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SUMMARY

New technologies are key to understanding the dynamic activity of neural circuits and systems in the brain.
Here, we show that a minimally invasive approach based on ultrasound can be used to detect the neural cor-
relates of movement planning, including directions and effectors. While non-human primates (NHPs) per-
formed memory-guided movements, we used functional ultrasound (fUS) neuroimaging to record changes
in cerebral blood volume with 100 mm resolution. We recorded from outside the dura above the posterior pa-
rietal cortex, a brain area important for spatial perception, multisensory integration, andmovement planning.
We then used fUS signals from the delay period before movement to decode the animals’ intended direction
and effector. Single-trial decoding is a prerequisite to brain-machine interfaces, a key application that could
benefit from this technology. These results are a critical step in the development of neuro-recording and brain
interface tools that are less invasive, high resolution, and scalable.

INTRODUCTION

Novel technologies for interfacing with the brain are key to un-

derstanding the dynamic activity of neural circuits and systems

and diagnosing and treating neurological diseases. Many neural

interfaces are based on intracortical electrophysiology, which

provides direct access to the electrical signals of neurons with

excellent temporal resolution. However, the electrodes must

be implanted via significant-risk open-brain surgery. This pro-

cess causes acute and chronic local tissue damage (Polikov

et al., 2005), and implants suffer material degradation over

time (Barrese et al., 2013; Kellis et al., 2019). Invasive electrodes

are also difficult to scale and limited in sampling density and

brain coverage. These factors limit longevity and performance

(Kellis et al., 2019;Welle et al., 2020;Woolley et al., 2013). Nonin-

vasive techniques, such as electroencephalography (EEG) and

functional magnetic resonance imaging (fMRI), have achieved

considerable success in the research setting. Even so, they are

limited by low spatial resolution, summing activity of large brain

volumes, and the dispersion of signal through various tissues

and bone. Minimally invasive techniques such as epidural elec-

trocorticography (ECoG) span amiddle ground,maintaining rela-

tively high performance without damaging healthy brain tissue

(Benabid et al., 2019; Shimoda et al., 2012). However, it is

difficult to resolve signals from deep cortical or subcortical struc-

tures with spatial specificity. In addition, subdural ECoG remains

invasive in requiring penetration of the dura and exposure of un-

derlying brain tissue.

Here, we evaluate the potential of functional ultrasound (fUS)

imaging, a recently developed, minimally invasive neuroimaging

technique, to provide single-trial decoding of movement inten-

tions, a neural signaling process of fundamental importance

and applicability in brain-machine interfaces (BMIs). fUS imaging

is a hemodynamic technique that visualizes regional changes in

blood volume using ultrafast Doppler angiography (Bercoff et al.,

2011; Mace et al., 2013; Macé et al., 2011). It provides excellent

spatiotemporal resolution compared to existing functional neu-

roimaging techniques (<100 mm and 100 ms) and high sensitivity

(~1 mm/s velocity; Boido et al., 2019) across a large field of view

(several centimeters). Since its introduction in 2011 (Macé et al.,

2011), fUS has been used to image neural activity during

epileptic seizures (Macé et al., 2011), olfactory stimuli (Osmanski

et al., 2014), and behavioral tasks in freely moving rodents (Sieu

et al., 2015; Urban et al., 2015). It has also been applied to non-

rodent species, including ferrets (Bimbard et al., 2018), pigeons

(Rau et al., 2018), non-human primates (NHPs) (Blaize et al.,

2020; Dizeux et al., 2019), and humans (Demene et al., 2017; Im-

bault et al., 2017; Soloukey et al., 2020). Unlike fMRI, fUS can be
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applied in freely moving subjects using miniature, head-mount-

able transducers (Sieu et al., 2015). In addition, the hemody-

namic imaging performance of fUS is ~5- to 10-fold better in

terms of spatiotemporal resolution and sensitivity compared to

fMRI (Deffieux et al., 2018; Macé et al., 2011; Rabut et al., 2020).

In this study, we leveraged the high sensitivity of fUS imaging

to detect movement intentions in NHPs. We trained two animals

to perform memory-delayed instructed eye movements (sac-

cades) and hand movements (reaches) to peripheral targets.

Meanwhile, we recorded hemodynamic activity over the poste-

rior parietal cortex (PPC) through a cranial window throughout

the task. PPC is an association cortical region situated between

visual and motor cortical areas and is involved in high-level

cognitive functions, including spatial attention (Colby and Gold-

berg, 1999), multisensory integration (Andersen and Buneo,

2002), and sensorimotor transformations for movement planning

(Andersen and Cui, 2009). The functional characteristics of PPC

have been thoroughly studied using electrophysiological (Ander-

sen et al., 1987; Andersen and Buneo, 2002; Colby and Gold-

berg, 1999; Gnadt and Andersen, 1988; Snyder et al., 1997)

and functional magnetic resonance techniques (Kagan et al.,

2010; Wilke et al., 2012), providing ample evidence for compar-

ison to the fUS data. PPC contains several subregions with

anatomical specialization, including the lateral intraparietal

area (LIP) involved in planning saccade movements (Andersen

et al., 1987; Andersen and Buneo, 2002; Gnadt and Andersen,

1988; Snyder et al., 1997) and the parietal reach region (PRR)

involved in planning reach movements (Andersen and Buneo,

2002; Calton et al., 2002; Snyder et al., 2000, 1997). Importantly,

their activity can be simultaneously recorded within a single

fUS imaging frame (approximate slice volume of 12.8 3

13 3 0.4 mm).

Figure 1. Anatomical scanning regions

(A and B) Illustrations of craniotomy field of view in

the axial plane (A) and coronal cross-section (B),

overlaid on a NHP brain atlas (Calabrese et al., 2015).

The 24 3 24-mm (inner dimension) chambers were

placed surface normal to the brain on top of the

craniotomized skull.

(C and D) 3D vascular maps for monkey L and

monkey H. The field of view included the central and

intraparietal sulci for both monkeys.

(E and F) Representative slices for monkey L and

monkey H show the intraparietal sulcus (dotted line,

labeled ips) with orientation markers (l, lateral or left;

r, right; m, medial; v, ventral; d, dorsal; a, anterior; p,

posterior).

By recording brain activity while animals

perform movement tasks, we provide evi-

dence that fUS can detect motor planning

activity that precedes movement in NHPs.

We extend these results to decode several

dimensions of behavior at a single-trial

level. These include (1) when the monkey

entered the task phase, (2) which effector

they intended to use (eye or hand), and (3)

which direction they intended to move (left

or right). These results show for the first time that fUS is capable

of imaginghemodynamics in largeanimalswithenoughsensitivity

to decode the timing and goals of an intended movement. These

findings also represent a critical step toward the use of fUS for

BMIs. Such interfaces provide a direct causal link between brain

and machine by interpreting neural activity related to user inten-

tion. They are excellent tools for neuroscientific investigation (Sa-

kellaridi et al., 2019) and as a neuroprosthetic to enable people

with paralysis to control assistive devices, including computer

cursors and prosthetic limbs (Aflalo et al., 2015; Collinger et al.,

2013;Hochberget al., 2012, 2006). As fUShardwareandsoftware

developments enable real-time imaging andprocessing, fUSmay

prove a valuable tool for future BMIs.

RESULTS

To look for goal-related hemodynamic signals in the PPC, we ac-

quired fUS images from NHPs using a miniaturized 15-MHz,

linear array transducer placed on the dura via a cranial window.

