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A dramatic example of translational monkey research is the
development of neural prosthetics for assisting paralyzed pa-
tients. A neuroprosthesis consists of implanted electrodes that can
record the intended movement of a paralyzed part of the body, a
computer algorithm that decodes the intended movement, and an
assistive device such as a robot limb or computer that is controlled
by these intended movement signals. This type of neuroprosthetic
system is also referred to as a brain–machine interface (BMI) since
it interfaces the brain with an external machine. In this review, we
will concentrate on BMIs in which microelectrode recording arrays
are implanted in the posterior parietal cortex (PPC), a high-level
cortical area in both humans and monkeys that represents inten-
tions to move. This review will first discuss the basic science re-
search performed in healthy monkeys that established PPC as a
good source of intention signals. Next, it will describe the first PPC
implants in human patients with tetraplegia from spinal cord in-
jury. From these patients the goals of movements could be quickly
decoded, and the rich number of action variables found in PPC
indicates that it is an appropriate BMI site for a very wide range
of neuroprosthetic applications. We will discuss research on learn-
ing to use BMIs in monkeys and humans and the advances that are
still needed, requiring both monkey and human research to enable
BMIs to be readily available in the clinic.
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tetraplegia | intention

Early scientific research in motor-related areas of monkey
cortex established how intended movements are represented

(1). Of particular interest to this paper is the posterior parietal
cortex (PPC; Fig. 1), which, through cortical connections, is sit-
uated between primary sensory and motor cortical areas and
provides a bridge for sensorimotor transformations for sensory-
guided movements. In the 1970s, using technology that enabled
recording of single neurons from awake, behaving monkeys, the
neurophysiology of this area was first explored at the fine grain of
the response properties of neurons (2, 3). A variety of sensorimotor
properties were found that included sensory-related properties
of vision, somatosensation, and attention and movement-related
properties including eye movements, fixation, reaching, and hand
manipulation of objects. Subsequent studies showed that planning-
related signals are found within PPC, which reflect the intention to
move particular body parts (4, 5). The PPC is an area of cortex
shared by monkeys and humans and thus monkeys make an ideal
animal model for insights into the functions of human PPC.
Basic science results from motor cortex (6–10) and PPC (11)

of monkeys have been translated into preclinical monkey models
of neuroprosthetics. In our studies, approved by the Caltech
Institutional Animal Care and Use Committee, monkeys were
implanted chronically with microelectrode arrays that recorded
the activity of populations of neurons in the PPC (11). In the M1
and PPC studies, animals quickly learned that they were able to
control computers or robotic limbs with their neural signals.
This monkey research led to clinical studies in human tetraplegic

participants with high-level spinal cord lesions or neurodegenerative

diseases such as amyotrophic lateral sclerosis (ALS). While
several laboratories concentrated on the motor cortex as a site
of signals for neuroprosthetic control (12–16), this review will focus
on research using the PPC, an area where the initial intentions to
act are made and then transferred to the motor cortex (17). These
studies were approved by the US Food and Drug Administration
and by the Institutional Review Boards at Caltech, the Keck
School of Medicine at University of Southern California, the
David Geffen School of Medicine at University of California,
Los Angeles, the Rancho Los Amigos National Rehabilitation
Center, and the Casa Colina Hospital and Centers for Health
Care, and all subjects gave informed consent to participate.
We find that the human PPC encodes many action-related

variables, and we can decode intended movements of most of the
body from a small population of neurons (18). This diversity is
made possible through a partially mixed encoding in which single
neurons respond to multiple variables. Thus a single, small
implanted electrode array within PPC provides an astonishing
menu of signals that can be used to increase the versatility of
applications. Among the many action variables available from
PPC are the goals of movements and the trajectories to obtain
these goals (17). Goal decoding is very fast, promising to increase
the performance of neuroprosthetics.
The read-out pathway of a neural prosthetic records cortical

