
1 © 2019 IOP Publishing Ltd Printed in the UK

Muhammad Saif-ur-Rehman1,8 , Robin Lienkämper1, Yaroslav Parpaley2, 
Jörg Wellmer3, Charles Liu4, Brian Lee4, Spencer Kellis5, Richard Andersen5, 
Ioannis Iossifidis6, Tobias Glasmachers7 and Christian Klaes1,9

1 Faculty of Medicine, Ruhr-University Bochum, Bochum, Germany
2 Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum, Bochum,  
Germany
3 Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, 
Bochum, Germany
4 USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, California,  
United States of America
5 Department of Biology and Biological Engineering, California Institute of Technology, Pasadena,  
California, United States of America
6 Department of Computer Science, Ruhr West University of Applied Sciences, Mülheim an der Ruhr, 
Germany
7 Institute for Neural Computation, Ruhr-University Bochum, Bochum, Germany
8 Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum, Bochum, 
Germany

E-mail: christian.klaes@rub.de

Received 10 December 2018, revised 16 April 2019
Accepted for publication 1 May 2019
Published 23 July 2019

Abstract
Objective. In electrophysiology, microelectrodes are the primary source for recording neural 
data (single unit activity). These microelectrodes can be implanted individually or in the form 
of arrays containing dozens to hundreds of channels. Recordings of some channels contain 
neural activity, which are often contaminated with noise. Another fraction of channels does not 
record any neural data, but only noise. By noise, we mean physiological activities unrelated 
to spiking, including technical artifacts and neural activities of neurons that are too far away 
from the electrode to be usefully processed. For further analysis, an automatic identification 
and continuous tracking of channels containing neural data is of great significance for 
many applications, e.g. automated selection of neural channels during online and offline 
spike sorting. Automated spike detection and sorting is also critical for online decoding 
in brain–computer interface (BCI) applications, in which only simple threshold crossing 
events are often considered for feature extraction. To our knowledge, there is no method that 
can universally and automatically identify channels containing neural data. In this study, 
we aim to identify and track channels containing neural data from implanted electrodes, 
automatically and more importantly universally. By universally, we mean across different 
recording technologies, different subjects and different brain areas. Approach. We propose a 
novel algorithm based on a new way of feature vector extraction and a deep learning method, 
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which we call SpikeDeeptector. SpikeDeeptector considers a batch of waveforms to construct 
a single feature vector and enables contextual learning. The feature vectors are then fed to 
a deep learning method, which learns contextualized, temporal and spatial patterns, and 
classifies them as channels containing neural spike data or only noise. Main results. We trained 
the model of SpikeDeeptector on data recorded from a single tetraplegic patient with two 
Utah arrays implanted in different areas of the brain. The trained model was then evaluated 
on data collected from six epileptic patients implanted with depth electrodes, unseen data 
from the tetraplegic patient and data from another tetraplegic patient implanted with two Utah 
arrays. The cumulative evaluation accuracy was 97.20% on 1.56 million hand labeled test 
inputs. Significance. The results demonstrate that SpikeDeeptector generalizes not only to the 
new data, but also to different brain areas, subjects, and electrode types not used for training. 
Clinical trial registration number. The clinical trial registration number for patients implanted 
with the Utah array is NCT 01849822. For the epilepsy patients, approval from the local ethics 
committee at the Ruhr-University Bochum, Germany, was obtained prior to implantation.

Keywords: deep learning, convolutional neural networks, contextual learning,  
brain–computer interface, spike sorting

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

Introduction

The human brain contains approximately 100 billion neurons 
(Herculano-Houzel 2009). Neurons communicate by propa-
gating action potentials (Hodgkin and Huxley 1952), also 
referred to as ‘spikes’. The spikes generated by individual 
neurons (sometimes called ‘units’) can be recorded with the 
help of microelectrodes (Kita and Wightman 2008). State-of-
the-art development in microelectronics has allowed the fab-
rication of tiny but dense microelectrode arrays, containing 
hundreds of channels (Frey et al 2008, Lambacher et al 2011, 
Berényi et al 2013, Spira and Hai 2013). As a result, the activ-
ities of several hundreds or even thousands of neurons (Harris 
et al 2017) can be recorded simultaneously. Spikes recorded 
from only one neuron are called single-unit activity (SUA). 
However, often it is not possible to determine if spikes origi-
nate from only a single source or multiple neurons in which 
case the activity is called multi-unit activity (MUA).

Spike sorting is used to separate the activity of each 
neuron and is usually done manually or semi-automatically 
(Abeles and Goldstein 1977, Gibson et  al 2012, Matthews 
and Clements 2014). However, there are also some studies in 
which automatic spike sorting methods are proposed (Spacek 
et al 2009, Takekawa et al 2012, Bongard et al 2014, Carlson 
et al 2014, Pachitariu et al 2016, Yger et al 2018). A standard 
spike sorting pipeline includes spike event detection and 
assignment to specific neurons (SUA). Most current spike 
sorting methods require human input of some form and are 
therefore prone to subjectivity and bias. Using a fully auto-
mated process could reduce the subjective bias and drastically 
reduce the time needed for spike sorting.

