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ABSTRACT 

Neural plasticity allows us to learn skills and incorporate new experiences. What happens when our lived 

experiences fundamentally change, such as after a severe injury? To address this question, we analyzed 

intracortical population activity in a tetraplegic adult as she controlled a virtual hand through a brain-computer 

interface (BCI). By attempting to move her fingers, she could accurately drive the corresponding virtual fingers. 

Neural activity during finger movements exhibited robust representational structure and dynamics that matched 

the representational structure, previously identified in able-bodied individuals. The finger representational 

structure was consistent during extended use, even though the structure contributed to BCI decoding errors. 

Our results suggest that motor representations are remarkably stable, even after complete paralysis. BCIs re-

engage these preserved representations to restore lost motor functions. 
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INTRODUCTION 

A central question in neuroscience is how experience affects the nervous system. Studies of this phenomenon, 

plasticity, were pioneered by Hubel and Wiesel, who found that temporary visual occlusion in kittens can induce 

lifelong reorganization of the visual cortex1. Their results demonstrated that the developing brain, rather than 

being genetically preprogrammed, is surprisingly malleable to external inputs. 

Subsequent studies showed that other brain regions are also plastic during early development, but it is less clear 

how plastic the nervous system remains into adulthood. Visual occlusion in adult cats does not reorganize the 

visual cortex, and lesion studies of the adult visual cortex have arrived at competing conclusions of 

reorganization and stability2–5. A similar discussion continues regarding the primary somatosensory cortex (S1). 

Amputation was classically thought to modify the topography of body parts in S1, with intact body parts taking 

over cortical areas originally dedicated to the amputated part6–8. However, recent human neuroimaging studies 

have challenged the extent of this remapping, arguing that sensory topographies in S1 largely persist even after 

complete sensory loss9. Thus, the level of plasticity in the adult nervous system is still an ongoing investigation. 

Understanding plasticity is further necessary to develop brain-computer interfaces (BCIs) that can restore 

sensorimotor function to paralyzed individuals10. First, paralysis disrupts movement and blocks somatosensory 

inputs to motor areas, which could cause neural reorganization8. Second, BCIs create direct motor pathways that 

bypass supporting cortical, subcortical, and spinal circuits, fundamentally altering how the cortex affects 

movement. These changes raise an important question: do paralyzed BCI users need to learn a fundamentally 

new skillset11, or can they leverage their pre-injury motor repertoire12? If paralyzed BCI users can still engage 

natural movement representations, then adult motor representations may be more stable than classical 

amputation studies6 suggest. Assistive BCIs should then leverage the natural structure of these stable 

representations12. 

Here, we test whether the neural representational structure of BCI finger movements in a tetraplegic individual 

matches that of able-bodied individuals during overt movements or whether it follows the optimal 

representational structure defined by the BCI task13. In able-bodied individuals, the cortical representational 

structure of finger movements follows the natural statistics of movements14,15. Within a BCI environment, the 

experimenter defines the movement statistics, which can be independent of biomechanics or before-injury 

motifs. We report that the neural representational structure of BCI finger movements in a tetraplegic individual 

matches that of able-bodied individuals. This match was stable across sessions, even though the measured 

representational structure contributed to errors in the BCI task. Furthermore, the neural representational 

dynamics matched the temporal profile expected in able-bodied individuals. Our results reveal that adult motor 

representations are preserved even after years without use. 
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RESULTS 

Intracortical recordings during finger flexion 
We recorded single and multi-neuron activity (95.8 +/- s.d. 6.7 neurons per session over 10 sessions) from 

participant X (abbreviation: PX) while she attempted to move individual fingers of the right hand. We recorded 

from a microelectrode array implanted in the left (contralateral) posterior parietal cortex (PPC) at the junction of 

the postcentral and intraparietal sulci (PC-IP, Supplementary Figure 1), a region thought to specialize in the 

planning of grasping movements16–19. 

Each recording session started with an initial calibration task (Supplementary Figure 2, Methods). On each trial, 

we used a computer screen to present a text cue (e.g., "T" for thumb), and the participant immediately 

attempted to flex the corresponding finger, as though pressing a key on a keyboard. Because PX previously 

suffered a C3-C4 spinal cord injury resulting in tetraplegia, her movement attempts did not generate overt 

motion. Instead, PX attempted to move her fingers as though they were not paralyzed. 

These attempted movements resulted in distinct neural activity patterns across the electrode array. To enable 

BCI control, we then trained a linear classifier (Methods) to identify the attempted finger movement from the 

neural firing rates. The participant then performed several rounds of a similar attempted finger flexion task, 

except that 1) the trained classifier now provided text feedback of its predicted finger and 2) the task 

randomized the visual cue location (Figure 1a and Methods). We repeated this online-control finger flexion task 

over multiple sessions (408 +/- s.d. 40.8 trials/session over 10 sessions) and used this data for our offline 

analyses. PX also performed a control task, identical in structure except that PX attended to cues without 

performing the instructed movements. 

Accurately decoding fingers from PPC single-neuron activity 
High accuracy during online control (86% +/- s.d. 4% over 10 sessions; chance = 17%) (Figure 1b) and in offline 

cross-validated classification (89% +/- s.d. 2%) (Supplementary Figure 3) demonstrated that the finger 

representations were reliable and linearly separable. During the calibration task, cross-validated classification 

was similarly robust (accuracy = 95% +/- s.d. 3%; chance = 20%) (Supplementary Figure 3). These finger 

representations were robust across contexts and could be used in a range of environments, including to move a 

virtual reality avatar hand (Supplementary Figure 4). 

At the single-neuron level, most (89%) neurons were significantly tuned to individual finger flexion movements 

(significance threshold: P < 0.05, FDR corrected) (Supplementary Figure 5). The example neurons in Figure 1c-f 

show that neurons could be tuned to one or more fingers and that tuning profiles could change in time. 

To confirm that the observed neural responses could not be explained by visual confounds, we verified that we 

could not discriminate between fingers during the control task (Supplementary Figure 6). Furthermore, we could 

not decode the gaze location during the finger classification time window in the standard online-control task 

(Supplementary Figure 6). Thus, reliable finger representations emerged from the participant’s movement 

attempts. 
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Figure 1. Robust brain-computer interface (BCI) control of individual fingers. 