signals, decodes the intentions from these recordings, and gen-
erates control signals for assistive devices like a robotic limb. To
manipulate an object with precision requires somatosensory
feedback (19). However, subjects with paralysis from spinal cord
lesions frequently have no somatosensation below the level of
injury. We and others are attempting to restore this somato-
sensory feedback with basic science studies in healthy monkeys
(20–22) and in clinical studies in tetraplegic humans (23, 24). A
write-in prosthetic would restore somatosensory feedback by
blanketing the robotic hand with sensors. These sensors in turn
connect to electric stimulators that provide intracortical micro-
stimulation (ICMS) through microelectrode arrays implanted in
primary somatosensory cortex. When the read-out and write-in
branches of the prosthetic are connected, this will create a
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bidirectional brain–machine interface (BMI) that can control a
robotic limb and receive somatosensory feedback for more dexterous
performance.
In the final section we will discuss learning in BMIs. Early

monkey studies suggested a promising degree of adaptation over
the short timescale of a single day in cortex (25–27). Subsequent
studies in monkeys (28–30), and more recently in humans (31),
argue that, in the short term, cortical circuits are limited to
processing their intrinsic functions and adapt through cognitive
manipulations such as reaiming or imagery. Changes in cortical
structure have been reported over longer timescales of many
days which may reflect motor skill learning (32–35). Limitations
on plasticity emphasize the importance of selecting brain sites for
recording that are well matched to the desired function of the
neural prosthesis.
For each of these topics, studying motor-sensory neurophysi-

ology in the monkey model laid a foundation for introducing
these promising technologies into human studies. With multiple
ongoing human studies, the transition from laboratory to clinic
might seem near completion. However, many challenges remain
before BMIs are clinically relevant. New technologies and con-
tinued scientific exploration mean that monkey research is as
relevant today as it has always been and continues to provide a
strong foundation for developing research that can be translated
into the clinic.

The PPC of Monkeys
The PPC bridges sensory and motor areas. It receives inputs
from the visual, auditory, somatosensory, and vestibular systems
and projects to the frontal lobe including prefrontal, premotor,
and motor cortex. Not surprisingly its major functions can largely
be categorized as sensorimotor transformations, especially for
sensory-guided behaviors such as reaches or saccades.
Lesions in humans, including stroke and traumatic brain injury,

produce an array of cognitive disorders, many of which can be
described as a disruption of sensorimotor transformations. For in-
stance, PPC lesions produce optic ataxia, a deficit in reach accuracy;
neglect, a deficit in awareness; and extinction, a deficit in attention
and action-based decision making (for a review see ref. 36).
Early recordings in monkey by Mountcastle and colleagues

discovered many action-related neuron response types that have
led to a plethora of subsequent studies (2, 37). Among these
response types are neurons active for limb movements, including

reaching and manipulating objects, and eye movements includ-
ing fixation, saccades, and smooth pursuit. Numerous studies have
shown responses to vision that can be modulated by attention (3)
or by the direction of gaze (38, 39), the latter likely important for
spatial awareness.

Saccade and Reach Areas
We discovered an area on the lateral bank of the intraparietal
sulcus (lateral intraparietal area, LIP; Fig. 1) based on its strong
reciprocal connections with the frontal eye fields (40). Single-
neuron recording experiments showed activation prior to sac-
cadic eye movements (41). In a memory task (42), in which the
animals planned a saccade, but had to withhold the response,
there was persistent neural activity during the delay period. In
specially designed tasks it was shown that a visual target was not
required for activation—only a planned saccade into the re-
sponse field was required for the initiation of persistent activity
during a planning delay (4).
It was not clear at the time whether the persistent activity was

due to an intended movement plan or to attention being allo-
cated to the location of the impending saccade. To differentiate
between these possibilities we trained monkeys to switch, from
trial to trial, between planning saccades and reaches (5). We
found that LIP neurons showed greater persistent activity for
saccade plans but not reach plans. Interestingly, we found an
area on the medial bank of the intraparietal sulcus (the parietal
reach region, PRR), in which the reverse was true; PRR neu-
rons were more active during planning of reaches than saccades
(Fig. 1). This double dissociation shows that LIP preferentially
plans saccades and PRR reaches. In other studies by Sakata
and coworkers (43) it was found that there was an area anterior
to LIP, the anterior intraparietal area (AIP), that is active for
different hand shapes during grasping. Taken together, these
results led Andersen and Buneo (44) to propose that there is
a map of intentions within the PPC around the intraparietal
sulcus that includes separate regions for saccades, reaches,
and grasping. A similar, possibly homologous collection of
areas, has been identified in humans using functional MRI
(fMRI) (45).
Intention activity is simply defined as the neural correlate of