Most existing spike sorting algorithms use band-pass filtering, 
spatial whitening and threshold crossing before qualifying an 
incoming waveform as an event. Finally, they apply clustering 
on qualified events. This generally involves at least one or more 

manual processing steps (Lewicki 1998, Einevoll et  al 2012, 
Marre et al 2012). Moreover, previous studies have shown that a 
considerable fraction of dense implanted microelectrode arrays 
does not record any neural data, but only external artifacts with 
high amplitudes and/or noise (Lewicki 1998, Hill et  al 2011, 
Klaes et al 2015, Rey et al 2015). Human involvement in spike 
sorting can be reduced by automatically identifying and dis-
carding meaningless channels at the first stage before any further 
analysis. However, the background noise is composed of several 
complex signals, including neuronal activity too far away from 
the electrode to be useful, external artifacts and noise generated 
by surrounding electrical components (Lewicki 1998, Einevoll 
et al 2012). There are studies in which noise modeling is studied 
(Yang et al 2011), for example in Yang et al (2011). In that study, 
the authors enhanced the signal-to-noise ratio by estimating neu-
ronal signatures, noise shaping, and adaptive bandpass filtering. 
However, the proposed model requires some training data to 
optimize the value of the parameters in each recording session 
for each electrode separately. Therefore, nonstationary behavior 
of noise is a problem for automatically discarding meaningless 
channels (Chung et al 2017).

In recent years it has been demonstrated that powerful 
models can be learned with the help of huge amounts of labeled 
data and deep artificial neural network architectures (Krizhevsky 
et  al 2012). A specific architecture, convolutional neural net-
works (CNN) (LeCun et  al 1998), in combination with huge 
labeled datasets (Jia et al 2009, Stallkamp et al 2011) has trans-
formed the field of computer vision and provided many state-
of-the-art results for image classification, object detection and 
tracking (Guo et  al 2017). In the current study, we used the 
same approach to solve a different problem: discarding chan-
nels that do not contain spikes. After collecting and labeling a 
large amount of spike data, we successfully trained a deep neural 
network that enables us not only to detect but also to track the 
channels containing neural data. As a result, noise channels can 
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be discarded before doing further analysis. Our system acts as 
a universal spike detector, which can also be used in online 
analysis. By universal we mean that the trained model can be 
employed to detect and track the channels containing neural data 
recorded from different subjects, across different brain areas 
and even with different types of recording hardware, without 
any additional prep aration. To support this claim, we evaluated 
SpikeDeeptector on the data recorded from eight different sub-
jects of different age and genders, recorded using different types 
of microelectrodes across different areas of the brain.

The presented method is based on supervised deep learning, 
which means ground-truth labels are required to define the 
cost function (Kotsiantis 2007). It is difficult even for an 
expert neuroscientist to judge a single event without the con-
text of other events. Here, we introduce a new way of labeling 
that considers a batch of waveforms from the same channel, 
instead of a single waveform, to construct a feature vector. 
This approach establishes context for classifier learning and 
decision making. Our data set contains 1.56 million labeled 
feature vectors. By mimicking the way humans sort spikes, 
SpikeDeeptector can generalize across different data sources. 
We achieve an overall classification accuracy of 97.20%.

SpikeDeeptector can be employed to select meaningful 
channels during online decoding for brain–computer interfaces 
(BCIs), where previously unsorted action potentials were used 
to extract feature vectors (Fraser et al 2009, Schwartz 2004, 
Koyama et al 2009, Todorova et al 2014, Klaes et al 2015). 
Such feature vectors also include threshold crossing events 
of channels which do not contain neural data. In contrast, 
SpikeDeeptector discards all the channels that do not contain 
neural data. Thus, it allows to consider only those channels 
where at least a minimum number of neural spikes is present. 
Furthermore, SpikeDeeptector can be applied to the last step 
of spike sorting, which often requires a human to accept or 
reject clusters found by an algorithm (Hill et al 2011, Kadir 
et al 2014, Rossant et al 2016). With SpikeDeeptector, it is 
also possible to automatically detect which clusters are noise 
and which clusters contain a unit.