The transducer provided a spatial resolution of 100 mm 3

100 mm in-plane, slice thicknesses of ~400 mm, covering a plane

with a width of 12.8 mm and penetration depth of 16 mm. We

positioned the probe surface-normal in a coronal orientation

above the PPC (Figures 1A and 1B). We then selected planes

of interest for each animal from the volumes available (Figures

1C–1F). Specifically, we chose planes that captured both the

lateral and medial banks of the intraparietal sulcus (ips) within

a single image and exhibited behaviorally tuned hemodynamic

activity. We used a plane-wave imaging sequence at a pulse

repetition frequency of 7,500 Hz and compounded frames

collected from a 500-ms period each second to form power

Doppler images with a 1 Hz refresh rate.
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Hemodynamic response during memory-guided
saccades
To resolve goal-specific hemodynamic changes within single tri-

als, we trained two NHPs to perform memory-delayed instructed

saccades. We used a similar task design to previous experiments

investigating the roles of PPC regions using fMRI blood-oxygen-

level-dependent (BOLD) (Kagan et al., 2010; Wilke et al., 2012)

and reversible pharmacological inactivation (Christopoulos et al.,

2015). Specifically, the monkeys were required to memorize the

location of a cue presented in either the left or right hemifield and

execute the movement once the center fixation cue extinguished

(Figure 2A). The memory phase was chosen to be sufficiently

long (from 4.0 to 5.1 s depending on the animals’ training and suc-

cess rate, with a mean of 4.4 s across sessions) to capture hemo-

dynamic changes.Wecollected fUSdatawhile eachanimal (N=2)

performed memory-delayed saccades. We collected 2,441 trials

over 16 days (1,209 from monkey H and 1,232 from monkey L).

We use statistical parametric maps based on the Student’s

t test (one sided with false discovery rate [FDR] correction) to

visualize patterns of lateralized activity in PPC (Figures 2B and

2G). We observed event-related average (ERA) changes of cere-

bral blood volume (CBV) throughout the task from localized re-

gions (Figures 2C–2F, 2H, and 2I). Spatial response fields of

laterally tuned hemodynamic activity appeared on the lateral

bank of ips (i.e., in LIP). The response fields and ERA waveforms

were similar between animals and are consistent with previous

electrophysiological (Graf and Andersen, 2014) and fMRI

BOLD (Wilke et al., 2012) results. Specifically, ERAs from LIP

show higher memory phase responses to contralateral (right)-

compared to ipsilateral (left)-cued trials (one-sided t test of

area under the curve during memory phase, t test p < 0.001).

Monkey H exhibited a similar direction-tuned response in the

presumed medial parietal area (MP), a small patch of cortex on

the medial wall of the hemisphere (we did not record this area ef-

fect in monkey L, because MP was outside the imaging plane).

This tuning supports previous evidence ofMP’s role in directional

eyemovement observed in aprevious study (Thier andAndersen,

1998). In contrast, focal regions of microvasculature outside the

LIPalso showedstrongevent-related responses to the taskonset

but were not tuned to target direction (e.g., Figure 2E).

Memory-delayed reaches
In a second experiment, we also collected fUS signals while each

NHP performedmemory reaches. In total, we collected 1,480 tri-

als (543 frommonkey H and 937 frommonkey L) over 8 sessions.

The task was similar to that of saccades, but the animal’s gaze

remained fixated throughout the trial, including during the fixa-

tion, memory, and reach movement phases (Figure 3A). The

memory phase ranged from 3.2 to 5.2 s depending on the ani-

mals’ training and success rate (mean, 4.2 s across sessions).

ERAs on the lateral bank of ips reveal populations with direc-

tion-specific tuning (Figures 3C, 3D, 3F, and 3G). MP, which

was responsive to saccade planning for monkey H (Figure 2I),

was not responsive to reach planning. Populations on the medial

bank in the putative PRR do not exhibit lateralized tuning but do

show bilateral tuning to the movement (Figures 3D and 3G).

These results are consistent with electrophysiological record-

ings, in which the PRR neurons as a population encode both

hemispaces, whereas LIP neurons largely encode the contralat-

eral space (Quian Quiroga et al., 2006).

Single-trial decoding
We predicted the direction of upcoming movements using single

trials of fUS data (Figure 4A). Briefly, we used class-wise prin-

cipal-component analysis (CPCA) to reduce data dimensionality.

We chose CPCA because it is ideally suited to discrimination

problems with high dimension and small sample size (Das and

Nenadic, 2009, 2008). We then used ordinary least-squares

regression (OLSR) to regress the transformed fUS data (from

the memory delay period) to the movement direction (i.e., class

label). Finally, we used linear discriminant analysis (LDA) to clas-

sify the resulting value for each trial as a presumed left or right

movement plan. All reported results were generated using a

10-fold cross-validation. Saccade direction prediction accuracy

within a session (i.e., decoded from the memory delay) ranged

from 61.5% (binomial test versus chance level, p = 0.012) to

100% (p < 0.001) on a given 30-min run. The mean accuracy

across all sessions and runswas 78.6% (p < 0.001). Reach direc-

tion prediction accuracy ranged from 73.0% (binomial test

versus chance level, p < 0.001) to 100% (p < 0.001). The mean

accuracy across all sessions and runs was 88.5% (p < 0.001).

Figure 2. Saccade task, event-related response maps, and waveforms

(A) A trial started with the animals fixating on a central cue (red diamond). Next, a target cue (red diamond) was flashed on either the left or right visual field. During

amemory period, the animals had to remember its location while continuing to fixate on the center cue.When the center was extinguished (go signal), the animals

performed a saccade to the remembered peripheral target location and maintained eye fixation before receiving a reward. *Mean values across sessions shown;

the fixation andmemory periods were consistent within each session but varied across sessions from 5.4 to 6.3 s and 4.0 to 5.1 s, respectively, depending on the

animals’ level of training. The fixation and memory periods were subject to 400 ms of jitter (green shaded area, uniform distribution) to preclude the animal from

anticipating the change(s) of the trial phase.

(B–F) Representative activity map and event-related average (ERA) waveforms of CBV change within labeled regions of interest duringmemory-guided saccades

for monkey L.

(B) A statistical map shows localized areas with significantly higher signal change (SC) (one-sided t test of area under the curve, p < 0.01) during thememory delay

phase for right-cued compared to left-cued saccades, i.e., vascular patches of contralaterally tuned activity.

(C and D) ERA waveforms in LIP display lateralized tuning specific to local populations.

(E) Small vasculature outside of LIP exhibits event-related structure that is tuned to task structure but not target direction.

(F) Vessels that perfuse large areas of cortex do not exhibit event-related signal.

(G–I) Activity map and ERA waveforms within labeled regions of interest for monkey H.

(G) Map for monkey H.

(H) ERA waveforms show lateralized tuning in LIP.

(I) Target tuning also appears in medial parietal area (MP) for monkey H.

(C)–(F) share a common range (9% SC), as do (H) and (I) (14%). ERAs are displayed as means across trials, and shaded areas represent standard error (SEM).
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To analyze the temporal evolution of direction-specific informa-

tion in PPC, we attempted to decode the movement direction

across time through the trial phases (fixation, memory, andmove-

ment). For each time point, we accumulated the preceding data.