the planned action and is revealed with memory and delay tasks.
The PPC is not unique in having planning related activity; for
instance, similar planning activity is found in premotor cortex
(46). However, motor cortex appears to be largely silent during
delay epochs and becomes active during the execution of a
movement at the end of the delay (47).
The intention-related PPC neurons exhibit interesting, high-

level features that may have unique advantages for neural pros-
thetics. The goal of the action is encoded immediately, allowing
for fast actions. For both reach and grasp, the activity is often
bilateral, opening the possibility of controlling 2 limbs from a
single area (48). Individual AIP neurons code the entire hand
shape for grasping, removing the need to coordinate the move-
ment of individual fingers (43). For these reasons we thought
PPC may have advantages for neural prosthetics. What we did
not realize at the time was that there was an incredible array of
action-based signals in PPC (18). This richness of action vari-
ables will allow tremendous versatility in the use of a single
implant in a multitude of tasks that can encompass intended
movements of most of the body.

First Implants of PPC in Humans
The first implant of human PPC was made in April 2013 with
participant EGS (17). He had a complete spinal cord lesion at
level C3–4 10 y prior to the implant. To identify which regions of
cortex to implant, we used fMRI to measure brain activity while
EGS imagined reaches and grasps. Two sites were chosen near
the surface of cortex based on the imaging results and due to the

Parietal Reach Reach (PRR)

Anterior intraparietal area (area AIP)

Reach

Saccade

Grasp

Lateral intraparietal
area (area LIP)

Fig. 1. Map of intentions within the PPC. Within the intraparietal sulcus
are regions selective for intending reaches (the PRR), saccades (the LIP), and
grasps (the AIP). Modified from ref. 75.
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constraint that the Food and Drug Adminstration-approved
Blackrock arrays we use have electrode shafts of limited length.
One site was a grasp activation location, prominent in the intra-
parietal sulcus but also continuing onto the gyrus at the junction of
the intraparietal sulcus and the posterior central sulcus. This lo-
cation was assigned as the presumed human homolog of area AIP,
the grasp-selective region first identified in monkeys. The second
implant location was made in Brodmann’s area 5, a reach region
activated in the fMRI scan that is located on the surface of a gyrus.
The presumed PRR in humans, a reach-selective region initially
identified in monkeys (5), is buried in sulci near the midline of the
hemispheres and was not accessible for this initial study.
From EGS’ neurons we recorded goal and trajectory signals

for imagined movements (17). He controlled both a cursor on a
computer screen and a robotic limb. As predicted from monkey
work, neurons were active for imagined reach of either limb.
Neurons were also found that were extremely specialized for
specific behavioral actions; for example, we found units that
became active for imagined movements of the hand to the mouth
but would not become active for similar movements such as
movement of the hand to the cheek or forehead. Such neural
encoding of behaviorally meaningful actions opens the possibility
that the high-level intent of the subject can be decoded and in-
tegrated with smart robotics (49–51) to perform complex
movements that may otherwise require attentionally demanding
moment-to-moment control of a robotic limb. To demonstrate
this concept for PPC, we showed that participant EGS was able
to grasp an object and move it to a new location with a robotic
limb, which combined his timing of the intended movements with
machine vision and smart robotic algorithms (50). These studies
confirmed the earlier monkey studies that PPC is a good can-
didate for signals for neuroprosthetic control.
Another subject, NS, also had a complete spinal cord lesion at

C3–4 and was implanted in August 2014 after 6 y of paralysis. As
with EGS, we found many action-based signals in recordings
from NS. For example, the decision of whether a visual stimulus
had been previously seen, and the confidence of the decision,
were both encoded in PPC (52). Neurons were active not only for
imagined hand movements but also shoulder movements and
even speech (Fig. 2) (18). How was it possible to encode so many
action variables in a population of 100 to 200 neurons?

A likely mechanism is that a distributed or mixed encoding is
used for movement intention in PPC. A distributed representation
for spatial location is found in PPC of monkeys, where retinotopic
location of a visual stimulus is mixed in a multiplicative manner
with eye position signals (39, 53). Different memory tasks and
objects are represented in a mixed fashion within the prefrontal
cortex (54). Auditory and visual signals are randomly mixed in
rat PPC (55). Based on these and other studies it has been
proposed that mixed representations, in which neurons code more
than 1 variable, are an effective way to encode and decode many
variables using a small number of neurons (56).