(a) Main finger flexion task. When a letter was cued by the red crosshair, the participant looked at the cue and immediately 
attempted to flex the corresponding digit of the right (contralateral) hand. We included a null condition "X," during which 
the participant looked at the target but did not move her fingers. Visual feedback indicated the decoded finger 1.5 seconds 
after cue presentation. To randomize the saccade location, cues were located on a grid (3 rows, 4 columns) in a 
pseudorandom order. The red crosshair was jittered to minimize visual occlusion. 
(b) Confusion matrix showing robust in-session BCI finger control (86% overall accuracy, 4016 trials aggregated over 10 
sessions). Each entry (i, j) in the matrix corresponds to the ratio of movement i trials that were classified as movement j. 
(c-f) Mean firing rates for 4 example neurons, color-coded by attempted finger movement. Shaded areas indicate 95% 
confidence intervals (across trials of one session). Gaussian smoothing kernel (50-ms SD). 

Finger representational structure matches the structure of able-bodied individuals 
Having discovered that PC-IP neurons represent finger movements, we next investigated how these neural 

representations were functionally organized and how this structure relates to pre-injury movement. 
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Here, we turn to the framework of representational similarity analysis (RSA)20,21. RSA quantifies neural 

representational structure by the pairwise distances between each finger's neural activity patterns (Figure 2a). 

These pairwise distances form the representational dissimilarity matrix (RDM), a summary of the 

representational structure. Importantly, these distances are independent of the original feature types (for 

example, electrode or voxel measurements), allowing us to compare representational structures across subjects 

and across recording modalities22.  

We use RSA to test between four hypotheses: 1) we predicted that the finger representation would match the 

characteristic topographic organization identified in able-bodied individuals14 (Figure 2b) that follows the natural 

statistics of hand use. This hypothesis would be consistent with recent fMRI studies of amputees, which showed 

that phantom limb finger movements also match the characteristic organization found in able-bodied 

individuals23,24. That characteristic representation was identified in the sensorimotor cortex using fMRI, so 2) the 

BCI finger representation in PC-IP might instead match the representation of able-bodied individuals in the same 

brain area (anterior superior parietal lobule - SPLa; Figure 2c and Supplementary Figure 7), despite poor finger 

individuation outside M1/S1 at the fMRI scale25. Another possibility is that 3) pre-injury motor representations 

could have de-specialized after paralysis, such that finger activity patterns are unstructured (Figure 2c). 

However, this hypothesis would be inconsistent with fMRI studies of amputees’ sensorimotor cortex23,24. Lastly, 

4) the finger movement representational structure might optimize for the statistics of the task15,26. Our BCI task, 

as well as previous experiments with participant X, involved no correlation between individual fingers. By 

construction, the optimal structure, requiring the least change in finger activity patterns, would represent each 

finger independently. In other words, the task-statistics hypothesis (4) would predict that, with BCI usage, the 

representational structure would converge towards the pairwise-independent representational structure (Figure 

2d). 

Does the finger representational structure in a tetraplegic individual match that of able-bodied individuals? We 

quantified the finger representational structure by measuring the cross-validated Mahalanobis distance 

(Methods) between each finger pair, using the firing rates from the same time window used for BCI control. The 

resulting RDMs are shown in Figure 2e (average across sessions) and Supplementary Figure 8 (all sessions). For 

visual intuition, we also projected the representational structure to two dimensions in Figure 2f, which shows 

that the thumb is distinct while the middle, ring, and pinky are close in neural space. We then compared the 

measured RDMs against the able-bodied and pairwise-independent models using the whitened unbiased RDM 

cosine similarity (WUC)27. The measured representational structure matched the able-bodied M1 

representational structure significantly over the unstructured model (P = 1.8 × 10-10, two-tailed t-test) (Figure 

2g), ruling out the de-specialization hypothesis (3). Furthermore, the fit to the able-bodied M1 structure was 

close to the theoretical maximum (P = 0.096, Methods), supporting our predicted hypothesis (1). Our findings 

were robust to different distance and model-fit metrics (Supplementary Figure 10). 

The measured representational structure also matched the able-bodied M1 representational structure 

significantly better than the able-bodied SPLa representational structure (P = 4.5 × 10-7, two-tailed t-test). This 

match was consistent across individual able-bodied participants’ (N = 20) fMRI results, with the BCI finger 
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representational structure matching every individual’s M1 better than their SPLa (Supplementary Figure 9). 

These results rule out hypothesis 2. 

 

Figure 2. Representational structure during BCI finger control matches the structure of able-bodied 

individuals. 

(a) To construct the representational dissimilarity matrix (RDM), a vector of firing rates was constructed for each trial. 
Repetitions were collected for each condition. Then, pairwise distances were estimated between conditions using a cross-
validated dissimilarity metric. This process was repeated to generate an RDM for each session. We drop the No-Go 
condition (X) here to match previous finger studies14,23. 
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(b) Representational structure hypothesized by the preserved-representation hypothesis: average RDM for a finger-press 
task using 7T fMRI in 7 able-bodied individuals14. Max-scaled to [0, 1]. 
(c) Another possible representational structure hypothesized by the preserved-representation hypothesis: average RDM for 
a finger-press task using 3T fMRI in 20 able-bodied individuals28. Max-scaled to [0, 1]. 
(d) Representational structure hypothesized by the de-specialization and task-optimal hypotheses: pairwise-equidistant 
RDM. Max-scaled to [0, 1]. 
(e) Representational structure measured in our experiment: cross-validated Mahalanobis distances (Methods) between 
neural activity patterns in a tetraplegic individual, averaged across 10 recording sessions. Max-scaled to [0, 1]. 
(f) Intuitive visualization of the distances in (e) using multidimensional scaling (MDS). Ellipses show mean +/- s.d. (10 
sessions) after Generalized Procrustes alignment (with scaling) across sessions. 
(g) Measured RDMs (d) match the able-bodied BOLD RDM (b) better than they match the unstructured (null) model (c), as 
measured by the whitened unbiased cosine similarity27 (WUC) (Methods). Difference was significant (P = 1.8 × 10-10, two-
tailed t-test, 1000 bootstrap samples over 10 sessions). Violin plot: solid horizontal lines indicate the mean WUC over 
bootstrap samples, and dotted lines indicate the first and third quartiles. Noise ceiling: Gray region estimates the best 
possible model fit (Methods). Downward semicircle indicates that the unstructured model fit is significantly lower than the 
noise ceiling (two-tailed t-test, P < 0.001, Bonferroni-corrected for 3 model comparisons). Y-axis: even when the model and 
data RDMs are uncorrelated, WUC can be close to one27. For convenience, a similar figure using a correlation-based 
similarity metric is shown in Supplementary Figure 10. 