Materials and methods

Approvals

For this study we used data from tetraplegic patients implanted 
with Utah arrays (Blackrock Microsystems, Salt Lake City, 

UT) and patients who were implanted with depth electrodes 
in preparation for epileptic surgery. Tetraplegic patients were 
recruited for two different BCI studies (Aflalo et  al 2015, 
Klaes et al 2015). These studies were approved by the institu-
tional review boards at the California Institute of Technology 
(Pasadena, CA), Rancho Los Amigos National Rehabilitation 
Center (Downey, CA), and the University of Southern 
California (USC) (Los Angeles, CA). Further approval details 
are available from (Aflalo et al 2015, Klaes et al 2015). For 
the epilepsy patients, approval from the local ethics committee 
at the Ruhr-University Bochum, Germany, was obtained prior 
to implantation. Epilepsy patients were implanted for medical 
reasons and we obtained informed consent from each patient 
before they participated in the study.

Implantation information

We collected data from a total of eight patients (seven males, 
one female), aged 20–63 years. Six of the patients were 
implanted with microelectrodes in preparation for epilepsy 
surgery using a Behnke-Fried configuration (Fried et al 1999). 
The microelectrodes were coupled in a group of 8 or 16 indi-
vidual microwires with platinum coated tips. The other two 
patients were tetraplegics recruited for a BCI study and were 
implanted with Utah microelectrode arrays (Aflalo et al 2015, 
Klaes et al 2015). A single Utah array consists of 100 micro-
electrodes arranged in a 10  ×  10 grid with the four corner 
electrodes left unconnected during manufacture. The place-
ment of the Utah array was based on a functional magnetic 
resonance imaging (fMRI) task conducted prior to implant-
ation; details of the array placement and surgery are described 
in Aflalo et al (2015) and Klaes et al (2015). The Utah array 
electrodes were 1.0–1.5 mm long and presumably recorded 
signals from cortical layer 5 (Aflalo et al 2015, Klaes et al 
2015). Electrodes had platinum-coated tips and were spaced 
400 µm apart. The location of the microelectrodes or elec-
trode arrays is shown in table 1 along with the total number of 
recording sessions for each patient.

Behavioral setup

The subjects engaged in various behavioral tasks. More infor-
mation about the behavioral tasks of subject U1 and U2 can 
be found in previous studies (Aflalo et al 2015, Klaes et al 
2015). The epilepsy patients performed a reaching task in a 

Table 1. Demographic information with implantation details.

Subject ID Sex Age (years) Place of implantation

Number of 
recording 
sessions

Total recording 
time (minutes)

Number of 
implanted electrode

U1 Male 32 Posterior parietal cortex 90 795.1 192 (2-Utah array)
U2 Male 63 Posterior parietal cortex 40 338.7 192 (2-Utah array)
M1 Male 23 Anterior hippocampus 1 14.1 16 (micro-wires)
M2 Male 63 Anterior hippocampus 1 13.2 16 (micro-wires)
M3 Male 20 Anterior hippocampus 1 12 16 (micro-wires)
M4 Male 57 Anterior hippocampus 1 15.9 8 (micro-wires)
M5 Female 52 Anterior hippocampus 1 40 8 (micro-wires)
M6 Male 55 Anterior hippocampus 1 8.5 16 (micro-wires)
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virtual reality environment, programmed in Unity 3D (Unity 
Technologies, San Francisco, CA, USA) and using the HTC 
Vive virtual reality system (HTC Corporation, New Taipei, 
Taiwan), or remained idle during recording.

Data collection

In the group of tetraplegic subjects, data was collected over 
a period of two years in two–four study sessions per week. 
From the group of epilepsy patients, data were gathered over 
the course of one year with one study session per subject. Data 
were recorded using a Neural Signal Processor (Blackrock 
Microsystems, Salt Lake City, UT). Analog electrical activity 
was amplified and digitized at a sampling rate of 30 kHz. Spike 
candidates (events) were extracted with a thresholding proce-
dure (Lewicki 1998). The threshold for waveform detection was 
set to  −4.5 times the root-mean-square of the high-pass filtered, 
full-bandwidth signal with cutoff frequency 250 Hz. Similar 
settings were used in Klaes et  al (2015) to select the mean-
ingful channels and extract feature vectors (unsorted threshold 
crossing) for online decoding. However, to evaluate the robust-
ness of the spike detection algorithm, different threshold settings 
were used (see Evaluation of robustness). Each detected wave-
form consists of 48 samples and represents a time duration of 
1.6 ms, containing the 15 samples before and 32 samples after 
the threshold crossing event. The value at each sampling interval 
is the corresponding ampl itude represented in micro-volts.