For example, at t = 2 s, we included imaging data from t = 0–2 s

(where t = 0 s corresponds to the beginning of fixation). The result-

ing cross-validated accuracy curves (Figure 4B) showaccuracy at

chance level during the fixation phase, increasing discriminability

during thememory phase, and sustaineddecode accuracy during

the movement phase. During the memory phase, decoder accu-

racy improved, surpassing significance 2.08 s ± 0.82 s after the

monkey received the target cue for saccades (2.32 s ± 0.82 s

beforemoving,binomial test versuschance level,p<0.05,Bonfer-

roni corrected for 18 comparisons across time) and 1.92 s ± 1.4 s

A

B C D

E F G

Figure 3. Reach task, event-related response map, and waveforms

(A) Monkeys performed a memory-guided reaching task using a 2D joystick. A trial started with the animal fixating on a central cue (red diamond) and positioning

the joystick to its center (green circle). Next, a target (green circle) was flashed on either the left or right visual field. The animal memorized its locationwhile fixating

eye and hand on the center cue. When the hand center cue was extinguished (go signal), the animal performed a reach to the remembered target location and

maintained the position before receiving a reward. Importantly, eye fixation was maintained throughout the entire trial. *Mean values across sessions shown; the

fixation and memory periods were consistent within each session but varied across sessions from 2.5 to 5.9 s and 3.2 to 5.2 s, respectively. The fixation and

memory periods were subject to 400ms of jitter (green shaded area, uniform distribution) to preclude the animal from anticipating the change(s) of the trial phase.

(B) A statistical map shows localized areas with significantly higher SC (one-sided t test of area under the curve, p < 0.01, false discovery rate [FDR] corrected for

number of pixels in image) during the memory delay phase for right-cued compared to left-cued reaches (i.e., vascular patches of contralaterally tuned activity).

(C) ERA waveforms from the lateral bank of ips reveal lateralized tuning in reaching movements.

(D) ERA waveforms in the medial bank of ips exhibit a population with bilateral tuning to reaching movements. ERAs are displayed as means across trials, and

shaded areas represent standard error (SEM).

(E–G) Statistical map and ERA waveforms from monkey H.
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for reaches (2.28 s ± 1.4 s beforemoving). Decoding accuracy be-

tween saccades and reaches was not significantly different.

To determine the amount of data required to achieve

maximum decode accuracy, we systematically removed trials

from the training set (Figure 4C). Using just 27 trials, decoder ac-

curacy reached significance for all datasets (binomial test, p <

0.05) and continued to increase. Decoder accuracy reached a

maximum when given 75 trials of training data, on average.

Were we decoding the neural correlates of positions, trajec-

tories, or goals? To answer this question, we used a cross-tem-

poral decoding technique. We used a 1-s sliding window of data

to train the decoder and then attempted to decode the intended

direction from another 1-s sliding window. We repeated this pro-

cess for all time points through the trial duration, resulting in an n

3 n array of accuracies, where n is the number of time windows

tested. Cross-validated accuracy was significantly above

chance level throughout the memory and movement phases

(Figure 4D, purple line, binomial test versus chance level, p <

0.05, Bonferroni corrected for 18 time points). In other words,

the informationwe are decoding from this brain regionwas highly

similar during movement preparation and execution. This result

suggests that this area is encoding movement plans (Snyder

A

B C D

E

Figure 4. Single-trial decoding of intended movement direction

(A) Data flow chart for cross-validated single-trial movement direction decoding. Training images were separated from testing data according to the cross-

validation technique being used. Movement intention predictions were made for single trials based on the dimensionality reduction and a classification model

built by the training data with corresponding class labels (i.e., actual movement direction).

(B) Decoding accuracy as a function of time across all datasets.

(C) Decoding accuracy as a function of the number of trials used to train the decoder. Data points in (B) and (C) are means, and shaded areas represent standard

error (SEM) across sessions.

(D) Cross-temporal decoder accuracy, using all combinations of training and testing data with a 1-s sliding window. Results are shown in an example session for

each animal. Significance threshold is shown as a contour line (p < 0.05, FDR corrected). Training the classifiers during the memory or movement phase enabled

successful decoding of the memory and movement phases.

(E) Representative decoder weighting maps (monkey L). The top 10%most heavily weighted voxels are shown as a function of space and time before the go cue

was given, overlaid on the vascular map.

See also Figure S1 and Video S1.
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et al., 1997), visuo-spatial attention (Colby and Goldberg, 1999),

or both. Although intention and attention are overlapping ab-

stract concepts that cannot be separated by this experimental

design, dissociating their contribution would not fundamentally

change our interpretation. Distinct spatial locations within PPC

encoded this information, a fact reflected in the variable weight-

ing assigned to each voxel in our decoding algorithm. The

decoder placed the highest weightings in area LIP (Figure 4E).

This also agrees with the canonical function of this region (Ander-

sen and Buneo, 2002; Gnadt and Andersen, 1988).

Decoding memory period, effector, and direction
To demonstrate the ability of fUS to decode multiple dimensions

of behavior from a single trial of data, we trained the same two

animals to perform a memory-delayed, intermingled effectors

task. This task was similar to the saccade and reach tasks in

its temporal structure. However, in addition to the animals

fixating their gaze during the fixation period, they also moved a

joystick to a central cue with their right hand. This cue’s color

indicated which effector they should move when the go cue

arrived (blue for saccades and red for reaches). If the monkey

moved the correct effector (eye/hand) to the correct direction

(left/right), then they received a liquid reward (Figure 5A). In total,

we collected 1,576 trials (831 frommonkey H and 745 frommon-

key L) over four sessions (two from each animal) while they per-

formed this task.

Wedecoded the temporal courseof (1) the task structure, (2) the

effector, and (3) the target direction of the animal using a decision

tree decoder. First, we predicted the task memory periods versus

non-memory periods (includingmovement, inter-trial interval, and

fixation). We refer to this distinction as task/no task (Figure 5C,

task/no task). To predict when the monkey entered the memory

period, the decoder used continuous data where each power

Doppler image was labeled as task or no task. After predicting

the animal entered the taskphase, the second layer of thedecision

tree used data from the predicted task phase period to classify

effector and direction (Figure 5C, reach/saccade, left/right). Each

of these decodes used the same strategy as before (cross-vali-

dated CPCA). Figure 5B depicts the confusion matrix of decoding

accuracy for each class for monkeys H and L. The classifier

correctly predicted no-task periods 85.9% and 88.8% of the

time for monkeys H and L, respectively, left versus right on

72.8% and 81.5% of trials for monkeys H and L, and eye versus

hand on 65.3% and 62.1% of trials for monkeys H and L. All three

decodes were significantly above chance level (p < 0.05, binomial

test versus chance, Bonferroni corrected for three comparisons).

A B

C

Figure 5. Decoding task, effector, and direction simultaneously

(A) Intermingledmemory-delayed saccade and reach task. A trial started with the animals fixating their gaze (and moving the joystick to) a central cue. The center

fixation cue was either colored blue to cue saccades (top row) or red to cue reaches (bottom row), randomized trial by trial (i.e., not blocked). Next, a target (white

circle) was flashed on either the left or right visual field. The animals had to remember its location while continuing to fixate their eye and hand on the center cue.

When the center was extinguished (go signal), the animals performed a movement of either the eye or hand to the remembered peripheral target location. *Mean

values across sessions shown; the fixation period was consistent within each session but varied across sessions from 2.4 to 4.3 s.

(B) Confusion matrices of decoding accuracy represented as percentage (columns add to 100%).