Partially Mixed Selectivity in AIP
We found that AIP codes imagined or intended movements of
much of the body (18). Fig. 2 shows example neurons in a task
where written text is presented (the cue, for example, to imagine
squeezing the right hand), followed by a blank screen delay period,
and then a go signal to produce the instructed behavior. Fig. 2A
shows an example of a neuron that was active for imagined or
attempted movement of the right hand, Fig. 2B attempted left
hand only, Fig. 2C imagined left or right hand movement, and Fig.
2D a neuron active for speaking “left” but not “right.” In a more
extensive study, we examined 8 combinations of task conditions:
attempt vs. imagine (cognitive strategy), left vs. right (side), and
shoulder vs. hand (effector). All these variables were mixed.
However, the mixing was not random (the scenario depicted in
Fig. 3A). Rather, the integration of signals was structured (Fig.
3B) with more overlap of signals for strategy and side between
neurons differing by 1 task variable. For example, a neuron
responding to imagined left hand movement would also be more
likely to respond to imagined right hand movement. However,

Fig. 2. Examples of different AIP neurons activated by attempted or
imagined movements of the left and right hand or speaking left and right.
(A) Example neuron coding imagined and attempted movements of the
right hand only. (B) Example neuron coding attempted movements of the
left hand only. (C) Example neuron coding imagined movements of the right
and left hand. (D) Example neuron active to speaking “Left.” Modified from
ref. 18. Copyright (2017), with permission from Elsevier.

Fig. 3. (A) Example of mixed coding that is random and has no structure. (B)
Schematic of the structure of partially mixed selectivity in human AIP. The ex-
ample is for activity of 3 neurons, in which the shoulder and hand are more
separated, and the cognitive strategy and side of the body are more over-
lapping. Reprinted from ref. 76. Copyright (2017), with permission from Elsevier.
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effectors were more separated with no statistically significant
correlation between hand and shoulder (Fig. 3B). The structure
of the population may reflect similarities in neural computations.
For instance, left and right hand movements are similar and
show a transfer of learning between the hands (57) and the use of
motor imagery improves performance during execution (58).
The shoulder and hand may be more dissimilar in computational
terms and thus be more separated neurally.
Data from the monkey and human studies cited above would

suggest that association cortices such as the PPC process in-
formation in a high-dimensional feature space. In fact, this high
dimensionality may explain some of the disagreements in the
literature. A classic example is area LIP in monkeys, which has
been suggested to govern saccades (41), attention (59), decision
making (60), and categorization (61). Monkey studies require
training animals for long periods of time for an experiment, often
months or even a year. Thus the same animals are rarely tested in
dissimilar tasks. With humans a task can be trained in 1 d through
verbal instruction, and many different tasks can be performed by
the same individual.
A second question is whether primary cortical areas such as

motor cortex operate in a lower-dimensional processing space
than association cortex. From what is known about monkey neu-
rophysiology, primary visual cortex may be lower-dimensional,
coding orientation, ocular dominance, motion direction, and color
(62). A popular analysis of motor cortex activity is to use di-
mensionality reduction; although this technique reveals only the
dimensions for the motor task involved, these analyses do hint at
low-dimensional representations (63). On the other hand, 10 de-
grees of freedom have been demonstrated for the control of a
robotic limb using M1 activity in which these dimensions were
distributed across the activity of the neural population, indicating
a mixed encoding for these variables (64). One obvious way to
address this issue would be to examine the number of action
variables to which human motor cortex is sensitive.