Data labeling

We cast the problem of spike classification as a super-
vised learning task. This means that ground-truth labels 
were required to train a machine learning model. In a single 

recording session, a single channel records hundred and some-
times thousands of unlabeled waveforms. Moreover, we con-
sidered eight subjects and 136 recording sessions, resulting in 
31.21 million unlabeled waveforms which may correspond to 
neural events (action potentials) or any other external events 
(e.g. artifacts from muscle activity or noise). We labeled the 
data in a semi-automatic method consisting of the following 
steps: first, we applied principal component analysis (PCA) on 
all detected waveforms of a channel. Second, we visualized the 
first two principal components of a subset of waveforms (see 
figures 1(a2) and (b2)), which capture the direction of highest 
variability in the data. After visual inspection, we employed 
a Gaussian mixture model (GMM) on the datapoints in PCA 
space to assign them to clusters, as shown in figures 1(a2) and 
(b2). The number of clusters with their corre sponding centroids 
(initial points) were defined manually. In some cases, semi-
automatic labeling provides unsatisfactory results. Therefore, 
in such cases after visual inspection of the clustered points, the 
waveforms were entirely manually labeled.

Batch size

It is hard even for expert neuroscientists to classify a single 
event as a spike (neural activity) or as an artifact (non-neural 
activity) in the absence of other events (figure 2(a)). However, 
when a batch of waveforms of the same channel is considered, 
the decision becomes much easier if the waveform in ques-
tion is a spike (figure 2(b2)) or an artifact (figure 2(b1)). Here, 
we tried to replicate the way humans sort spikes by including 
context in our feature vectors. A single feature vector is con-
structed by concatenating a batch of waveforms, regardless 
of their category, thus, enabling SpikeDeeptector to aggregate 
the statistics of the inputs in a better way.

Figure 1. The process of labeling data for two different kinds of channels. (a1) Labeled waveforms of a channel. (a2) First two principal 
components of the waveforms in (a1), colored to reflect the result of the clustering algorithm (GMM). The two clusters are easily 
discriminable: the blue cluster corresponds to neural data and the grey cluster corresponds to artifact. (b1) Labeled waveforms of another 
channel recorded during the same recording session as (a1). (b2) First two principal components of the waveforms in (b1). Cluster centroids 
(initial points) were defined manually and allowed the GMM to approximate the probability distribution functions (PDFs). Here, two 
clusters are not well separated and visual inspection is required. As a result of visual inspection, a few waveforms along the boundaries 
of clusters were re-labeled manually. After visual inspection and re-labeling, blue cluster corresponds to neural data and grey cluster 
corresponds to artifacts.
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Concretely, a single feature vector x is constructed by con-
catenating a batch of b waveforms of length w (in samples) 
together, resulting in a vector xεRb×w. The batch size b is always 
a positive integer (bεN+) and is considered a hyperparameter.

We labeled a feature vector x as a ‘spike’ (i.e. containing a 
spike) if at least one of the concatenated events was labeled as  
a spike during the labeling. Alternatively, if all the concat-
enated events represent non-neural activities, then x was 
labeled as an artifact. For example, for b = 20, x would com-
prise twenty successive events of a channel concatenated 
together, and if any of the twenty events was labeled as a 
spike then, the x was labeled as a spike. Alternatively, if all 
of twenty individual waveforms were labeled as artifacts, then 
the x was labeled as an artifact.

Here, we only try to classify which batch of the waveforms 
contain spikes, and not how many and which of the wave-
forms in batch represents spikes. Individual event classifica-
tion would be the next step.

Data distribution for training algorithm and evaluation  
of generalization

The complete dataset contains 31.21 million labeled wave-
forms. Using a batch size of b = 20, that yields 1.56 million 
labeled feature vectors. The total number of feature vectors 
resulting from every single individual during recording ses-
sions are shown in table 2.

In machine learning, generalization is the most significant 
quality of the algorithm. That means the evaluation perfor-
mance of the algorithm on unseen data plays a pivotal role. 
Therefore, for training the algorithm, we used a small subset 
of data, compiled from the first six recording sessions of a 
subject U1. This training dataset comprised 40 657 feature 
vectors (2.6% of the total dataset). We then evaluated the 
trained model on the portion of data not used for training.

Figure 3 illustrates the distribution of the labeled feature 
vectors of both classes within the training set. The ‘spike’ class 
contains feature vectors with varying numbers of events repre-
senting artifacts, starting from no-contamination (0 artifacts) 
to maximally-contaminated (19 artifacts), whereas the feature 
vectors representing the ‘artifact’ class contain events that 
exclusively represent artifact/noise. In the available dataset, 
the spike class provided only 37% of feature vectors (15 024), 
while the artifact class holds the remaining 63% of the feature 
vectors (25 633). To avoid biases while training the algorithm, 
we also prepared a more balanced dataset by performing sub-
sampling on the data of both classes. We selected a dataset 
D = {

(
x1, y1

)
, . . . . . . . . . ,

(
xN , yN

)
} with N = 30 000 labeled 

examples, where xi refers to ith  feature vector and yi to the 
corresponding class label. From each class, 15 000 feature 
vectors were selected at random.