 

Representational structure did not trend towards task optimum  
Was the BCI finger representational structure consistently similar to M1? The task-optimal structure hypothesis 

(4) predicted that the BCI RDMs would trend to optimize for the task statistics (unstructured model, Figure 2d) 

as the participant performed the BCI task. However, the model fit did not trend from the M1 model towards the 

unstructured model (linear-model session × model interaction: t(3) = -0.71, one-tailed t-test P = 0.74, Bayes 

factor (BF) = 0.33) (Figure 3a). We also did not find evidence that the model fit started similar to SPLa (the same 

brain region) and trended towards M1 (linear-model session × model interaction: t(3) = 0.53, one-tailed t-test P 

= 0.32, Bayes factor (BF) = 0.73). Indeed, the representational structure was largely consistent across different 

recording sessions (average pairwise correlation, excluding the diagonal: r = 0.90 +/- s.d. 0.04, min 0.83. max 

0.99). 

We considered whether learning, across sessions or within sessions, could have caused smaller-scale changes in 

the representational structure. The observed representational structure, where middle-ring and ring-pinky pairs 

had relatively small distances, was detrimental to classification performance. The majority (70%) of the online 

classification errors were middle-ring or ring-pinky confusions (Figure 1b). Due to these systematic errors, one 

might reasonably predict that plasticity mechanisms would improve control by increasing the inter-finger 

distances between the confused finger pairs. Contrary to this prediction, the middle-ring and ring-pinky 

distances did not increase over the course of the experiment (across sessions: t(2) = -4.5, one-tailed t-test P = 

0.98, BF = 0.03; within sessions: t(2) = -0.45, one-tailed t-test P = 0.65, BF = 0.12) (Figure 3b). When analyzing all 

finger pairs together, the inter-finger distances also did not increase (across sessions: t(10) = -4.0, one-tailed t-

test P = 0.999, BF = 0.01; within sessions: t(10) = -2.4, one-tailed t-test P = 0.98, BF = 0.02), as visualized by the 

similarity between the average early-half RDM and the average late-half RDM (Figure 3c). These analyses 

demonstrate that the representational structure did not trend towards the task optimum (Figure 2d), ruling out 

hypothesis 4. 
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Figure 3. Hand representation changed minimally after weeks of BCI control 

(a) Slope comparison shows that the model fit did not trend towards the constant model over sessions. 
(b) The distance between high-error finger pairs (middle-ring and ring-pinky) did not increase across sessions or runs (within 
sessions), as shown by partial regression plots. Distance metric: cross-validated Mahalanobis, averaged across runs (for the 
session plot) or averaged across sessions (for the run plot). The black line indicates linear regression. The gray shaded 
region indicates a 95% confidence interval. Each run consisted of 8 presses per finger. 
(c) Minimal change in representational structure between early and late sessions or between early and late runs. Mean 
RDM, when grouped by sessions (top row) or individual runs (bottom row). Grouped into early half (left column) or late half 
(center column). MDS visualization (right column) of early (opaque) and late (translucent) representational structures after 
Generalized Procrustes alignment (without scaling, to allow distance comparisons). 
 

Finger representational structure is motor-like and then receptive-field-like 
It might seem surprising that our intracortical recordings in PC-IP match the fMRI structure in M1 rather than 

SPLa. One possibility is that the PC-IP structure is being driven by an efference copy from M1. This hypothesis 

would predict temporal heterogeneity in representational structure, with an early motor-command-like 

component during movement initiation. To investigate this temporal evolution, we modeled the 
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representational structure of digit movements at each time point as a non-negative linear combination29 of 

potentially predictive models (Figure 4a). 

We considered three models14 that could account for representational structure: hand-usage model, muscle 

activation, and somatotopy. The hand-usage model (Figure 4b) predicts that the neural representational 

structure should follow the correlation pattern of finger kinematics during natural hand use. The muscle 

activation model (Figure 4c) predicts that the representational structure should follow the coactivation patterns 

of muscle activity during individual finger movements. The somatotopy model (Figure 4d) predicts that the 

representational structure should follow the spatial layout of the fingers, with neighboring digits represented 

similarly to each other14,30. At the neural population level, the somatotopy model is analogous to Gaussian 

receptive fields30. 

Because the three proposed models are nearly multicollinear (max variance inflation factor = 79), we first 

needed to reduce the number of component models. Through a model selection procedure (Methods), we 

found that the hand-usage+somatotopy and muscle+somatotopy model combinations matched the data best 

(Supplementary Figure 12). In the main text, we present our temporal analysis using the muscle+somatotopy 

component models. 

Figure 4e shows the decomposition of the representational structure into the muscle and somatotopy 

component models. The results show a dynamic structure, with the muscle model emerging 170ms earlier than 

the somatotopy model (P = 0.002, two-sided Wilcoxon signed-rank test). This timing difference was consistent 

across individual sessions (Supplementary Figure 13) and task contexts such as the calibration task 

(Supplementary Figure 14). Indeed, the transition from the muscle model (Figure 4c) to the somatotopy model 

(Figure 4d) is visually apparent when comparing the average RDMs at 600ms (muscle-model-like) and 1200ms 

(somatotopy-model-like) (Figure 4e). 

These temporal dynamics were robust to our feature selection procedure, demonstrating a similar timing 

difference for the hand-usage+somatotopy combination (Supplementary Figure 14), or even all three models 

(with somatotopy lagging muscle and hand-usage) when regularizing model fits. This approach does implicitly 

group the muscle and hand-usage component models as motor production models (Discussion), as they are 

highly correlated (r = 0.90). 
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Figure 4. Representational dynamics analysis (RDA) dissociates neural processes over time. 

(a) RDA performs representational similarity analysis (RSA) in a sliding window across time. Here, we model the measured 
representational structure as a nonnegative linear combination of component model RDMs. 
(b-d) Hypothesized explanatory component RDMs: usage, muscle, and somatotopy14. Max-scaled to [0, 1]. 
(e) RDA of the measured RDM over time shows an early fit to the muscle model and a late fit to the somatotopy model. 
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Confidence intervals indicate +/- s.e.m. bootstrapped across 10 sessions. Gray shaded region indicates the approximate 
onset time of the saccade to cue (interquartile range across trials). Difference in model start-time (170ms, Methods) was 
significant (P = 0.002, two-sided Wilcoxon signed-rank test). RDM snapshots (bottom, each max-scaled to [0, 1]) intuitively 
visualize the change in representational structure over time from muscle-like to somatotopy-like. 
 

