to choose to performa trial, and thus,wewere unable to decode her choice because

she had yet to choose. However, NS reported that she consistently chose before a beep played 1.5 seconds before the effector cue.

Further, in other studies involving the sameparticipant, we have found strong evidenceof behavioral compliance despite an inability to

validate behavior externally. For example,we have found classification accuracy approaching 100% inmotor imagery tasks, suggest-

ing remarkable trial-to-trial compliance. However, without accompanying evidence showing encoding of the decision to participate in

alternate brain regions, and in the absence of external validation of the precise timing of the internal thought processes of the subject,

we acknowledge that future work is needed to understand possible encoding of abstract decision variables.

Simple choice paradigm

The Simple Choice Paradigm (SCP) was designed to observe neural behavior in conditions with minimal task structure (Figure 3A).

The subject was free tomove the shoulder or attemptmovement of the thumb or indexwhenever she felt the urge to do so. The partic-

ipant was instructed to say ‘‘shrug,’’ ‘‘thumb,’’ or ‘‘point’’ timed to movement onset to indicate the timing of otherwise unobservable

movements (e.g., thumb and index movements are below the level of injury and thus are not overtly produced.) Movements could

thus be considered the conjunction of two actions, executed or attempted movement of the hand and arm, and a vocalization.

Movement onset time was determined by the onset of an audio trace recorded by the NSP, synchronized to neural activity. In addi-

tion, we recorded shoulder EMG activity to verify the relative onset timing of vocalization and associated movement. Detection of the

participant’s verbal report was displayed as a brief (250ms) change in the color of a simple annulus shown on the screen. The subject

was instructed to move as soon as they experienced an urge to move. However, they were asked to avoid repeated sequences of

movements such that the movements were ‘‘spontaneous and unpredictable.’’ The subject did not report the time they experienced

this urge to allow free-flowing progression of movements without interruption. A minimum of 180 trials were recorded per session.

Five sessions were recorded from subject NS.
e2 Current Biology 32, 1–10.e1–e6, May 9, 2022
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Analysis methods
Principal component analysis

Principal component analysis (PCA) was used to summarize the population-level temporal response of simultaneously recorded neu-

rons.66 We constructed a matrix of neural data D that was (n) by (t * c) in size, with n being the number of neurons, t being the number

of time points, and c being the number of conditions. For each neuron, activity was averaged across repetitions of the same condi-

tion, smoothed with a 250ms box-car function, sampled every 10 ms, normalized to a range between 0 and 1, and mean subtracted.

Principal components were calculated based on the singular value decomposition algorithm resulting in bD =T*D. To display single-

trial representations or the standard error of the mean for all trials of a principal component (e.g., Figure 1B), we applied the trans-

formation matrix T (computed based on trial-averaged data) to single-trial data preprocessed in the same manner described above,

though with normalization terms set by the trial-averaged data. The details of how D was constructed depended on the dataset. For

the analysis related to Figure 1B, we used a single temporal window extending from -3 to 2 seconds relative to the time of conscious

intent (W) and a single condition (shoulder shrug trials) similar to previous studies e.g.5–7,9,19 We focused analysis on shoulder trials

because movement prior to W could be detected by simultaneously acquired EMGmeasurements. Only one trial was found to have

early EMG activity (<1%), and further, the participant self-reported that she had moved early.

Cluster analysis of neural responses

Single neurons varied in their temporal responses (e.g., Figure 1C) We applied a cluster analysis to determine whether the large num-

ber of recorded neurons could be categorized into a smaller set of basic temporal profiles. We limited the analysis to neurons exhib-

iting significant temporal modulation through time. Neural activity extending from 2 seconds before to 2 seconds after Wwas binned

into 50 ms windows. The average response was computed across trials, and the result was normalized to a range from 0 to 1. We

constructed amatrix from the resulting temporal responses that were n x t in size, with n being the total number of neurons and t being

the total number of time bins. We applied Gaussian mixture model cluster analysis to the matrix using k=1 through 10 possible clus-

ters, each with 500 randomized initializations of cluster centers. For each k, we computed the Bayesian information criteria (BIC) to

determine the optimal number of clusters. Different cluster identification methods can result in different numbers of clusters being

identified as ‘‘optimal.’’ However, the objective of this analysis was not to determine the ‘‘true’’ number of clusters but instead, to

use a principled method to group neurons with similar temporal profiles. This enabled testing of whether the timing of a neuron’s

response could explain whether a unit was better associated with conscious intent or motor production.