We then sliced the dataset D into a training set Dtr  con-
taining 70% percent of the data and a validation set Dva con-
sisting of the remaining 30%. Dtr  was used to optimize the 
parameters of the machine learning model and the hyper-
parameters of the employed optimization algorithm during 
training. Dva was used to evaluate how well the machine 
learning model performs on unseen data during training. 

Figure 2. Illustrative example: explains the process of construction of the feature vectors by concatenating the batch of waveforms 
and shows the significance of Contextual learning. (a) Shows the single unlabeled waveform, (b1) and (b2): shows the concatenated w 
waveforms of two different channels representing neural data (spikes) and external artifacts. (b1): shows the unlabeled waveform, when put 
into context of other events can be assigned as artifact. (b2): shows the similar unlabeled waveform, when put into context of other events 
can assigned with label of spike.

Table 2. Number of feature vectors per patient.

Patient id No. of feature vectors

U1 756 802
U2 436 898
M1 3980
M2 5251
M3 874
M4 13 589
M5 342 951
M6 591

J. Neural Eng. 16 (2019) 056003
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This validation error was used as a stopping criterion for the 
training process. Training terminated if the validation error 
stopped decreasing or remained the same for six consecutive 
epochs.

SpikeDeeptector algorithm

The machine learning models were trained on Dtr , with 
the goal to predict the correct label yi for each feature 
vector xi using the output of a learnable parametric decoder 
g (xi; θ) : xi ∈ Rb×w → yi by learning the parameters θ, itera-
tively from Dtr .

We implemented SpikeDeeptector in two variations, 
SpikeDeeptector CNN and SpikeDeeptector FNN, to compare 
two of the most popular forms of neural network architectures. 
SpikeDeeptector CNN follows the standard architecture for 
CNN (LeCun et al 1998) and SpikeDeeptector FNN follows 
the standard architecture for fully connected neural networks 
(FNN) (Goodfellow et al 2016). Both variants followed the 
standard end-to-end machine learning pipeline. End-to-end 
learning is decomposed in two parts: The first part maps the 
raw feature space xi into the more meaningful feature space 
Φ (xi; θΦ) with the learnable parameter matrices θΦ. The 
second part consist of a classifier f  with the parameter matrix 
θf , which maps the feature space Φ into decision space g. The 
parameters θΦ and θf  were learned simultaneously using Dtr  
by iteratively minimizing a single cost function.

Input representation and the architecture of SpikeDeeptector 
convolutional neural network (SpikeDeeptector CNN)

We represented the input as a 2D array with the number of 
time steps as width and the batch size as height (figure 4). 

To classify raw input, we employed the standard architec-
ture of CNN used in computer vision tasks, as explained in 
Krizhevsky et al (2012) and Guo et al (2017). This generic 
CNN architecture can extract a wide range of features.

SpikeDeeptector CNN contains four convolutional layers 
and three pooling layers, followed by a fully connected neural 
network with one hidden layer and a Softmax classifier (Duan 
et al 2003) as an output layer (see figure 4). During forward 
propagation, each filter at each layer is convolved across the 
width and height of the input volume and then slides with 
stride  =  1 over the width and height of the input volume. The 
result consists of 2D convolved feature maps. These feature 
maps are then further processed through nonlinear activa-
tion maps. We used Rectified Linear Units (ReLUs), where 
f (x) = max (x, 0), as the activation function (Nair and Hinton 
2010).

The first convolutional layer performs convolution across 
time and tries to learn temporal patterns from the training data 
as shown in figure 4. The second convolutional layer performs 
convolution across space (batch size) and tries to learn the 
spatial pattern; as a result, it enables contextual learning (see 
figure 4). The subsequent convolutional layers perform convo-
lution across time as shown in figure 4. The size and number 
of filters at each convolutional layer is illustrated in figure 4.

Except for the 1st convolutional layer, each convolutional 
layer is followed by a pooling layer. We used max pooling to 
downsample the convolved feature map and to extract more 
abstract features. The size of each pooling window has height 
1 and width 2 in the architecture of SpikeDeeptector CNN 
defined in figure 4.

We padded zeros across the width of the input volume. 
The zero padding was also added across the width before per-
forming downsampling at conv3 and conv4 in figure 4.

Figure 3. Distribution of training data and construction of the feature vector from the batch of waveforms, subject id: U1, Number of 
sessions: 6. In this example, with batch size  =  20, 20 waveforms were concatenated to get a single feature vector. The range of ‘spike’ class 
feature vectors starts from no contamination, where every single concatenated waveform represents spike event, and ends at maximally 
contaminated, where 19 of the concatenated waveforms represent artifact events and only one waveform represents spike event. The feature 
vectors representing the ‘artifact’ class were created by concatenating the waveforms that exclusively represent artifacts events. 37% of data 
represents feature vector of the spike class and the remaining 63% of data represents feature vectors of the artifact class.