DISCUSSION 

Neural prosthetic control of individual fingers using recordings from PC-IP 
We found that participant X could robustly control a single-finger neural prosthetic in a variety of contexts 

(Figure 1, Supplementary Figure 3, Supplementary Figure 4), despite years of paralysis. Our BCI classification 

accuracy exceeded the previous best online finger control in humans31. Furthermore, although previous studies 

had shown that the anterior intraparietal area (AIP) of PPC is involved in whole-hand grasping19,32,33, our work is 

the first to demonstrate individual finger representation in PPC (Supplementary Figure 5).  

Comparing single-neuron and fMRI recordings 
fMRI studies have shown that the hand area of M1/S1 exhibits a characteristic functional organization, predicted 

by the natural statistics of use14. We hypothesized that fMRI recordings of M1 could provide a reasonable model 

for two reasons. First, we found that PC-IP neurons encode individual finger movements (Supplementary Figure 

5), but the sensorimotor cortex is the only cortical area to show consistent finger representation at the voxel 

scale25. Second, PPC is bidirectionally connected to the motor cortex and receives an efference-copy of M1 

output. Our single-neuron recordings closely matched the M1 fMRI representational structure, reaching 

similarities close to the noise ceiling (Figure 2g).  

We also compared our PC-IP neuronal recordings with fMRI recordings of SPLa, the region of interest (ROI) that 

anatomically best corresponds with the location of the array implant. While the PC-IP recordings fit the RDM of 

SPLa better than the task-optimal structure, they did not fit as well as the M1 organization (Figure 2g). Why 

wasn’t there a stronger match with fMRI recordings of SPLa? Although fMRI and neuronal recordings can 

produce similar RDMs22, the RDMs can also differ34 when representations are organized heterogeneously at 

different scales35. For example, the representational structure of finger flexion and extension differs between 

fMRI and single-neuron recordings in M1. This is thought to result from flexion/extension neural populations 

that cluster spatially or share inputs34. Likewise, we found that PC-IP finger encoding is heterogenous at the 

single-neuron level (Supplementary Figure 5), even while the posterior parietal cortex lacks a clear finger 

topography25,36,37. SPLa fMRI finger RDMs are thus more variable and may be difficult to use as a model 

(Supplementary Figure 7). 

Matching representations in able-bodied and paralyzed participants 
We discovered a match in finger movement representations between able-bodied and paralyzed participants. 

This match suggests that pre-injury finger representations have been preserved even after years of paralysis (C3-

C4 AIS-A spinal cord injury). To control neural prosthetic fingers, PX could reactivate these latent motor 

representations. 
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Our finding of preserved representations adds to an evolving and multifaceted understanding of plasticity after 

sensorimotor loss. Early studies by Merzenich and colleagues showed that S1 reorganized after amputation, 

with intact body parts invading the deprived cortex6–8. However, the authors also recognized that the amputated 

body part might persist in latent somatosensory maps. Preserved, latent somatosensory representations were 

later proven correct by recent studies of amputation9,23,24,38 and even paralysis39,40. A recent motor cortex BCI 

study41 also found a similar pattern of finger classification errors to the characteristic able-bodied structure 

(Figure 1b and Figure 2b), hinting that the motor cortex of tetraplegic participants may also match that of able-

bodied participants. Fewer studies have investigated sensorimotor plasticity beyond M1/S1, but our results in 

PC-IP indicate that higher-order regions can remain surprisingly preserved after paralysis. 

The significance of cortical reorganization has long been discussed in the field of BCIs, particularly when deciding 

where to implant electrodes. If, as previously thought, sensory deprivation drives cortical reorganization and any 

group of neurons can learn to control a prosthetic42,43, the specific implant location would not affect BCI 

performance. Our results and others2,9,12,23,24,38 suggest that such a stance is oversimplified. Although experience 

does shape neural organization6,14,24, representations may be remarkably persistent once formed24. Thus, to 

enable intuitive control for prosthetic users, neural prosthetics will benefit from tapping into the preserved, 

natural12 movement repertoire of motor areas. 

Consistent representational structure across sessions 
We found that the BCI representational structure changed minimally over weeks (Figure 3) despite the 

structure’s contributions to misclassification (Figure 1b). While PX was motivated to perform well and was 

anecdotally understood which finger pairs the online classifier was confusing, she could not increase the neural 

distance between fingers. Our observed lack of learning matches results from single-session learning studies, 

where neural learning is limited to the intrinsic neural manifold12,44–46. 

A study of long-term learning using artificial perturbations found that rhesus monkeys can learn to generate 

novel neural patterns after about 8 sessions47. The difference with our results could indicate that PX needed a 

stronger learning pressure, or perhaps the monkeys learned to use an alternative cognitive strategy like moving 

multiple effectors. Here, the participant did not attempt any alternative movements. Additionally, because we 

were interested in understanding the natural finger representation, we did not artificially perturb the BCI 

mapping to increase learning pressure. The error structure was instead a product of the natural representational 

structure. We expect future studies will further clarify how and when BCI learning can occur, as ours is only the 

first to investigate long-term population learning in a human BCI framework. 

Representational dynamics consistent with PPC as a forward model 
Based on previous studies of the posterior parietal cortex, different neural processes could be salient at 

different times during movement. PPC is thought to maintain an internal model of the body48–51. As such, PPC 

receives efference copies of motor command signals and delayed multimodal sensory feedback. The internal 

model role predicts that PPC houses multiple functional representations, each engaged at different time points 

of motor production. 
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We performed a time-resolved version of representational similarity analysis to dissociate neural processes over 

short time scales (hundreds of milliseconds, Figure 4). Our temporal analysis showed a consistent ordering: early 

emergence of the muscle or hand-usage components followed by the somatotopy model. 

We found consistent temporal results when using either the muscle or hand-usage component models (Figure 4 

and Supplementary Figure 14), as hand-usage and muscle activation patterns are strongly correlated for 

individual finger movements52. Therefore, here we group these models under the single concept of motor 

production. In the future, more complex multi-finger movements14 would help distinguish between muscle and 

hand-usage models. 

The somatotopy model derived from a simple-topography model predicts that neighboring digits will have 

similar cortical activity patterns14. However, at the neural population level, the same representational structure 

is more analogous to Gaussian receptive fields30. Gaussian receptive fields have been useful tools for 

understanding digit topographies within the sensorimotor cortex30,53. In another study with participant X, we 

found that the same recorded population encodes actual touch54 with a Gaussian-like receptive fields. Based on 

these results, here the somatotopy model can be thought of as a sensory-consequence model. However, 

because PX has no sensation below her shoulders, we interpret the somatotopy model as the preserved 

prediction of sensory consequences of a finger movement. These sensory outcome signals could be the 

consequence of internal computations within the PPC or could come from other structures important for body-

state estimation, such as the cerebellum51. 