(C) Example classification of 14 consecutive trials. Classification predictions are shown as lines, and shaded areas indicate ground truth. An example of the fUS

image time series transformed by the classifier subspace appears in red. After predicting the task period, the classifier decoded effector (second row) and

movement direction (third row) using data only from the predicted task period (first row).
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Vascular signal and information content
The purported benefits of fUS compared to established neuroi-

maging techniques include increased resolution and sensitivity.

To test the benefit of increased resolution, we classified move-

ment goals while systematically decreasing the resolution of

the image. We resized the images using a low-pass filter in

each of the dimensions of the imaging plane, x (across the probe

surface) and z (with image depth). We then used the entire image

(where the downsized images contained fewer pixels) to decode

movement direction. Accuracy continuously decreased as voxel

sizes increased (Figure 6A). This effect was isotropic (i.e., similar

for both x and z directions).

We hypothesized that functional information useful for decod-

ingwould primarily be located in subresolution (<100 mm) vessels

within the imaging plane. This hypothesis was based on the func-

tion of hyperemia, which starts in parenchymal arterioles and

first-order capillaries (i.e., vessels of diameter <50 mm; Rungta

et al., 2018). To test this hypothesis, we rank ordered voxels

by their mean power Doppler intensity and segmented them by

deciles, resulting in a spatial map of ranked deciles (Figure 6C).

Deciles 1–2 mostly captured subcortical areas. Deciles 3–8

mostly captured cortical layers. Deciles 9 and 10 were largely

restricted to large arteries, commonly on the cortical surface

and in the sulci. We then classified movement goals using data

from each decile. We normalized accuracy for each session,

where 0 represents chance level (50%) and 1 represents the

maximum accuracy reached across deciles. Accuracy peaked

when the regions of the image within the third decile of mean

Doppler power were used to decode movement direction. This

decile was mostly represented by cortex vasculature, much of

which is at or below the limits of fUS resolution. This result is

consistent with our hypothesis that functional hyperemia arises

from subresolution vessels (Boido et al., 2019; Maresca et al.,

2020) and agrees with previous studies in rodents (Demené

et al., 2016) and ferrets (Bimbard et al., 2018).

DISCUSSION

Contributions compared to previous work
This work presents a high-water mark for ultrasound neuroimag-

ing sensitivity that builds on the two previous studies of fUS in

NHPs. Significant advances include (1) classification of behavior

using fUS data from a single trial, (2) detection of the neural cor-

relates of behavior before its onset, (3) the first investigation of

motor planning using fUS, and (4) significant advances in ultrafast

ultrasound imaging for single trial and real-time imaging as a pre-

cursor to BMI. Dizeux et al. were the first to use fUS in NHPs,

finding changes in CBV in the supplementary eye field (SEF) dur-

ing an eye movement task and mapping directional functional

connectivity within cortical layers (Dizeux et al., 2019). Blaize

et al. recorded fUS images from the visual cortex (V1, V2, and

V3) of NHPs to reconstruct retinotopic maps (Blaize et al.,

2020). Both studies explored the boundaries of fUS sensitivity.

Dizeux et al. showed that the correlation of fUS signal from SEF

and the behavior signal was statistically predictive of the success

rate of the animal. However, this prediction required 40 s of data.

A B

C

Figure 6. Effects of spatial resolution, time window, and mean power Doppler intensity

(A) Accuracy decreases with resolution in both the x direction (across the imaging plane) and z direction (depth in the plane) in an isotropic manner.

(B) Decoding accuracy as a function of decoder time bin durations (1-, 2-, and 3-s bins represented by black, red, and purple, respectively). Data are aligned to the

end of the time bin used for decoding. Dots represent maximum decoder accuracy for each session for each of the bin sizes. Stars indicate statistical significance

between groups (Student’s t test, p < 0.001 for all combinations).

(C) A typical vascularmap overlaid with contours dividing the image into deciles ofmean power Doppler intensity. Decoding accuracy is shown as a function of the

mean power Doppler intensity. Information content is greatest in quantile 3, which mostly contains small vasculature within the cortex. Subcortical and primary

unit vasculature (i.e., deciles 1 and 10) are least informative to decoding movement direction.

All data represent means, and shaded areas, when present, represent standard error (SEM) across sessions.
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Blaize et al. used a binary classification (50% chance level) tech-

nique to determine the number of trials necessary to construct

retinotopicmaps. They reached 89%accuracy after 10 averaged

trials for one monkey and 91.8% for the second monkey. Our

study is the first to successfully classify fUSactivitywith just a sin-

gle trial of data. Furthermore, we predicted the differences be-

tween multiple task variables (e.g., effector, direction) in addition

to detecting the task itself. We also decoded the behavior of the

animal before it was executed. Compared to previous multi-trial

detection of a stimulus or task, detecting cognitive state variables

fromsingle trials represents a newhigh bar for fUS neuroimaging.

This study represents the first investigation ofmotor planning and

execution using fUS. It thus is the first example in a future body of

work using fUS to study the neural correlates of motor learning

and motor control in large animals. Finally, the methods devel-

oped here are technological achievements by introducing mini-

mal latency (Video S1; Figure S1) and being robust across ani-

mals and task paradigms (Figures 2, 3, 4, and 5). Thus, they

can be applied in a range of tasks and applications that require

real-time signal detection.

Simultaneous effector and direction decoding
PPC’s location within the dorsal stream suggests that while vi-

suospatial variables are well represented, other movement vari-

ables such as effector may be more difficult to detect. Indeed,

decoding accuracy was higher for direction (i.e., left versus right)

than for effector (i.e., hand versus eye) (Figure 5B). The observed

difference in performance is likely due to PPCs bias toward the

contralateral side and partially intermixed populations for effec-

tors in some regions. In addition to direction and effector, we

decoded the task versus no-task phases. This is a critical step

toward closed-loop feedback environments such as BMI, where

the user gates their own movement or the decoder is otherwise

not privy to movement or task timing information. Furthermore,

simultaneous decoding of task state, direction, and effector is

a promising step forward for the use of fUS in both complex be-

haviors and BMIs.

Comparison of fUS to electrophysiology
There are several clear advantages of fUS monitoring. fUS can

reliably record from large portions of the brain simultaneously

(e.g., cortical areas LIP and PRR) with a single probe. fUS is

also much less invasive than intracortical electrodes; it does

not require penetration of the dura mater. This is a significant

attribute, because it greatly reduces the risk level of the tech-

nique. Furthermore, while tissue reactions degrade the perfor-

mance of chronic electrodes over time (Woolley et al., 2013),

fUS operates epidurally, precluding these reactions. In addition,

our approach is highly adaptive thanks to the reconfigurable

electronic focusing of the ultrasound beam and its wide field of

view. This makes it much easier to target regions of interest.

fUS also provides access to cortical areas deep within sulci

and subcortical brain structures that are difficult to target with

electrophysiology. Finally, the mesoscopic view of neural popu-

lations made available by fUS may be favorable for decoder

generalization. Thus, training and using decoders across days

and/or subjects will be an exciting and important direction of

future research.

Other techniques, such as noninvasive scalp EEG, have been

used to decode single trials and as a neural basis for control of

BMI systems (Norman et al., 2018; Wolpaw et al., 1991; Wolpaw

and McFarland, 2004). The earliest proof-of-concept EEG-

based BMI achieved a one-bit decode (Nowlis and Kamiya,

1970). Performance of modern EEG BMIs varies greatly across

users (Ahn and Jun, 2015) but can yield two degrees of freedom

with 70%–90% accuracy (Huang et al., 2009). This performance

is comparable to that described here using fUS. However, fUS

performance is rapidly increasing as an evolving neuroimaging

technique, including recent breakthroughs in 3D fUS neuroimag-

ing (Rabut et al., 2019; Sauvage et al., 2018). These technolog-

ical advances are likely to herald improvements in fUS single-trial

decoding and future BMIs.