J. Neural Eng. 16 (2019) 056003
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Regularization techniques and optimization algorithm

We used batch normalization as a regularization technique, 
which standardizes intermediate outputs of SpikeDeeptector 
CNN to zero mean and unit variance, for the training exam-
ples equal to mini-batch size (Ioffe and Szegedy 2015). This 
helps the employed optimization algorithm during training by 
keeping inputs closer to normal distribution. The batch nor-
malization is applied to the output of the convolutional layer 
before nonlinearity (ReLUs), as suggested in the original paper 
by (Ioffe and Szegedy 2015). We applied dropout as another 
regularization technique, which randomly sets the values of 
some input neurons to zero (Srivastava et al 2014). Finally, we 

added an L2 regularization (Krogh and Hertz 1991) term in the 
cross-entropy cost (Mannor et al 2005) function J as shown in 
equation (1), which ensures small values of all weight param-
eters (θw) to prevent the domination of a single weight param-
eter on the decision of the classifier. The equation contains two 
terms. The first term is the usual cross-entropy cost to penalize 
misclassifications, if it predicts giε (0, 1) instead of the true 
label yiε{0, 1} for the ith training example xi. The second 
term represents the sum of the square of all the weights in the 
above defined architecture, also referred to as L2 regulariza-
tion. This term is scaled by a factor λ2n, where λ is a (positive) 
hyperparam eter and n is the mini-batch size.

Figure 4. Architecture of SpikeDeeptector CNN. (a) Process of mapping input space into decision space. The input is convolved with 
layers of kernels to get convolved feature maps. The pooling layer downsamples the convolved feature maps. The output of each layer 
becomes the input of the subsequent layer. Finally, the Softmax classifier is used to produce an output decision. (b) Size, stride, and number 
of kernels along with employed activation function to get the convolved feature map. Max pooling is used to downsample the convolved 
feature map. The size and stride of the pooling is also documented.

J. Neural Eng. 16 (2019) 056003
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J (θ) =
−1
n

n∑
i=1

[yi ln (gi) + (1 − yi) ln (1 − gi)] +
λ

2n

∑
θw

θ2
w.

 (1)
We used the mini-batch gradient descent with momentum 
(Qian 1999) as an optimization technique to update the values 
of weights and biases. The mini-batch gradient decent with 
momentum considers n training examples to compute a 
moving average of the gradients (see equation (2)) and then 
update the weights and biases in a single iteration (θj rep-
resents jth learnable parameter). The required derivatives 
were calculated by employing the backpropagation algorithm 
(Rumelhart et al 1986). The term γ  in equation (3) is referred 
as momentum, which is also a hyperparameter.

Vt = γV(t−1) + (1 − γ)

(
1
n

n∑
m=1

∂j (θ)
∂θm

j

)
 (2)

θj := θj − αVt. (3)

Tuning of hyperparameters

The learning rate α in the mini-batch gradient descent with 
momentum (SGDM, equation (3)) started at α = 0.1 and was 
tuned in a piecewise manner, decreasing by a factor of 10 
every 5 training epochs. The momentum γ  in SGDM (equa-
tion (2)) was selected to be 0.9, so that the algorithm consid-
ered the last 10 iterations to calculate the moving average Vt 

of the gradients (equation (3)). Besides that, the mini-batch 
size n in equation (2) depends on the available GPU-memory. 
We used n = 256, which was the optimized value for our 
hardware.

We performed a grid search from 0 to 5, with a step size 
of 0.2, to tune λ of L2 regularization (see equation (1)) and 
found λ = 1.8 to be the optimized value. We also used the 
early stopping criteria to avoid overfitting by monitoring 
the validation error on validation data Dva, at each epoch. If 
the validation error of six consecutive epochs increased or 
remained the same, the training terminated. Lastly, dropout 
regularization used a probability of 0.5 to determine whether 
to drop an input neuron.

We have compared the classification accuracy of 
SpikeDeeptector CNN with another variant of SpikeDeeptector 
called SpikeDeeptector fully connected neural network.

The architecture of SpikeDeeptector Fully connected neural 
network (SpikeDeeptector FNN)

The feature matrix x ∈ Rb×w was first reshaped into a 
vector x ∈ R(b×w)×1 (see figure  5). Here, the batch size b 
was considered 20 and w  =  48, resulting in a feature vector 
x ∈ R960×1. The input feature vector propagates forward from 
input to hidden layers to output layer (figure 5). The number 
of neurons in the hidden layers are 500, 250 and 125, and the 
output layer contains two neurons.