Write-In Interface
The above examples are “read-out” BMIs; they record neural
activity and make sense of it with decoders. A second major class
is “write-in” BMIs; these use electrical stimulation to input in-
formation to the brain. Write-in BMIs are currently common in
clinical practice. Examples are cochlear prosthetics that stimu-
late the auditory nerve to provide hearing for the deaf, deep
brain stimulation of basal ganglia sites for motor disorders in-
cluding Parkinson’s disease and essential tremor, and functional
electrical stimulation of muscles for certain forms of paralysis.
Write-in BMIs would be important for providing somatosen-

sory feedback for more dexterous control of robotic hands for
object manipulation (65). Patients with spinal cord injury are not
only paralyzed but frequently cannot feel cutaneous stimulation or
the sense of body position (proprioception) below the level of the

injury. To guide a robotic hand toward an object using brain con-
trol, patients are limited to vision as sensory feedback. However,
once an object is grasped, dexterous manipulation of the object
requires somatosensory feedback (19). Further, using vision alone
to guide movements of the body is notoriously difficult and men-
tally exhausting as described by patients with somatosensory deficits
such as large-fiber sensory neuropathy. Somatosensory percepts
can be artificially generated by electrical stimulation of somato-
sensory cortex. An instantiation of such feedback is envisioned with
bidirectional BMIs. Such a BMI would control a robot limb with
recorded neural activity. At the same time the robotic hand would
be covered with sensors for touch and hand position. These sensors
would communicate with an electrical stimulator that would then
stimulate the somatosensory cortex, providing feedback.
Electrical stimulation of the surface of cortex in humans using

relatively large currents produces somatotopically localized sensa-
tions, but these sensations are not natural and are reported as a
tingling or buzzing (66, 67). ICMS, in which small amounts of
current are delivered through microelectrodes whose tips are po-
sitioned within the cortex, therefore recruiting much smaller pop-
ulations of neurons, has been tested in healthy monkeys (20–22, 68–
71). With this technology, monkeys behave similarly in response to
both a natural mechanical stimulus and electrical ICMS (20, 68).
Recently there have been 2 studies in paralyzed humans in

which ICMS has been applied to the somatosensory cortex
of tetraplegic subjects (23, 24). In both studies, 2 arrays of 48
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Fig. 4. (A) Locations of the front and back contralateral arm sensed by
ICMS. (B) Sensations elicited by stimulation. Note that the reported sensa-
tions were natural. Modified from ref. 23, which is licensed under CC BY 4.0.
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Fig. 5. Example monkey neurons from PPC that show intrinsic variable
learning. The upper row shows a trained neuron. The left shows that the neuron
was active for reaches to stimulus 2 and less so for stimulus 1. The middle
shows activity of the same neuron in the BMI pro task in which the animal
moves a cursor toward stimulus 1 and 2 locations. The right shows activity of
the neuron in the BMI anti task in which the neuron was trained to flip its
activity to move the cursor opposite to the direction of stimulus 1 and
stimulus 2. The bottom 3 rows show neurons that were recorded simulta-
neously with the trained neuron, but were not trained. They also flipped
their turning, consistent with intrinsic variable learning. Reprinted from ref.
29. Copyright (2013), with permission from Elsevier.
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stimulating microelectrodes were implanted in Brodmann’s area
1 (BA1) of somatosensory cortex. In the study by Gaunt and
coworkers (24), the implants were made within the hand repre-
sentation. They describe a systematic topography for stimulation
through different electrodes in the array. The subject reported
that the sensations were quasi-natural, similar to pressure being
applied to the skin. In a study performed in our laboratory, we
implanted arrays that were largely in the lower and upper arm
representation of BA1 (Fig. 4A) (23). While a topography was
found between the arrays, within the arrays the topography was
rather mixed and not systematic. On the other hand, the subject
reported natural sensations that were both cutaneous and pro-
prioceptive (Fig. 4B). The cutaneous sensations included squeezing,
tap, vibration, and so on, and proprioceptive sensations were
reported as movement of the limb. Interestingly, at higher currents
proprioception was more prevalent, opening the possibility that the
sensations can be controlled by the parameters of the stimulation.

BMI Learning
An important issue, primarily studied to date in monkeys, is how
much learning can be achieved with BMIs. If plasticity is universal,
then a BMI could be implanted in any area of cortex and trained
to perform any task. If, on the other hand, plasticity is more
limited, then it is important to select the appropriate cortical areas
to maximize the control of the variables desired by the BMI.
Early, groundbreaking research by Fetz and colleagues showed

that monkeys could learn to control the activity of individual
neurons in motor cortex (25, 72). We have seen similar bio-
feedback control in human recordings, but in this case the sub-
jects reported that they controlled the activity by performing
specific imagined movements (17).
Microelectrode array recordings in monkeys have shown a