The 170ms timing difference we found roughly matches the 60ms + 60ms delay between feedforward muscle 

activation and somatosensory afferents55,56. In able-bodied individuals, PPC is thought to maintain a state 

estimate for motor production, which would integrate motor planning, production, and predicted-sensory-

outcome signals at such a timing48–51. The matching timing, even during BCI control, provides further evidence 

that the recorded motor circuits have preserved their functional role.  

Preserved motor representations after paralysis 
A persistent question in neuroscience has been how experience shapes the brain, and to what extent existing 

neural circuits can be modified. In the first human BCI study of neural-population plasticity, we found that the 

brain’s motor circuits seem remarkably stable even after severe injury. An interesting question for future studies 

is whether more complex motor skills, such as handwriting57, remain preserved through injury. These findings 

will continue to influence the design of neural prosthetics and help to restore motor abilities to people with 

paralysis.  
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MATERIALS AND METHODS 

Data collection 

Study participant 

The study participant X (abbreviation: PX) has a AIS-A spinal cord injury at cervical level C3-C4 that she sustained 

approximately ten years before this study. PX cannot move or feel her hands. As part of a BCI clinical study 

(ClinicalTrials.gov identifier: NCT01958086), PX was implanted with two 96-channel Neuroport Utah electrode 

arrays (Blackrock Microsystems model numbers 4382 and 4383). She consented to the surgical procedure as 

well as to the subsequent clinical studies after understanding their nature, objectives, and potential risks. All 

procedures were approved by the California Institute of Technology, Casa Colina Hospital and Centers for 

Healthcare, and the University of California, Los Angeles Institutional Review Boards. 

Implant methodology and physiological recordings  

The electrode array used here was implanted over the hand/limb region of the left PPC at the junction of the 

intraparietal sulcus (IPS) with the postcentral sulcus (PCS) (Supplementary Figure 1). We previously19,45,58 

referred to this brain area as the anterior intraparietal area (AIP), a region functionally defined in non-human 

primates (NHPs). In this report, we use anatomical characteristics to name this brain area, denoting it the 

postcentral-intraparietal area (PC-IP). More details regarding the methodology for functional localization and 

implantation can be found in 45.   

Neural data preprocessing 

Unit activity was detected by thresholding the waveform at -3.5 times the root-mean-square, after high-pass 

filtering (250Hz cut-off) the full-bandwidth signal. Single and multiunit activity was sorted using k-medoids 

clustering using the gap criteria59 to determine the total number of neural clusters. Clustering was performed on 

the first 𝑛 ∈ {2, 3, 4} principal components, where 𝑛 was selected to account for 95% of waveform variance. 

Experimental setup 

Recording sessions 

Experiments were conducted in 2-3 hour recording sessions at Casa Colina Hospital and Centers for Healthcare. 

All tasks were performed with PX seated in her motorized wheelchair with her hands resting prone on the 

armrests. PX viewed cues on a 27-inch LCD monitor that occupied approximately 40 degrees of visual angle. 

Stimulus presentation was controlled by the psychophysics toolbox60 for MATLAB (Mathworks). 

The data were collected on 9 days over 6 weeks. Almost all experiment days were treated as individual sessions 

(i.e., the day’s recordings were spike-sorted together). The second experiment day was an exception, with data 

being recorded in a morning period and an afternoon period with a sizable rest period in between. To reduce 

the effects of recording drift, we treated the two periods as separate sessions (i.e., spike-sorted each 

separately), for a total of 10 sessions. Each session can thus be considered a different resampling of a larger 

underlying neural population, with some unique neurons and some repeated neurons. We did not re-run the 
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calibration task for the afternoon session, resulting in 9 sessions of the calibration task for Supplementary Figure 

3b. 

Calibration task 

At the beginning of each recording session, a reaction-time finger flexion task (denoted "calibration task" in the 

Results) was performed to train a finger classifier for online control during subsequent runs of the primary task. 

On each trial, a letter appeared on the screen (e.g., "T" for thumb). The participant was instructed to 

immediately flex the corresponding finger on the right hand (contralateral to the implant), as though striking a 

key on a keyboard. Conditions were interleaved in a pseudorandom order such that each condition was 

performed once before repetition. 

The classifier was then calibrated according to the Finger Classification section. The calibration task did not have 

a No-Go condition, so the firing rates during the intertrial interval (ITI) were used instead to train the classifier's 

No-Go prediction. 

Finger flexion grid task 

In the primary task, movement cues were arranged in a 3 x 4 grid of letters on the screen. Each screen consisted 

of two repetitions each of T (thumb), (index), M (middle), R (ring), P (pinky), and X (No-Go) arranged randomly 

on the grid. Every three seconds (i.e., each trial), a new cue was randomly selected with a crosshairs indicator, 

which was jittered randomly to prevent letter occlusion. Each cue was selected once (for a total of 12 trials) 

before the screen was updated to a new arrangement. Each block consisted of 3-4 screens.  

On each trial, the participant was instructed to immediately saccade to the cued target and fixate, then attempt 

to flex the corresponding finger. During both movement and No-Go trials, the participant was instructed to 

fixate on the target at least until the visual classification feedback was shown. The randomized cue location was 

intended to investigate whether cue location affects movement representations. 

The classifier decoded the finger movement on each trial and presented its prediction via text feedback 1.5 

seconds after the cue presentation. 

No-movement control task 

The control task was similar to the primary task, except the subject was instructed to saccade to each cued letter 

and fixate without attempting any finger movements. No classification feedback was shown. 

Statistical analysis 

Unit selection 

Single-unit neurons were identified using the k-medoids clustering method, as described in the Neural Data 

Preprocessing section. Analyses in the main text used all identified units, regardless of sort quality. With spike-

sorting, there is always the possibility that a single waveform cluster corresponds to activity from multiple 

neurons. To confirm that potential multi-unit clustering did not bias our results, we repeated our analyses using 

only well-isolated units (Supplementary Figure 15). 
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Well-isolated single units were identified using the L-ratio metric61. The neurons corresponding to the lowest 

third of L-ratio values (across days) were selected as "well-isolated." This corresponded to a threshold of 10-1.1 

dividing well-isolated single units and potential multi-units (Supplementary Figure 15). 