Epidural ECoG is a minimally invasive technique used for

neuroscientific investigation, clinical diagnostics, and as a

recording method for BMIs. Building on the success of more-

invasive subdural ECoG, early epidural ECoG in monkeys

enabled decoding of continuous 3D hand trajectories with

slightly worse accuracy than subdural ECoG (Shimoda et al.,

2012). More recently, bilateral epidural ECoG over human so-

matosensory cortex facilitated decoding of 8 degrees of freedom

(4 degrees of freedom per arm, including 3D translation of a ro-

botic arm and wrist flexion) with ~70% accuracy (Benabid

et al., 2019). In this study, we demonstrated that unilateral fUS

imaging of PPC enabled 3 degrees of freedom with similar accu-

racy. This is fewer degrees than attainable usingmodern bilateral

ECoG grids. However, it demonstrates that, as a young tech-

nique, fUS holds excellent potential. Future work can, for

example, extend these findings to similarly record bilateral

cortical and subcortical structures, such as M1, PPC, and basal

ganglia. As fUS recording technology rapidly advances toward

high-speed, wide-coverage, and 3D scanning, these types of re-

cordings will become commonplace.

Advances in fUS technology
Improvements in fUS imaging and computation power continue

to accelerate functional frame rates and sensitivity. New scanner

prototypes promise faster refresh rates, already reaching 6 Hz

(Brunner et al., 2020). Although high temporal resolutions will

oversample the hemodynamic response, they enable detection

of new feature types (e.g., directional mapping of functional con-

nectivity between brain regions) (Dizeux et al., 2019). The user

could also preferentially sacrifice frame rate to compound

more frames into functional images, improving image sensitivity.

Thus, we anticipate that although these results are a critical step

in decoding brain states from a single trial, they are only the first

in many forthcoming improvements.

Goal decoding for BMI
The results presented here suggest that fUS has potential as a

recording technique for BMI. A potential limitation is the temporal

latency of the hemodynamic response to neural activity. Electro-

physiology-based BMIs that decode velocity of intended limb

movements require as little latency as possible. However, in

many cases, goal decoding circumvents the need for instanta-

neous updates. For example, if a BMI decodes the visuospatial

location of a goal (as we do here), then the external effector
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(e.g., a robotic arm) can complete the movement without low-

level, short-latency information (e.g., joint angles). Furthermore,

goal information as found in PPC can represent sequences of

consecutivemovements (Baldauf et al., 2008) andmultiple effec-

tors simultaneously (Chang and Snyder, 2012). Finally, future

goal decoders could potentially leverage information from re-

gions in the ventral stream to decode object semantics directly

(Bao et al., 2020). These unique advantages of goal decoding

could thus improve BMI efficacy without requiring short-latency

signals.

fUS BMI in its form in the current study could also enable BMIs

outside the motor system. Optimal applications might require

access to deep brain structures or large fields of view on time-

scales compatible with hemodynamics. For example, cognitive

BMIs such as state decoding of mood and other psychiatric

states (Shanechi, 2019) are of great interest due to the

astounding prevalence of psychiatric disorders. Like fUS, cogni-

tive BMI is a small but rapidly advancing area of research (Ander-

sen et al., 2019;Musallam et al., 2004). It is ourmission that these

areas of research mature together, as they are well matched in

timescale and spatial coverage.

One concern about goal decoding is that an error and subse-

quent change in motor plan happen on short timescales. These

sudden changes are difficult to decode regardless of recording

methodology, only recently appearing as a potential feature in

chronically implanted electrophysiology-based BMIs (Even-

Chen et al., 2017). Action inhibition is often attributed to subcor-

tical nuclei, such as the basal ganglia (Jin and Costa, 2010) and

subthalamic nucleus (Aron et al., 2016), rather than the cortical

areas most often used for BMI. fUS may be able to simulta-

neously image cortex and these subcortical nuclei but would still

be subject to hemodynamic delays. Decreasing system la-

tencies and detecting error signals with complementary

methods will be an important topic for future research.

Activity in PPC during saccade planning
Activationmaps revealed regions (~100 mm to ~1 cm) within PPC

during saccade planning that weremore responsive to contralat-

eral targets than ipsilateral targets. Contralateral tuning of these

regions during memory delay is consistent with the findings from

previous fMRI studies (Kagan et al., 2010; Wilke et al., 2012). Our

results are also consistent with the extensive evidence from elec-

trophysiological recordings in NHPs that show LIP is involved in

planning and executing saccadic movements (Quian Quiroga

et al., 2006; Snyder et al., 1997). Notably, the ERA waveforms

display significantly larger target-specific differences compared

to fMRI signals in a memory-delayed saccade task (i.e., 2%–5%

versus 0.1%–0.5%) (Kagan et al., 2010; Wilke et al., 2012) and

have much finer spatial resolution. This sensitivity was possible

despite the deepest subregions of interest extending 16 mm

below the probe surface. At this depth, signal attenuation is

approximately �7.2 dB (assuming uniform tissue using a 15-

MHz probe). Using a probe with a lower center frequency would

allow for increasing depths at the cost of spatiotemporal resolu-

tion. Use of microbubbles (Errico et al., 2016) or biomolecular

contrast agents (Maresca et al., 2020) may enhance hemody-

namic contrast, allowing for deeper imaging without sacrificing

resolution.

In addition to well-studied PPC subregions, we also identified

patches of activity in the MP located within medial parietal area

PG (PGm) (Pandya and Seltzer, 1982). These functional areas

were much smaller in size and magnitude than those nearer to

the ips. This may be one potential reason why MP activity was

not reported in previous fMRI studies. However, electrophysio-

logical studies have showed that stimulation of this area can elicit

goal-directed saccades, indicating its role for eye movements

(Thier and Andersen, 1998). The addition of the hemodynamic re-

sults presented here is the first hemodynamic evidence of MP

function. A limitation of this finding is that we did not observe

such activity in the second animal, likely because MP was not

in the imaging plane. Current efforts to develop 3D fUS imaging

(Rabut et al., 2019) will eliminate this limitation, allowing us to

identify new areas based on response properties.

Activity in PPC during reach planning
We also collected data during a memory-delayed reaching task.

ERA waveforms identified increases in CBV during the memory

phase for regions on the medial aspect of the ips. The PRR is

located on the medial bank of the ips and is characterized by

functional selectively to effector (i.e., the arm) (Christopoulos

et al., 2015). The responses we observed in this area were

effector specific; they did not appear in the saccadic data. How-

ever, they were not direction specific; increases in CBV activity

were present for left-cued and right-cued trials. This bilateral

reach response can be explained by the spatial scale of the

recording method. Whereas single-unit electrophysiology in

PRR reveals single neurons that are tuned to contralateral

hand movement planning, a significant portion of PRR neurons

are also tuned to ipsilateral movement planning (Quian Quiroga

et al., 2006). Within the limits of fUS resolution (~100 mm), each

voxel records the hemodynamic response to the summed activ-

ity of neurons within the voxel (~100 mm 3 100 mm 3 400 mm).