Timing analysis of neural signals with respect to M and W

The objective of this analysis was to determine whether neural signals are better aligned to the time the participant reported being

aware of the urge to initiate movement (W) or the time of movement production, defined as muscle activity onset. We computed the

average temporal profile for each neuron over a three-second interval, binned into 250 ms windows, centered on M or W. We then

computed the difference in trial-to-trial variance explained by the mean profile. Significance was calculated by comparing this dif-

ference to an empirically computed null distribution of differences using a rank test with alpha = 0.05. The null distribution was gener-

ated by repeatedly (1000 permutations) calculating the difference in variance explained between two datasets generated by

randomly assigning M-aligned and W-aligned trials. The mean offset between M and W trials was removed before random assign-

ment. A schematic representation of this analysis is illustrated in Figure S2. This analysis was performed on each unit separately, and

the results are reported categorized by the clusters identified in section cluster analysis of neural responses (see Figure 1D). Potential

complications in interpreting this analysis include inherent measurement error differences between M andW. See Figure S3 for rele-

vant results and discussion.

Basic population analysis

Weused a linear model to quantify the percent of the population tuned to the salient task variables in the basic Libet paradigm. Neural

activity was divided into three temporal epochs centered on the time of cue presentation, clock presentation, and the reported urge to

initiate movement. Neural activity was averaged in 500 ms windows at 100 ms intervals (sliding window analysis.) Each window was

compared to baseline activity during the inter-trial interval, chosen as a window -1000 to 0 seconds before cue onset. For each time

bin, we used linear regression tomodel neural firing rate relative to baseline as a function of the response to the two effectors.We then

looked at whether either effector changed significantly frombaseline and at the contrast comparing the activity of the two effectors (to

find units demonstrating effector specificmodulation.) Percent significant (e.g., Figures 1F and 2C) are shown uncorrected at p<0.05.

We performed a permutation test to determine whether the percent of units across the population was significant by using a rank test

to compare the uncorrected percent significant against an empirical null distribution of percent significant generated by shuffling

labels and repeating analyses 2000 times.

Cross-validated demixed principal component analysis

We used demixed principal component analysis (dPCA) to visualize effector-specific and independent effector components of the

neural response.27,67 Demixed principal component analysis is a supervised dimensionality reduction technique that uses informa-

tion about task parameters to find the low-dimensional latent factors that best separate task parameters. Similar to classification al-

gorithms, dPCA has the potential to overfit training data, finding low-dimensional projections of the neural data that separate task

labels in a way that won’t generalize to data that is not used to compute the dPCA projection matrices.27 We, therefore, used a strat-

ified hold-one-out cross-validation scheme to verify the validity of the projections. We applied regularized dPCA27 to compute dPCA

projection matrices on all but one trial from each condition. The resulting projection matrices were applied to the held out trials to

compute the generalized latent response estimate. This process was repeated for all combinations of held-out trials, and the

mean and 95% confidence intervals were estimated using a bootstrap procedure. Trial data was constructed by binning neural firing
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into 500 ms non-overlapping windows and concatenating in time data from the cue aligned, clock aligned, and W aligned epochs.

Analysis was repeated both on trials acquired within a single session and trials pooled across days. For pooled analysis, neurons

acquired in separate sessions were treated as independent. Results in Figure 1G are shown for pooled data. Single session data

were qualitatively similar.

Basic classification methods

Our base approach to classification was to use linear discriminate analysis. To regularize covariance estimates and improve cross-

validated accuracy, we modeled the covariance of the normal distribution as diagonal and pooled our data to create a single

covariance estimate that was applied to all conditions. These simplifying assumptions were found to improve cross-validation pre-

diction accuracy on preliminary data. The classifier input was a matrix of average firing rates within a specified window for each

sorted unit. Classification performance is reported as generalization accuracy of a stratified leave-one-out cross-validation anal-

ysis. Features that demonstrated non-significant tuning based on a preliminary ANOVA test were excluded from the input vector to

reduce the total number of features. For cross-validation purposes, the ANOVA test exclusion criteria were calculated on the

training set and applied to the test set to avoid ‘‘peaking’’ effects. We used a shuffle procedure to determine the significance of

decode accuracy. A null distribution of decoding accuracies was generated by shuffling the task labels associated with each

feature vector and repeating the cross-validated decode analysis. This process was repeated 500 times, and significance was

determined by a one-sided rank test, testing whether the veridical accuracy of the unshuffled data was greater than 95% of the

shuffled results. Analysis was repeated both on trials acquired within a single session and trials pooled across days. For pooled

analysis, neurons acquired in separate sessions were treated as independent. Results were qualitatively similar, and thus, we used

pooled data for reporting purposes.