Single-unit tuning to finger flexion 

To calculate significance for each neuron (Supplementary Figure 5), we used a two-tailed t-test comparing each 

movement’s firing rate to the No-Go firing rate. A neuron was considered significantly tuned to a movement if P 

< 0.05 (after FDR correction). We also computed the mean firing rate changes for each condition. If a neuron 

was significantly tuned to at least one finger, we denoted the significant finger with the highest mean firing rate 

change as the neuron’s "best finger." Discriminability index (d', RMS standard deviation) was computed between 

the No-Go mean firing rate, as the baseline, and the mean firing rate during each condition. 

Units were pooled across all 10 sessions. Units with mean firing rates less than 0.1 Hz were excluded to minimize 

sensitivity to discrete spike-counting. 

Finger classification 

Finger classification was performed using linear discriminant analysis (LDA) with diagonal covariance matrices62; 

diagonal LDA is also equivalent to Gaussian Naive Bayes with a shared covariance matrix. 

To calibrate the in-session classifier, LDA was fit to the binned threshold crossings in a 1-second time window of 

trials of the calibration task, where the window lag was chosen to maximize the cross-validated classification 

accuracy for that trial block. Electrodes with mean firing rates less than 1 Hz were excluded to prevent low-firing 

rate discretization effects. This classifier was then used in subsequent online control in the main task. 

During online control of the finger flexion grid task, classification features were constructed using the binned 

threshold crossings from each electrode in the time window [0.5, 1.5] seconds after cue presentation. The 

window start-time was chosen based on the estimated saccade latency in the first experimental session. The 

saccade latency was estimated by taking the median of the time the subject took to look > 80% of the distance 

between targets. The analysis window was a priori determined to be 1 second; this choice was further 

supported by a sliding window analysis confirming accurate finger decoding up to 1.6 seconds. 

Offline classification accuracy was computed using leave-one-out cross-validation. We used features from the 

same time window as the online control task. However, offline analyses used spike-sorted firing rates instead of 

electrode threshold crossings. 

To visualize aggregate confusion matrices, confusion matrix counts were summed across recording sessions, 

then normalized by row (true label) to display ratios. This is equivalent to pooling trials across sessions to create 

a single confusion matrix. Reported classification accuracies aggregate trials over all sessions. Reported standard 

deviations are over sessions, weighted by the number of trials in each session. 
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Distance measure 

A robust variant63 of the cross-validated (squared) Mahalanobis distance was used to measure the dissimilarity 

between neural patterns for each pair of fingers (𝑗, 𝑘). The cross-validated Mahalanobis distance is calculated 

across independent partitions A and 𝐵, each with respective noise covariance Σ and measured activity patterns 

(𝑏𝑗 , 𝑏𝑘) : 

𝑑2 = (𝑏𝑗 − 𝑏𝑘)
𝐴

(
Σ𝐴 +  Σ𝐵

2
 )

−1

(𝑏𝑗 − 𝑏𝑘)
𝐵

𝑇
 / 𝑁  

𝑁 normalizes for the number of neurons, so the units of 𝑑2 are (𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠2/𝑛𝑒𝑢𝑟𝑜𝑛).. Here, we split the trials 

into 5 independent partitions and averaged the distance estimate across all permutations of partition pairs 

(𝐴, 𝐵). The cross-validated Mahalanobis distance measures the separability of multivariate patterns and is the 

continuous analog to LDA classification accuracy. Cross-validation ensures the (squared) distance estimate is 

unbiased; 𝐸[𝑑𝑖𝑗
2 ] = 0 when the underlying distributions are identical64. 

The noise covariance matrix, Σ, was used to normalize noise across different neurons. Σ was estimated from the 

data independently for each cross-validation fold. We regularized Σ towards a diagonal covariance matrix65 to 

guarantee that the estimate was invertible.  

Because RDMs are symmetric and the dissimilarity metric is unbiased, only the RDM’s lower triangular values 

were used for subsequent model-fitting procedures. 

For comprehensiveness, we also compute RDMs using a cross-validated version of the Poisson symmetrized KL-

divergence63 in Supplementary Figure 10. 

Representational models 

The M1 model for Figure 2g was taken from the right-hand 7T scans of Ejaz et al.14. The SPLa model was taken 

from the pre-experiment, right-hand 3T scans of Kieliba et al.28. To fairly compare the reliability of finger RDMs 

in M1 and SPLa, Supplementary Figure 7 uses 3T fMRI data from the same subjects and scans28. Similar results 

for Figure 2g were found using M1 data from both studies14,28. 

The hand usage, muscle, and somatotopy models were taken from 14. The natural movement statistic model was 

constructed using the velocity time series of each finger's MCP joint during everyday tasks. The muscle activity 

model was constructed using EMG activity during single- and multi-finger tasks. The somatotopic model is based 

on a cortical sheet analogy and assumes that finger activation patterns are linearly spaced Gaussian kernels 

across the cortical sheet. Further modeling details are available in the methods section of 14. 

Comparing representational structures 

The rsatoolbox Python library63 was used to perform representational similarity analysis20 between the models 

and our data. 
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To quantify model fit, we used the whitened unbiased RDM cosine similarity (WUC) metric, as is recommended 

for quantitative prediction models27. Unlike correlation metrics, which are 0 when the model RDM and data 

RDM have no systematic relationship, WUC > 0 as long as the model predicts positive distances between 

neurally distinct conditions. Therefore, WUC values are often larger than the corresponding correlation values or 

are even close to 1. Instead of comparing against 0, WUC values can be interpreted by comparing against a 

baseline. The baseline is usually chosen to be a null model where all conditions are equidistant pairwise (and 

would thus correspond to a 0-correlation). Here, our BCI task structure is equivalent to the null model, because 

the fingers were cued in random order and individually in a counterbalanced manner. The task thus had zero 

correlation between conditions. For comprehensiveness, we also show model fits using whitened Pearson 

correlation in Supplementary Figure 10. Whitened Pearson correlation is a common alternative to WUC27. 

To estimate the noise ceiling, we calculated the average similarity of each individual-session RDM with the mean 

RDM across sessions66. This value is a slight overestimate of the true noise ceiling. To calculate a lower-bound 

estimate of the noise ceiling, we calculated the average similarity of each individual-session RDM with the mean 

RDM across all other sessions (i.e., excluding that session). The area between the lower and upper bounds was 

shaded as the noise ceiling region. 

Measuring changes in the representational structure 

To assess the effect of BCI task experience on the inter-finger distances, we performed a linear model analysis 

with predictors of session index, within-session run-block index, and finger pair. Cohen’s 𝑓2 for each predictor 

was calculated using 𝑅𝑖𝑛𝑐
2 , the increase in 𝑅2 from the finger-pair-only model to the model including both the 

specified predictor and the finger pair. 