Therefore, our results, in the context of previous literature, pro-

vide evidence that (1) populations of ipsilaterally and contralater-

ally tuned neurons were roughly equivalent, and (2) these popu-

lations are mixed at subresolution scales (100 mm). We also

found activity on the lateral bank of ips that encoded target direc-

tion for an upcoming reach. That is, responses were more robust

to contralateral targets. Although this area is predominantly

involved in saccade movements, neurophysiological studies

have also reported neurons within the LIP that encode reaches

to peripheral targets (Colby and Duhamel, 1996; Snyder et al.,

1997). This area was located more ventral to saccade related

areas in the lateral bank of ips andmay bewithin the ventral intra-

parietal area (VIP). VIP is a bimodal visual and tactile area (Duha-

mel et al., 1998) that produces movements of the body when

electrically stimulated (Cooke et al., 2003; Thier and Andersen,

1996), consistent with a possible role in reaching movements.

Instructed versus free movement
We decoded activity as the monkeys performed instructed

movements rather than internally driven (‘‘free’’) movements. A

previous study using fMRI showed that free-choice movements

produced similar activation patterns in LIP; however, the differ-

ence in signal between left/right targets was smaller than that

for instructed movements (Wilke et al., 2012). Given the
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improvement in signal made possible with fUS, it may be

possible to decode movement direction from single trials of

free-choice movements, although accuracy may be impacted.

As free-choice movements are more conducive to BMI use,

this is an important direction for future research.

Conclusions
The contributions presented here required significant advance-

ments in large-scale recording of hemodynamic activity with sin-

gle-trial sensitivity. Decoding capabilities are competitive with ex-

isting and mature techniques, establishing fUS as a technique for

neuroscientific investigation in task paradigms that require sin-

gle-trial analysis, real-time neurofeedback, or BMI. Although the

neurophysiology presented here is in NHPs, we expect that the

methods described will transfer well to human neuroimaging, sin-

gle-trial decoding, and eventually BMI. We first described the vi-

suomotor planning function of PPC using electrophysiology in

NHPs (Gnadt and Andersen, 1988; Snyder et al., 1997) and later

PPC electrophysiology-based BMI control (Aflalo et al., 2015; Sa-

kellaridi et al., 2019). Translation of these findings into human neu-

roimagingandBMI isan importantdirectionof futurestudy. Inaddi-

tion to its utility for neuroscientific investigation, brain-machine

interfacing isapromising technique to restoremovement topeople

livingwith neurological injury and disease. The advancements pre-

sented here are a critical first step in ushering in a new era of BMIs

that are less-invasive, high-resolution, and scalable. These tools

will empower researchers tomakeunique insights into the function

and malfunction of brain circuits, including neurological injury and

disease. Furthermore, future work advancing these findings could

make a large impact in neuroprosthetics by developing and

disseminating high-performance, minimally invasive BMIs.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Richard A. Andersen

(richard.andersen@vis.caltech.edu).

Materials availability
This study did not generate new unique materials.

Data and code availability
Data and analysis software to replicate the primary results will be shared upon request fromSumner Norman (sumnern@caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We implanted two healthy adult male rhesusmacaques (Macacamulatta) weighing 10–13 kg. All surgical and animal care procedures

were done in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved

by the California Institute of Technology Institutional Animal Care and Use Committee.

METHOD DETAILS

Animal preparation and implant
We implanted two animals with polyether ether ketone head caps anchored to the skull with titanium screws. We then placed a

custom polyether ketone (Monkey H) or stainless-steel (Monkey L) head holder on the midline anterior aspect of the cap. Finally,

we placed a unilateral square chamber of 2.4 cm inner diameter, made of polyetherimide (Monkey H) or nylon (Monkey L) over a crani-

otomy above the left intraparietal sulcus. The dura underneath the craniotomywas left intact. To guide the placement of the chamber,

we acquired high-resolution (700 mm) anatomical MRI images before the surgery using a Siemens 3T MR scanner, with fiducial

markers to register the animals’ brains to stereotaxic coordinates.

Behavioral setup
During each recording session, themonkeyswere placed in a dark anechoic room. They sat in a customdesigned primate chair, head

fixed, facing an LCDmonitor ~30 cm away. Visual stimuli were presented using custom Python software based on PsychoPy (Peirce,

2009). Eye position was monitored at 60 Hz using a miniature infrared camera (Resonance Technology, Northridge, CA, USA) and

ViewPoint pupil-tracking software (Arrington Research, Scottsdale, AZ, USA). Reaches were performed using a 2-dimensional

joystick (Measurement Systems). Both eye and cursor positions were recorded simultaneously with the stimulus and timing informa-

tion and stored for offline access. Data analysis was performed in MATLAB 2020a (MathWorks, Natick, MA, USA) using standard

desktop computers.

Behavioral tasks
The animals performed memory-guided eye movements to peripheral targets (Figure 2A). Each trial started with a fixation cue (red

diamond; 1.5 cm side length) presented in the center of screen (fixation period). The animal fixated for 5.35-6.33 s depending on

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB 2020a Mathworks RRID:SCR_001622

Python Programming Language v2.7 Python Software Foundation RRID:SCR_008394

PsychoPy v3.1.5 https://github.com/psychopy/psychopy RRID:SCR_006571

Other

Vantage 128 Research Ultrasound System Verasonics N/A

DOMINO linear array probe Vermon H.S.#901812000
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training (mean 5.74 s across sessions). Then, a single cue (red diamond; 1.5 cm side length) appeared either on the left or the right

hemifield for 200 ms, indicating the location of the target. Both targets were located equidistantly from the central fixation cue (23�

eccentricity). After the cue offset, the animals were required to remember the location of the targets while maintaining eye fixation

(memory period). This period was chosen to be sufficiently long to capture hemodynamic transients. Thememory period was consis-

tent within each session but varied across sessions from 4.02-5.08 s (mean 4.43 s across session) depending on the animal’s level of

training. Once the central fixation cue disappeared (i.e., go signal) the animals performed a direct eye movement (saccade) within

500 ms to the remembered location of the target. If the eye position arrived within a radius of 5� of the targets, it was re-illuminated

and stayed on for the duration of the hold period (1 s). If the animal broke eye fixation before the go signal (i.e., shifted their gaze

outsize of a window of 7.5 cm, corresponding to 14� of visual angle) the trial was aborted. Successful trials were followed by a liquid

reward. The fixation and memory periods were subject to 400 ms of jitter sampled from a uniform distribution to preclude the animal

from anticipating the change(s) of the trial phase.

Both animals also performed memory-guided reach movements to peripheral targets using a 2-dimensional joystick positioned in

front of the chair with the handle at knee level. Each trial started with two fixation cues presented at the center of the screen. The

animal fixated his eyes on the red diamond cue (1.5 cm side length) and acquired the green cue by moving a square cursor

(0.3 cm side length) controlled by his right hand on the joystick (fixation period). The animal fixated for 2.53-5.85 s depending on

training (mean 3.94 s across sessions). Then, a single green target (1.5 cm side length) was presented either on the left or the right

visual field for a short period of time (300ms). After the cue offset, the animal was required to remember the location of the targets for

a memory period while maintaining eye and hand fixation. The memory period was consistent within each session but varied across

sessions from 3.23-5.20 (mean 4.25 s across session). Once the central green cue disappeared, the animal performed a direct reach

to the remembered target location within 500 ms, without breaking eye fixation. If they moved the cursor to the correct goal location,

the target was re-illuminated and stayed on for duration of the hold period (1 s). Targets were placed at the same locations as in

saccade trials. If the cursor moved out of the target location, the target was extinguished, and the trial was aborted. Any trial in which

the animal broke eye fixation or initiated a reaching movement before the go signal or failed to arrive at the target location was

aborted. Successful trials were followed with the same liquid reward as in saccade trials. The fixation andmemory periods were sub-

ject to 400 ms of jitter sampled from a uniform distribution to preclude the animal from anticipating the change(s) of the trial phase.