In preliminary analysis, we used alternate classification methods. This included relaxing some of the assumptions of linear

discriminant analysis as performed above: allowing off-diagonal elements to the covariance matrices and allowing separate

covariance estimates for each class. We also tried naı̈ve Bayesian classification and linear, quadratic, and Gaussian support vec-

tor machines with cross-validated optimization of parameters: we would find the set of parameters that optimized cross-validated

performance across all but one and test the parameters on the cross-validated performance on the remaining session. Linear

discriminant analysis, as described above, outperformed all other tested methods when classification was performed on a prede-

termined window of time. However, when the precise window of time was unknown (e.g., when the classifier was applied contin-

uously at each time step as is necessary for closed-loop performance), alternative techniques were required to improve perfor-

mance as described below.

Decoding choice to participate

In the opt out paradigm, the subject chose to perform any given trial before the effector cue. Is information about the high-level inten-

tion to participate in a given trial encoded in the neural population? Each trial was labeled as either a ‘‘Go’’ or ‘‘NoGo’’ trial based on

whether the subject chose to perform the trial. We then used a classification analysis during four epochs to determine whether and

when information related to the subject’s intent to participate was encoded in the neural population. These epochs include a ‘‘Pre

Cue’’ epoch (mean response between -750 and 0 ms relative to the effector cue), a ‘‘Post Cue’’ epoch (mean response between

250 and 1000 ms relative to the effector cue), a ‘‘Clock’’ epoch (mean response between 250 and 1000 ms relative to clock onset),

and a ‘‘Go’’ epoch (mean response between -250 and 500ms relative to reported urge to initiate movement). For NoGo trials, activity

for the ‘‘Go’’ epochwas generated by averaging data in a 750mswindow chosen an interval of time after clock onset based onmove-

ment production times of ‘‘Go’’ trials (e.g., Figure S2). We used cross-validated LDA to decode Go from NoGo trials for each epoch.

After the effector cue, the neural population encodes a motor plan (as evidenced by effector specificity). Thus, Go versus NoGo trials

can be distinguished based on the presence or absence of the motor plan. For this reason, the most parsimonious explanation of the

ability to decode Go fromNoGo trials after the effector cue is simply the presence or absence of themotor plan. Either way, the ability

to differentiate Go from NoGo trials (Figure 2D) using the techniques described above validates the decoding methodology.

Mahalanobis distance and classification through time

Classification using LDA is based on relative distances in Mahalanobis space.68 Each class is defined by a mean and covariance in

feature space. To classify a point in feature space, the distance between the point and the mean of each class normalized by the

covariance matrix is computed. The point is assigned to the class that results in the shortest distance. More precisely:

by = argminðy = 1;.KÞ
XK
k =1

PðkjxÞ

Where by is the predicted class, K is the number of classes, x represents the features, PðkjxÞ is the posterior probability of class k for

observation x and is given as:

PðkjxÞ = PðxjkÞPðkÞ
PðxÞ

and

PðxjkÞ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Dk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � ukÞT

X�1

k
ðx � ukÞ

Dk defines the Mahalanobis distance from the data point x to the class k defined by the mean and covariance ðuk ;SkÞ and deter-

mines the output of the classification procedure (save for normalization terms.) Viewed in this way, LDA simply discretizes the

Mahalanobis distance, assigning the data point to the class with the smallest Mahalanobis distance.

We computed a relative distance measure as a normalized difference of Mahalanobis distances to better characterize how pop-

ulation activity behaved through a trial.

Relative Distance =
DITI � DGO

DITI +DGO

Where DITI&DGO define the distance from a data point to the classes that characterize the intertrial interval and execution-related

activity (Figure 4A). The sign of DITI � DGO determines whether a data point would be classified as ITI or GO activity. Note that

with trial-to-trial variability, the closer the average difference is to zero, the more likely responses on a given trial will be misclassified.