Bayesian tests were computed using the R package BayesFactor67 with default priors. To test each directional 

hypothesis, we sampled (N = 106) from the posterior of the corresponding non-directional model, calculated the 

proportion of samples that satisfied the directional hypothesis, and divided by the prior odds68. 

Linear combinations of models 

We also compared the data RDMs with nonnegative linear combinations of multiple model RDMs. To prevent 

overfitting, we cross-validated the model fits by fitting the mixture coefficients on all-but-one sessions and 

evaluated the model fit on the left-out session. To estimate model-fit uncertainty, we bootstrapped RDMs 

(sessions) over the cross-validation procedure63. We then selected the best model using the "one-standard 

error" rule69, choosing the simplest model within one standard error of the best model fit. 

Representational dynamics analysis 

To investigate how the finger movement representational structure unfolds over time, we followed Kietzmann 

et al.29 in using a time-resolved version of representational similarity analysis (Figure 4a). At each point in time, 

we computed the instantaneous firing rates by binning the spikes in a ±100ms time window centered at that 

point.  These firing rates were used to calculate cross-validated Mahalanobis distances between each pair of 

fingers and generate an RDM at each time point. 
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The temporal sequence of RDMs constitutes an RDM "movie" (size [𝑛𝑑𝑖𝑔𝑖𝑡𝑠, 𝑛𝑑𝑖𝑔𝑖𝑡𝑠, 𝑛𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡𝑠]) that visualizes 

the representational trajectory across the trial duration. RDM movies were computed separately for each 

recording session. Single-time snapshots (Figure 4e) show RDMs averaged across sessions. 

At each time point, we decomposed the data RDM into the component models using nonnegative least squares. 

Because the component models are not completely orthogonal, component models were limited to the subsets 

chosen in the model reduction step. Each component RDM was normalized by its vector length (ℓ2-norm) before 

decomposition to allow comparison between coefficient magnitudes. To compute confidence intervals, we 

bootstrapped RDMs across days, calculated the average RDM of each bootstrap sample, and then decomposed 

the corresponding average RDM into mixture coefficients. 

We computed the start-time of each model component as the time at which the corresponding mixture 

coefficient exceeded 0.2 (about 25% of the median peak-coefficient across models and sessions).  

Data availability 
Data will be deposited in the BRAIN Initiative DANDI Archive before publication. 

Code availability 
The custom analysis code will be made available at https://github.com/AndersenLab-Caltech/fingers_rsa before 

publication. 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Multielectrode array implant location. Figure and text adapted from Aflalo 

et al.70 (CC BY-NC 4.0). 

We used fMRI to identify cortical regions involved in imagined reaching and grasping actions. We performed two 
complementary tasks to ensure activation was robust across paradigms. 
(a) Event-related task design. Following an intertrial interval, the subject was cued to perform a specific imagined 
movement (precision grasp, power grasp, or reach without hand shaping.) Following the cue, a cylindrical object was 
displayed. If the object was intact, the subject imagined performing the cued movement. If the object was broken, the 
subject withheld movement. 
(b) Block task design. Eight blocks were presented for 30 seconds per run. During the first 15 seconds of each block, 
common objects were presented every three seconds in varying spatial locations. Before each run, the subject was 
instructed to either imagine pointing at, imagine reaching and grasping, or look naturally at the object. During the last 15 
seconds of each block, scrambled images were presented and the subject was instructed to guess the identity of the object. 
(c) Statistical parametric map showing voxels with significant activity for grasping (“Go” versus “No-Go”) (p < 0.01, FDR-
corrected), based on task (a). Array location and cortical landmarks as depicted in the legend. 
(d) Statistical parametric map showing voxels with significant activation (P < 0.01, FDR-corrected) for grasping versus 
looking, based on task (b).  
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Supplementary Figure 2. Calibration task. 

Task structure, single trial. Each trial consisted of an intertrial interval (ITI) and a reaction-time Go phase. During the Go 
phase, green text specified which digit to flex. All letters were overlaid in gray to minimize visual differences between ITI 
and Go phases. 
(Legend) T = thumb, I = index, M = middle, R = ring, P = pinky  
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Supplementary Figure 3. Robust cross-validated finger classification during main and calibration 

tasks. 

(a) Confusion matrix of offline finger classification, cross-validated within single sessions. 4080 trials of the main task 
aggregated over 10 sessions. 
(b) Confusion matrix of offline finger classification, cross-validated within single sessions. 530 trials of the calibration task 
aggregated over 9 sessions. 
(Legend) T = thumb, I = index, M = middle, R = ring, P = pinky, X = no movement. Each entry (i, j) in the matrix corresponds 
to the ratio of movement i trials that were classified as movement j.  
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Supplementary Figure 4. Example BCI control of a virtual reality hand. Video attached separately. 

Using a BCI, participant X controls the individual fingers of a virtual reality hand. She views a virtual hand, table, and cues 
through an Oculus headset. Similar to the main finger movement task, she acquires green jewels by pressing the 
corresponding finger and avoids red amethysts by resting. Green jewels disappear when the correct finger is classified (or at 
the start of the next trial, if incorrectly classified). The screen copies the view PX sees through the Oculus headset. 
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Supplementary Figure 5. Single-neuron encoding of individual fingers. 

All five fingers of the right (contralateral) hand were encoded within the population during movement execution. 
(a) Percentage of the population tuned significantly (P < 0.05, FDR-corrected) to flexion of each digit. Positive percentages 
indicate neurons that increased firing rate during digit movement and negative percentages bar indicate neurons that 
decreased firing rate. Error bars indicate a 95% bootstrap confidence interval. 
(b) Percentage of the population tuned best to each digit. 
(c) Cumulative distribution function of the population’s tuning significance p-values. 
(d) Histogram of d' (discriminability index) values across neurons. 
(a-d) Neurons were pooled across sessions.   
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Supplementary Figure 6. Gaze location did not affect finger decoding during the attempted-

movement period. 