We also trained both animals on a task that intermingled memory delayed saccades and reaches (Figure 5A). Similar to the reach

task, each trial started with two fixation cues presented at the center of the screen: one for his eyes and one for his right hand. The

target sizes were maintained from the reach task. The key difference was that the color of the gaze fixation diamond was randomized

as blue or red: blue to cue saccades and red to cue reaches. After a 4.3 s memory period, a single white target (1.5 cm side length)

was presented either on the left or right visual field for a short period of time (300 ms). After the cue offset, the animal was required to

remember the location of the targets for the duration of the memory period. The memory period across all sessions for both monkeys

was 4.0 s. Once the central green cue disappeared, the animal performed a saccade or reach via joystick to the remembered target

location within 500 ms, without breaking fixation of the non-cued effector. If they moved the cursor to the correct goal location, the

target was re-illuminated and stayed on for the duration of the hold period (1 s). If the cued effector moved out of the target location,

the target was extinguished, and the trial was aborted. Any trial in which the animal broke fixation of the non-cued effector or initiated

a movement of the cued effector before the go signal or failed to arrive at the target location was aborted. Successful trials were fol-

lowed with the same liquid reward as in saccade and reach trials. The fixation and memory periods were subject to 400 ms of jitter

sampled from a uniform distribution to preclude the animal from anticipating the change(s) of the trial phase.

Functional ultrasound sequence and recording
During each recording session, we placed the ultrasound probe (128 elements linear array probe, 15.6MHz center frequency, 0.1mm

pitch, Vermon, France) in the chamberwith acoustic coupling gel. This enabled us to acquire images from the posterior parietal cortex

(PPC) with an aperture of 12.8 mm and depths up to 23 mm (results presented here show up to 16 mm depth). This large field of view

allowed us to image several PPC regions simultaneously. These superficial and deep cortical regions included, but were not limited

to, area 5d, lateral intraparietal (LIP) area, medial intraparietal (MIP) area, medial parietal area (MP), and ventral intraparietal (VIP) area.

We used a programmable high-framerate ultrasound scanner (Vantage 128 by Verasonics, Kirkland, WA) to drive a 128-element 15

MHz probe and collect the pulse echo radiofrequency data. We used a plane-wave imaging sequence at a pulse repetition frequency

of 7500Hz.We transmitted plane waves at tilted angles of�6 to 6� in 3� increments.We then compounded data originating from each

angle to obtain one high-contrast B-mode ultrasound image (Mace et al., 2013). Each high-contrast B-mode image was formed in

2 ms, i.e., at a 500 Hz framerate.

Regional changes in cerebral flood volume induced by neurovascular coupling can be captured by ultrafast power Doppler ultra-

sound imaging (Macé et al., 2011). We implemented an ultrafast power Doppler sequence using a spatiotemporal clutter-filter to

separate blood echoes from tissue backscattering. We formed Power Doppler images of the NHP brain using 250 compounded

B-mode images collected over 0.5 s. Image formation and data storage were performed after the pulse sequence and took ~0.5

s. Thus, the pulse sequence and image formation/save resulted in power Doppler functional mapping of the NHP brain at a 1 Hz

refresh rate.

Anatomical PPC regions were spatially located by their stereotaxic positions from the pre-surgical MRI. Response of these

functional areas was confirmed by mapping activated voxels obtained during the experimental phase of this work. If necessary,
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the imaging plane was adjusted to record the most responsive area. Each acquisition consisted of 900-3600 blocks of 250 frames

where each block represented 1 s of data (equivalent to 15-60 minutes runtime). Finally, we stored the in-phase and quadrature

sampled data to high-speed solid-state drive memory for offline processing.

Power Doppler image processing
We used singular value decomposition to discriminate red blood cell motion from tissue motion and extracted the Doppler signal in

each ensemble of 250 coherently compounded frames (Demené et al., 2015; Montaldo et al., 2009). The resulting images were then

stored in a 3D array of 2D images in time series. In some experiments, we observed motion of the entire imaging frame. These shifts

were indicative of a change in the position of the probe/tissue interface due to uncommonly forceful movements of the animal. We

corrected for these events using rigid-body image registration based on the open source NoRMCorre package (Pnevmatikakis and

Giovannucci, 2017), using an empirical template created from the first 20 frames from the same session. We also tested nonrigid

image registration but found little improvement, confirming that motion observed was due to small movements between the

probe/dura interface rather than changes in temperature or brain morphology.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed using MATLAB 2020a.

ERA waveforms and statistical parametric maps
Wedisplay event-related average (ERA) waveforms (Figures 2C–2F, 2H, 2I, 3C, 3D, 3F, and 3G) of power Doppler change as percent-

age change frombaseline. The baseline consists of the three seconds preceding the first Doppler image obtained after the directional

cue was given on any given trial. ERA waveforms are represented as a solid line with surrounding shaded areas representing the

mean and standard deviation. We generated activation maps (Figures 2B, 2G, 3B, and 3E) by performing a one-sided t test for

each voxel individually with false discovery rate (FDR) correction based on the number of voxels tested. In this test, we compared

the area under the curve of the change in power Doppler during the memory phase of the event-related response. The movement

direction represented the two conditions to be compared, and each trial represented one sample for each condition. We chose a

one-sided test because our hypothesis was that contralateral movement planning would elicit greater hemodynamic responses in

LIP compared to ipsilateral planning (based on canonical LIP function). This has the added benefit of being easily interpretable: areas

of activation represent contralateral tuning. Voxels with values of p < 0.01 are displayed as a heatmap overlaid on a background

vascular map for anatomical reference.

Single trial decoding
Decoding single trial movement intention involved three parts: 1) aligningCBV image time serieswith behavioral labels, 2) feature selec-

tion, dimensionality reduction and class discrimination, and 3) cross validation andperformance evaluation (Figure 4A). First, we divided

the imaging dataset into event aligned responses for each trial, i.e., 2DPowerDoppler images through time for each trial.We then sepa-

rated trials into a training set and testing set according to a 10-fold cross validation scheme. The training setwas attached to class labels

that represented thebehavioral variablebeingdecoded. For example,movementdirectionwouldbe labeled left or right. The test setwas

stripped of such labels. Features were selected in the training set by ranking each voxel’s q-value comparing the memory phase re-

sponses to target direction in the training data. Direction-tuned voxels (FDR corrected for number of pixels in image, q < 0.05) of up

to10%of the total imagewerekeptas features.Wealso testedselecting featuresbydrawing regionsof interest around relevant anatom-

ical structures e.g., LIP. Although thismethod can outperform q-maps, it is more laborious and depends on user skill, so we do not pre-

sent its results here. For the intermingled effector task, we used all features (i.e., the whole image) because it did not require combining

multiple t-maps. For dimensionality reduction and class separation, we used classwise principal component analysis (CPCA) and linear

discriminant analysis (LDA) (Das andNenadic, 2009), respectively. This decodingmethod has been implemented with success inmany

real-timeBMIs (Do et al., 2013, 2011; King et al., 2015;Wang et al., 2019, 2012), and is especially useful in applicationswith high dimen-

sionality.CPCAcomputes theprincipal components (PCs) in a piecewisemanner individually for trainingdataof each class.We retained

principal components to account for > 95%of variance.We improved class separability by running linear discriminant analysis (LDA) on

theCPCA-transformeddata.Mathematically the transformed feature for each trial canbe representedby f =TLDAFCPCAðdÞ,whered˛R1

are the flattened imaging data for a single trial,FCPCA is the piecewise linear CPCA transformation, and TLDA is the LDA transformation.