Relative distances are normalized into the range of -1 to 1 by dividing byDITI +DGO. By looking at a normalized version ofMahalanobis

distance, we can better understand what drives classifier behavior. For instance, task events might make it more likely to decode

class B when the true class is A either because the task events lead to greater variability in the neural features (but leave the

mean response of the neural features the same) or because the task events drive the mean response of the neural features closer

to class B (but leave the variability largely similar) or some combination. Looking at neural behavior in Mahalanobis space can

thus lead to greater understanding and interpretability of decoder output. A schematic representation of this analysis procedure

is illustrated in Figures 4A and 4B.

Mean and covariance estimates for the ITI period were computed based on neural features averaged within a 1-second window

-1.5 to -0.5 seconds before the effector cue. Mean and covariance estimates for the Go period were calculated separately for shoul-

der shrug and hand squeeze trials based on neural features averaged within a 1-second window 0 to 1 second relative to W. Data

points throughout the trial were constructed by computing the average firing rate within 500 ms non-overlapping windows and

concatenating in time data from the cue aligned, clock aligned, and W aligned epochs for both trials where the subject was cued

to perform a shrug movement and squeeze movement. The relative distance measure was then computed for each such data point.

There were clear phasic responses following the cue and around the time of movement production. Does the activity in between

these phasic responses change? We compared the relative distance measure for the windows starting 1 sec after cue onset and

1.5 seconds before the reported urge to move using permutation rank test where the magnitude of the difference computed for

the two windows was compared to a null distribution of means generated by randomly shuffling data between the two time windows.

The same data was used for linear discriminant classification analysis by transforming Mahalanobis distances into class estimates

as outlined above. As described above, classification accuracy was estimated using a stratified leave-one-out cross-validation pro-

cedure. In this case, the entire time-series comprising a trial was held out to ensure that autocorrelation in the signal did not provide

information about adjacent time slices. Each time slice for each trial was classified as shoulder, squeeze, or ITI. The proportion of

trials assigned to each class was displayed as the relative height of a colored bar, the heights of which necessarily sum to 100%

(e.g., all trials).

Improving classification

Population decoding has become a ubiquitous technique to understand how populations of neurons encode sensory, motor, and

cognitive variables. In contrast to common uses of classification algorithms for offline data analysis, online decoding algorithms

must determine both what the participant intends and when the participant intends action. As shown in Figure 4, certain neural pro-

cesses, such as encoding of the motor plan in response to a cue, are sufficiently similar to neural activity patterns recorded during

motor execution to generate early spurious decodes. Here we show that classification performance is improved by leveraging infor-

mation from early encoding and maintenance of motor plans combined with classification algorithms that leverage temporal history

(e.g., compare Figures 4D and 4E).

To motivate the updated approach to neural classification, we present the underlying issues in a toy dataset in the supporting in-

formation (Figure S4). The dataset is composed of the same neural recordings used for the analysis shown in Figure 4 of themain text;

however, for illustrative purposes, visualization and decoding are based on the first two principal components of the full-dimensional

neural signals. Further, the activity of each ‘‘trial’’ is constructed by averaging the activity of two repetitions of the condition. This aids

visualization and shows that the underlying problem is not the product of noisy data (although noisy data exacerbates the underlying

issues). The results for all neural dimensions, unaveraged, are shown in Figure 4 with visualization of the response in panel c and

decode performance in panels d and e.

In standard analysis-based approaches to neural classification, several conditions are tested, and the associated neural popula-

tion response is sampled in a predefined temporal window to generate features for classification. A classification algorithm then par-

titions the neural feature space into separate regions defined by decision boundaries. An example illustrating this process for three

conditions is shown in Figure S4A. One condition represents the ‘‘null-state’’, the activity of the neural population sampled during the

inter-trial interval when the subject intends no action (gray). The other two classes represent the ‘‘go’’ period activity measured during

the execution of twomovements (movement 1/M1 = green, movement 2/M2 = red). The decision space that separates these classes
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was computed using linear discriminant analysis, and each condition is color-coded. Leave-one-out classification of data acquired

from these predetermined windows is perfect. However, if neural data just following the cue is projected onto the same decision

space, a significant portion of trials have crossed the decision boundary and thus would be decoded as a movement, even though

the subject does not intend to initiate a movement (Figure S5B). Spurious decoding when a simple LDA classifier trained on execu-