variety of degrees of learning from a great deal of plasticity to
very little plasticity (25, 27–30, 72–74). We have framed the issue
as one of individual neuron learning or intrinsic variable learning
(29). Individual neuron learning would be produced by the sys-
tematic rewarding of the activity of a single neuron, which over
time would change the selectivity of that single neuron and not
its neighbors. Since there is a great deal of variability in neural
responses this correlation of reward with a single cell’s activity
would be leveraged to produce individual neuron learning. In-
trinsic variable learning would involve the subject searching the
space of possible responses that an area normally uses to control
the activity of the neuron. The example of finding an imagined
movement to modulate a neuron would be an example of in-
trinsic variable learning.
There are 3 features that distinguish between the 2 learning

hypotheses. First, for individual neuron learning only the trained
neuron will show plasticity and not other neurons in the cortical
area. On the other hand, if intrinsic variable learning is used to
modulate the neuron, then all neurons with similar tuning in the
area will show a similar modulation (Fig. 5). Second, for indi-
vidual neuron learning any pattern of activity can be learned. For
intrinsic variable learning, only patterns of activity that are al-
ready intrinsic to the cortical area can be used for learning.
Distinguishing between these 2 hypotheses in humans has the
advantage that they can report verbally the strategy they use
during learning. In intrinsic variable learning they would report
that they searched a space of possible solutions. For instance, if
the decoder rotates the goal locations the subjects may say they
imagine reaiming the movement. For individual variable learning
they may not use any cognitive strategy and may not even be
aware of how they solved the task.

In both monkey (29) and human PPC (31), we found that all
3 of the above features were consistent with intrinsic variable
learning and not individual neuron learning on the timescale of
1 d (Fig. 5). Similar results, consistent with intrinsic variable
learning, were found in monkey primary motor cortex (28), in
which only existing patterns of activity could be manipulated by
the monkeys. Over the timescale of many days, individual neuron
changes have been reported (32–35) and hypothesized to be the
result of motor skill learning (33, 35). The above results indicate
that the intrinsic structure of cortical areas is maintained on the
short term, and even on the long term the type of learning en-
gaged may be restricted to the type of learning a cortical area
normally does; for instance, motor skill learning may be apparent
only in motor and sensorimotor cortical areas. In other words,
BMI learning may not be infinite, and it is important to choose
an area that codes the intrinsic variables, and type of learning,
that one wishes to tap for BMI control.

Progress Toward the Future
At present, BMIs work in the laboratory. There are several
challenges toward introducing them to the clinic in order to help
paralyzed individuals. For instance, doctors can routinely im-
plant a cochlear prosthetic, but not a motor neuroprosthetic.
For some challenges the technology already exists but requires

a concerted effort and application of resources. The implants
need to be made wireless, so that no cables connect the subject to
the external, assistive device. If implants contain active circuits,
they must be well-sealed, to protect the electronics, and power-
efficient, to avoid heating the brain.
Other challenges will require advances in technology. The

electrodes need to be made longer, to access cortex in the sulci;
more recording sites need to be available to increase the neu-
ronal yield; and the electrodes need to be flexible, so they will
move with the cortex during micromovements in order to im-
prove recording stability. Entirely new technologies will need to
be developed if high temporal and spatial resolution recordings
are to be made noninvasively. One example is to use ultrasound
or photoacoustic recordings to monitor changes in blood volume.
Both these technologies have the limitations imposed by the
acoustic signal attenuation by the skull. All of these technical
developments will require basic engineering research that is first
tested in monkeys.
There are also scientific challenges on the horizon. Better

understanding of how information is encoded in different corti-
cal areas will lead to the design of more sophisticated decoders.
Basic science exploration of areas not widely studied, such as lan-
guage areas and prefrontal areas, can potentially lead to the design
of new types of prosthetics. For instance, direct language decoding
would be beneficial for patients locked in due to stroke or ALS.
On a personal note, it is a tremendous research experience to

perform basic research in monkeys, learn scientific principles of
brain function, and then be involved in the direct translation of
this knowledge to clinical applications in humans. Research in
monkeys makes these translations particularly fruitful for topics
such as motor control, vision, and cognition given the close
similarity in behavioral abilities and neural circuitry between
monkeys and us.
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