(a) Linear regression could not decode target location [x, y] coordinates from the neural activity during the attempted-
movement period. Violin plot shows that cross-validated regression r2 values are close to 0 across sessions, with each circle 
marking a single session. 
(b) Cross-validated confusion matrix for cue location: a linear classifier (diagonal LDA) could not classify the gaze location 
from neural activity during the attempted-movement period. 
(c) Cross-validated classification accuracy for main and control tasks: a linear classifier (diagonal LDA) could not classify 
finger movements from neural activity during passive observation (orange) of the digit flexion task. Sliding bin width: 
200ms. The shaded region indicates +/- s.e.m. (6 sessions passive viewing, 10 sessions attempted flexion). 
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Supplementary Figure 7. fMRI representational structure for finger movements, from Kieliba et al.28 

(a) fMRI representational structure for 3 individual subjects and the group mean (N = 20). Intuitive visualization using 
multidimensional scaling (MDS) and Generalized Procrustes alignment (without scaling); ellipses show mean +/- s.d. across 
subjects. Regions of interest (ROIs): primary motor cortex (M1, top row) and anterior superior parietal lobule (SPLa, bottom 
row). SPLa ROI was defined in 71. 
(b) Finger RDMs are more consistent across subjects in M1 than in SPLa, as shown by the Gardner-Altman estimation plot72 
of the average WUC between pairs of subject RDMs (N = 190 pairs between 20 subjects). Each circle on the swarm plot 
(left) marks the similarity for a pair of subjects. Horizontal black lines mark the mean of each ROI. The curve (right) indicates 
the resampled (N = 5000) distribution of the effect size between ROIs, as measured by Cohen’s d. Unpaired Cohen's d 
between M1 and SPLa: -1.33 (95% CI: [-1.47, -1.19]). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.07.463105doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.07.463105
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34 
 

 

Supplementary Figure 8. Individual representational dissimilarity matrices for each session. 

Representational dissimilarity matrices across all sessions, using the cross-validated Mahalanobis distance. Related to 
Figure 2e. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.07.463105doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.07.463105
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 
 

 

Supplementary Figure 9. Finger representational structure of tetraplegic individual matches M1 over 

SPLa for all fMRI participants. 

Paired Gardner-Altman estimation plot72 of the similarity (WUC) between PX (average RDM across sessions) and each fMRI 
participant. The slopegraph’s connected points (left) show each fMRI participant’s (N = 20) M1/SPLa match with PX’s finger 
representational structure. Mean difference (right) presented as Cohen’s d (N = 5000 bootstrap samples).  Related to Figure 
2c and Supplementary Figure 7.  
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Supplementary Figure 10. Representational structure during BCI finger control matches the structure 

of able-bodied individuals when using alternative analysis parameters. 

(a) RDMs calculated with an alternative dissimilarity metric: cross-validated Poisson KL-divergence63. Units: nats / neuron. 
Related to Supplementary Figure 8a and Figure 2e. 
(b) Fit between measured RDMs and motor-intact BOLD data using alternative metrics. Distance metric: cross-validated 
Poisson KL-divergence. Similarity metric: whitened RDM Pearson correlation27. Similar to Figure 2g. Able-bodied model 
correlation was significantly above the unstructured model (zero correlation) (P = 3.7 × 10-15, two-tailed t-test). 
(c) Representational dynamics calculated with an alternative dissimilarity metric: cross-validated Poisson KL-divergence. 
Similar to Figure 4e. 
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Supplementary Figure 11. Inter-finger distances did not increase across sessions or within sessions. 

BCI classification errors might have encouraged inter-finger distances to increase to improve separability, but 

this did not occur. Inter-finger distances instead decreased slightly (across sessions: t(10) = -4.0, two tailed t-test 

P < 0.001; within sessions: t(10) = -2.4, two-tailed t-test P = 0.017), although the effect size was very small 

(across sessions: Cohen’s = 0.008; within sessions: = 0.005). Markers indicate average pairwise distance for each 

finger pair and session (top) or run-within-session (bottom). 
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Supplementary Figure 12. Fit between measured RDM and linear combinations of models. 

Violin plot of WUC similarity between the measured RDM (N = 1000 bootstrap samples over 10 sessions) and the 
corresponding model combination. Violin plot: solid horizontal lines indicate the mean WUC over bootstrap samples, and 
dotted lines indicate the first and third quartiles. Horizontal lines (above) indicate significance groups, where the circle-
indicated model is significant over the vertical-tick-indicated models (two-tailed t-test, q < 0.01, FDR-corrected for 28 
model-pair comparisons). For example, the muscle+somatotopy combined model is significant over the individual muscle, 
hand usage, somatotopy, combined muscle+hand-usage, and equidistant (null) models.  
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Supplementary Figure 13. Temporal delays between component models are consistent across single 

sessions. 

When linear modeling within single sessions, the muscle model (blue) consistently preceded the somatotopy model 
(orange). Time difference: 170ms +/- 66ms (s.d. across sessions) (P = 0.002, two-sided Wilcoxon signed-rank test). Line 
styles indicate session. Related to Figure 4e.  
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Supplementary Figure 14. Representational dynamics are robust across tasks and model combination 

choices. 

(a) Representational dynamics analysis shows an early fit to the hand-usage model and a late fit to the somatotopy model. 
Confidence intervals indicate +/- s.e.m. across sessions. Related to Figure 4e. 
(b) Representational dynamics analysis shows a consistent delay between models during the calibration task. Note: the 
absolute timing differs from the main task because the calibration task does not require an initial saccade to read the cue. 
Related to Figure 4e.   
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Supplementary Figure 15. Well-sorted single neurons of the tetraplegic participant match the finger 

representational structure of able-bodied individuals. 

(a) Histogram of L-ratio, a spike-sorting cluster metric. Threshold for well-isolated units, 33% quantile (Lratio < 10-1.1). 
(b) Representational dissimilarity matrices calculated only using well-isolated units, using the cross-validated Mahalanobis 
distance. Similar to Figure 2e and Supplementary Figure 8a. 
(c) Whitened unbiased similarity (WUC) between measured (B) RDMs (using only well-isolated units) and model predictions 
(Figure 2b-c), showing that the measured RDMs match the able-bodied BOLD RDM significantly better than they match the 
unstructured/null model. Error bars indicate +/- s.e.m. Significance indicator: The dot connected to the vertical tick 
indicates that the able-bodied model fits the data significantly better than the unstructured model (P = 3.1 × 10-10, two-
tailed t-test). Noise ceiling: Gray region estimates the best possible model fit (Methods). Gray downward-semicircle 
indicates that the noise ceiling is significantly higher (P < 0.01) than the fit of the unstructured model. Similar to Figure 2g. 
(d) Representational dynamics analysis, repeated using only well-isolated units, shows an early fit to the muscle model and 
a late fit to the somatotopy model. Confidence intervals indicate +/- s.e.m. across sessions. Similar to Figure 4e. 
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