tion-related neural responses is pervasive when the decoder is applied continuously throughout the trial (Figures S4C and S4D; see

also Figure 4D). The two panels show the classification results for movement one trials (top) and movement two trials (bottom), with

each bar showing the leave-one out classifier output (movement 1, movement 2, or null) for each slice of time (500ms non-overlap-

ping windows as in Figure 4). There is evidence of premature decoding or the correct movement and spurious decoding of the

alternate movement. The behavior of the neural population generating the classifier output can be visualized throughout the temporal

interval by animating the continuous neural dynamics on the decision space (Video S3). The problems are twofold. First, planning and

decision-making activity early in the trial generates changes in neural activity that can cause the neural population to enter unwanted

states. Second, execution-related neural activity can trace a trajectory through time that brings population activity generated by one

movement close to the decision boundary defined by another movement.69–71 Includingmore neural dimensions than the two used in

the toy, dataset can help classification accuracy. Nonetheless, even when including all relevant neural dimensions, neural dynamics

can lead to problematic classifier output (e.g., Figure 4).

We took two steps to fix the identified problems algorithmically. First, we define additional neural states in time that can capture

neural activity patterns not directly related to the intention to initiatemovement (e.g., sensory, decisionmaking, and planning activity.)

This better partitions the neural state-space which leads to a more precise understanding of how the neural state relates to the inten-

tion to initiate action. The second step was to replace a basic linear discriminant classifier with Hidden Markov Model (HMM)

decoding.68,72 Essentially, a HMM (as employed here) has two components. The first is an instantaneous estimate of the class based

on direct classification of neural data using the same procedure as LDA as described above. The second component leverages

temporal history in the neural signals in the form of the recent state history (modeled as a Markov process).

The state transition model used for decoding is shown in Figure S4E. Initial state transition probabilities were fit from the data. The

probabilities reflect the task design (e.g., the length of task epochs and transitions between these epochs) and the choice of window

size (e.g., 500ms non-overlapping windows). The effect of the HMMwith multiple states applied to the data from Figures S4A–S4D is

shown in Figures S4F–S4I and Video S3 (inset). In particular, the finer partitioning of the neural state space is evident in panels f and g.

The net impact on cross-validated classifier output is shown in panels h and i.

Early intent decoding in simple choice paradigm

The simple choice paradigm was used to address a simple question: What is the timing of motor planning signals when subjects are

free to choose when and what to move without any strictly imposed task structure? To address this question, we aligned neural data

to movement onset. We used classification analyses to decode both the movement the participant is actively executing and the next

movement the subject will execute in a sliding window analysis. Windowed data was computed at interval steps of 50 ms using the

average firing rate of each neuron within a 500 ms window centered on the time point of interest (sliding window analyses.) For each

trial, two sets of labels were generated: one label associated with the current action the subject performed (current movement) and a

second label associated with the movement the subject reported performing on the next trial (next movement). Two independent

cross-validated decoding analyses were performed, one for each set of labeled data. We used LDA classification with constraints

as described above.

A shuffle test determined significant decoding. We first calculated a veridical estimate of accuracy using the task labels. We next

computed a null distribution by shuffling task labels and recomputing an accuracy estimate 500 times. A single time slice was deter-

mined to be significant if the veridical estimate was greater than 97.5% of shuffled trials (rank test, p<0.025.) To determine the time at

which the population first encoded the next chosen movement, we looked for the time slice that started a continuous block of sig-

nificant decoding: this block was required to be 15 time slices in duration (750 ms) to ensure that non-overlapping bins of neural data

demonstrated significant decoding. We circularly shifted the neural data relative to behavior randomly, with a minimal shift of 28 sec-

onds, and repeated the analysis 100 times to verify this procedure. We did not find a significant block of 15 time bins in any of the 100

repetitions. We know that neural activity can dramatically rise >1s before movement initiation in PPC (e.g., Figures 1B and 1C). To

ensure that this sudden rise cannot explain a significant early rise in activity starting at the previous trial, we split the trials into

long and short interval trials and performed the analysis separately.

Statistics

No statistical methods were used to predetermine sample size. The experiments were not randomized. Data analyses were per-

formed by automatic software routines. All data that was recorded was included in the results. No sessions or units were removed

from the study based on analysis results, behavior, or other criteria. Non-parametric permutation testing was used throughout to

avoid the assumption of normality.
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