FCPCA is physically related to space and time and thus can be viewed within the context of physiological meaning (Figure 4E). We sub-

sequently used Bayes rule to calculate the posterior probabilities of each class given the observed feature space. Because CPCA is a

piecewise function, this is done twice, once for each class, resulting in four posterior likelihoods: PLðLjf�Þ; PLðRjf�Þ; PRðLjf�Þ; PRðRjf�Þ,
where f� represents the observation, PL and PR represent the posterior probabilities in the CPCA subspaces created with training data

from left-directed and right-directed trials, respectively. Finally, we store the optimal PC vectors and corresponding discriminant hyper-

plane from the subspacewith the highest posterior probability.We then used these findings to predict the behavioral variable of interest

for each trial in the testingset. That is,wecompute f� from fUS imagingdata for each trial in the testing set topredict theupcomingmove-

ment direction. Finally, we rotate the training and testing sets according to k-fold validation, storing the BMI performance metrics for

each iteration. We report the mean decoding accuracy as a percentage of correctly predicted trials (Figure 4B). In measures across
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multiple sessionswhere an independent variable is being tested (e.g., number of trials in training set), we use a normalized accuracy that

is linearly scaled to [0, 1] where 0 is chance level (50%) and 1 is themaximum accuracy across the set of values used in the independent

variable (e.g., Figure 4C). This was necessary to regularize raw accuracy values across multiple sessions and animals.

Analysis of training set sample size
As BMI models increase in complexity, their need for data also increases. To demonstrate the robustness of our piecewise linear

decoding scheme to limited data, we systematically reduced the amount of data used in the training set (Figure 4C). We used N-i

trials in the training set and i trials in the testing set in a cross-validated manner, rotating the training/testing set i times for i = 1,

2,. N-10. We stop at N-10 because accuracy was diminished to chance level and when less than 10 trials are used in the training

set, it becomes increasingly likely that there will be an under- or non-represented class, i.e., few or no trials to one of the movement

directions. We report the mean normalized accuracy standard error of the means (SEM) across both animals and all recording ses-

sions as a function of the number of trials in the training set (N-i) (Figure 4C).

Multicoder for intermingled effectors task
For the intermingled effectors task (Figure 5), we used the same decoding scheme described above to decode effector and direction.

However, instead of using data from the period defined by the experiment, we used a decision tree to define the task period. That is,

we first predicted the memory period from the non-memory periods (i.e., task epoch versus no-task epoch). To do this, we labeled

each frame of fUS in the training set with a label for task or no-task. We then decoded each frame in the testing set using the same

decoding scheme described above. The primary difference of note here is that we used individual frames of data rather than cumu-

lative frames from within a known task period. We then refined these predictions by assuming that any time the classifier predicted

the animal had entered a task state, they would be in that task state for three seconds. This allowed us to use three seconds’ worth of

data to train and decode the effector and direction variables. Note that while the task/no-task classifier makes a prediction every 1 s,

the effector and direction make a prediction for each trial defined by the task/no-task classifier.

Cross temporal decoding
We also performed an analysis to determine the nature of hemodynamic encoding in PPC using a cross-temporal decoding tech-

nique. In this analysis, we used all temporal combinations of training and testing data, using a one second sliding window. We

used 1 s of data from all trials to train the decoder and then attempted to decode from each of the 1 s windows of testing data

throughout the trial. We then updated the trainingwindow and repeated the process. This analysis results in an n x n array of accuracy

values where n is the number of time windows in the trial. We report the 10-fold cross-validated accuracies as a percentage of

correctly predicted trials (Figure 4D). To assess the statistical significance of these results, we used a Bonferroni corrected binomial

test versus chance level (0.5) where the number of comparisons was n2. We overlaid a contour at p = 0.05 to indicate the temporal

boundaries of significant decoding accuracies.

Decoding with reduced spatial resolution
Part of the motivation for using fUS is its spatial resolution. To test the effects of increased resolution, we synthetically reduced the

resolution of the in-plane imaging data using a Gaussian filter. We performed this analysis at all combinations of x and z direction

(width and depth, respectively) starting at true resolution (i.e., 100 mm) up to a worst-case of 5 mm resolution. We report the 10-

fold cross-validated accuracy values as a function of these decreasing resolutions as a 2D heatmap and as 1D curves of mean ac-

curacy in both the x and z directions with shaded areas representing s.e.m. (Figure 6A). A limitation of this approach is that we cannot

downsample the out-of-plane dimension. Thus, the reported accuracy values are likely higher than those attainable by a technique

with isotropic voxel size, e.g., fMRI.

Decoding with different time windows
To analyze the effect of cumulative versus fixed length decoders, we used different sliding windows of data (1 s, 2 s, 3 s) to decode

upcoming movement direction (left or right) using data from the memory delay period. We report these results using accuracy as a

function of trial time and the maximum accuracy achieved during the memory period for each session (Figure 6B). Accuracies are

represented at each time point through the fixation andmemory periods using data aligned to the end of the time bin used for decod-

ing. For example, an accuracy at t = 3 s for a decoder using 3 s of data represents a result trained on data from t = 0-3 s. To assess

significance between different conditions, we used a student’s two-tailed t test.

Power Doppler quantiles
We also investigated the source of hemodynamic information content by segmenting the images according to their mean power

Doppler signal as a proxy for mean cerebral blood flow within a given area. Specifically, we segmented the image into deciles by

mean power Doppler signal within a session, where higher deciles represented higher power and thus higher mean blood flow (Fig-

ure 6C). Deciles were delineated by the number of voxels, i.e., the number of voxels was the same within each segment and did not

overlap. Using only the voxels within each decile segment, we computed the mean accuracy for each recording session. We report

the mean normalized accuracy across all recording sessions (Figure 4C) where shaded error bars represent SEM.

ll
Article

Neuron 109, 1–13.e1–e4, May 5, 2021 e4

Please cite this article in press as: Norman et al., Single-trial decoding of movement intentions using functional ultrasound neuroimaging, Neuron
(2021), https://doi.org/10.1016/j.neuron.2021.03.003


	NEURON15593_proof.pdf
	Single-trial decoding of movement intentions using functional ultrasound neuroimaging
	Introduction
	Results
	Hemodynamic response during memory-guided saccades
	Memory-delayed reaches
	Single-trial decoding
	Decoding memory period, effector, and direction
	Vascular signal and information content

	Discussion
	Contributions compared to previous work
	Simultaneous effector and direction decoding
	Comparison of fUS to electrophysiology
	Advances in fUS technology
	Goal decoding for BMI
	Activity in PPC during saccade planning
	Activity in PPC during reach planning
	Instructed versus free movement
	Conclusions

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key Resources Table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Animal preparation and implant
	Behavioral setup
	Behavioral tasks
	Functional ultrasound sequence and recording
	Power Doppler image processing

	Quantification and statistical analysis
	ERA waveforms and statistical parametric maps
	Single trial decoding
	Analysis of training set sample size
	Multicoder for intermingled effectors task
	Cross temporal decoding
	Decoding with reduced spatial resolution
	Decoding with different time windows
	Power Doppler quantiles