We used Rectified Linear Units (ReLUs), with 
f (x) = max (x, 0), as an activation function (Nair and Hinton 

Figure 5. Architecture of SpikeDeeptector fully connected neural network. The input propagates through the input layer, three hidden 
layers, and an output layer. The number of neurons in each hidden layer are 500, 250, 125; there are two neurons in the output layer. 
Neurons of the following layer are fully connected to the neurons of the preceding layer.
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2010) and Softmax classifier at the last layer (Duan et  al 
2003).

We used the same regularization and optimization tech-
niques as explained in section  Regularization techniques 
and optimization algorithm.

We tuned the hyperparameters of the above defined archi-
tecture, in a similar way as described in section  Tuning of 
hyperparameters. However, the optimized value of λ for L2 
regularization was found to be 2.4 using the same grid search 
method described above.

We used the ‘Deep learning’ and the ‘Neural Networks’ 
tool boxes of MATLAB (The MathWorks, Inc) to define and 
train the deep-learning algorithms. The source code is avail-
able online (https://github.com/saifhanjra/SpikeDeeptector).

Assigning labels to channels

The current SpikeDeeptector algorithm can only predict the 
labels of feature vectors (see section SpikeDeeptector algo-
rithm). However, the main aim of this study is to classify the 
given channel as neural or artifact. Therefore, we introduced 
a very simple criterion to assign labels to entire channels 
y(channel)predby calculating the mode of the predicted out-
putsypred of all the feature vectors of the given channel (see 
equation (4)).

y(channel)pred = mode(ypred). (4)

We predicted the labels of all channels (see equation (4)) and 
assigned reliability tags of those predictions which fall in 
three defined categories: reliable prediction, partially reliable 
prediction, and unreliable prediction. To assign the reliability 
tag to the predicted output of the channel y(channel)pred, we 
calculated percentage of y(channel)pred from predicted out-
puts ypred . If the calculated percentage is greater than 80%, 
it will be considered as a reliable prediction; if it is between 
80% and 60%, it will be considered as partially-reliable; and, 

if it is between 50% and 59%, then it will be considered as 
an unreliable prediction. The thresholds (percentages) of the 
defined reliability state show the certainty of acquired deci-
sions and can be freely adjusted.

Results

Training and evaluation

We compiled a training dataset from the first six recording 
sessions of subject U1. The distribution of training data and 
the exact number of feature vectors cast from each patient 
is explained in section  Data distribution for training 
algorithm and evaluation of generalization. We trained 
SpikeDeeptector CNN and SpikeDeeptector FNN on the Dtr  
(training data). The training and the validation loss (regular-
ized cross-entropy) of both models were monitored during 
training on Dtr  and Dva (see figure  6), respectively. The 
process of training was terminated once the validation error 
stopped decreasing or remained unchanged for six consecu-
tive epochs. During training, SpikeDeeptector CNN achieved 
its minimum validation error (0.027) at the 14th epoch, as 
shown in figure 6(a). After that, there is a rise in validation 
error and then it remains approximately constant. Training ter-
minated at the 20th epoch. Similarly, SpikeDeeptector FNN 
achieved its minimum validation error (0.071) at the 17th 
epoch and training terminated at the 23rd epochs, as shown 
in figure 6(b). The values of parameters (weights and biases) 
were saved at lowest validation error and were later used to 
map test inputs to the decision space.

The architecture of SpikeDeeptector CNN is explained 
in the section  Input representation and the archi-
tecture of SpikeDeeptector Convolutional Neural 
Network (SpikeDeeptector CNN) and the architecture 
of SpikeDeeptector FNN is explained in the section  The 
architecture of SpikeDeeptector Fully Connected 
Neural Network (SpikeDeeptector FNN). The process of 

Figure 6. Training and validation cost of SpikeDeeptector variants (a) training and validation cost of SpikeDeeptector CNN (b) training 
and validation cost of SpikeDeeptector FNN.
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optimizing parameters of defined architecture is explained 
in the section Regularization techniques and optim ization 
algorithm and the process of tuning hyperparameters of 
optim ization algorithm and the tuning of hyperparameters of 
regularization algorithms are explained in the section Tuning 
of hyperparameters.

Evaluation of generalization

The generalizability of the trained models was evaluated using 
data from eight patients that remained unseen during training. 
These patients were implanted with either Utah arrays or 

microwires, targeting different brain structures and performing 
different types of behavioral tasks under various experimental 
and recording conditions. The performance of the trained 
classifiers on data collected from patients implanted with Utah 
arrays and microwires is shown separately in tables 3 and 4, 
respectively.

The data distribution of the patients implanted with Utah 
arrays is unbalanced. 34.4% of these data were labeled ‘spike’ 
and the remaining 65.6% of the data were labeled ‘artifact’ 
(table 3). Therefore, the evaluation accuracy of each individual 
class is more important than the cumulative accuracy. The 
main goal of the classifier is to detect and track the channels 

Table 3. Classification accuracy of trained models (SpikeDeeptector CNN and SpikeDeeptector FNN) on the data collected from patients 
implanted with Utah arrays.

Table 4. Classification accuracy of trained models (SpikeDeeptector CNN and FNN) on the data collected from all patients implanted with 
microwires.
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containing neural data. The accuracy of SpikeDeeptector 
CNN and SpikeDeeptector FNN on the ‘spike’-labeled 
feature vectors is 94.6% and 92.6%, respectively, with 
SpikeDeeptector CNN outperforming SpikeDeeptector FNN 
by 2%. The evaluation performance of SpikeDeeptector CNN 
and SpikeDeeptector FNN on the ‘artifact’-labeled feature 
vectors is 97.9% and 98.6%, respectively. The overall acc-
uracy of SpikeDeeptector CNN and SpikeDeeptector FNN is 
96.7% and 96.5% (table 3).

The data distribution of patients implanted with microwires 
is even more unbalanced. Only 1.65% of the data represent 
feature vectors of class ‘spike’ and remaining 98.35% data rep-
resent feature vectors of class ‘artifact’ (table 4). Accuracy of 
SpikeDeeptector CNN and SpikeDeeptector FNN on the ‘spike’ 
feature vectors is 97.2% and 91.9%. Here, SpikeDeeptector 
CNN outperforms SpikeDeeptector FNN with a difference in 
evaluation performance of 5.3%. The evaluation performance 
of SpikeDeeptector CNN and SpikeDeeptector FNN on the 
‘artifact’ feature vectors is 98.9% and 98.6%. The overall 
accuracy of SpikeDeeptector CNN and SpikeDeeptector FNN 
is 98.9% and 98.6% (table 4).

The results in tables 3 and 4 show the classification acc-
uracy of SpikeDeeptector CNN and SpikeDeeptector FNN on 
feature vectors constructed by considering all the recording 
sessions of Utah array and microwire patients. To evaluate 
the consistency of both models, we tested them on the feature 
vectors of all individual patients (see supplementary tables 12 
and 13 (stacks.iop.org/JNE/16/056003/mmedia)) and on the 
feature vectors constructed exclusively from some specific 
channels of selected recording sessions (see supplementary 
tables 14–17). For a few recording sessions of different sub-
jects, we also evaluated SpikeDeeptector CNN specifically at 
each channel, separately. For more details, see supplementary 
material: Reliability evaluation. The overall performance of 
SpikeDeeptector CNN and SpikeDeeptector FNN is compa-
rable as shown in tables 3 and 4, supplementary tables 12 and 

13. However, across all the recording sessions of individual 
patients, SpikeDeeptector CNN consistently outperforms 
SpikeDeeptector FNN on the feature vectors corresponding to 
‘spike’ class (see supplementary tables 12 and 13). As a result, 
SpikeDeeptector CNN produces fewer false negatives, which 
are usually less desirable for neuroscientific analyses including 
online BCI. The results shown in supplementary material: 
Reliability evaluation also show that SpikeDeeptector CNN 
has successfully generalized across different data sources.

Impact of batch size

The box plots in figure 7 show the classification accuracy on 
the validation data Dva, when SpikeDeeptector CNN is trained 
and evaluated ten times for each batch size. The time on the 
x-axis, which is also referred to as batch accumulation time 
(BAT), is the average time across all channels to accumulate 
waveforms equal to the corresponding batch size. The valida-
tion accuracy remains consistent during most of the training 
trials at the corresponding batch size. However, there are few 
outliers at three different points (batch size  =65, 80, 100). 
Based on Tukey’s rule, we considered the classification acc-
uracy as an outlier if it is larger than the 3rd quartile (Q3) by at 
least 1.5 times the interquartile range (IQR), or smaller than 
1st quartile (Q1) by at least 1.5 times the IQR .

Classification accuracy increases with increasing batch size 
(see figure 7), but BAT also increases. This trade-off between 
the classification accuracy and choosing the right batch size 
needed to be optimized. The classification accuracy with batch 
size 20 was 97.5% and reached 99.5% with batch size 65 before 
saturating. BAT is a critical factor in online decoding, however, 
and the time to construct a feature vector with batch size  =  10 
is 280 ms, which provides an acceptable classification of 97% 
with SpikeDeeptector CNN. Therefore, it is possible to con-
struct a feature vector and track neural data from each channel 
during online decoding. On the other hand, for offline spike 

Figure 7. Impact of batch size on classification accuracy and time to construct feature vector ‘BAT (sec)’. Time on the x-axis shows the 
mean time (calculated on the dataset D) to accumulate the number of waveforms required by the corresponding batch size. The red dots are 
outliers (see text). The y -axis shows classification accuracy.
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sorting there may be more leeway to choose a larger batch size, 
up to b  =  65 where classification acc uracy saturates at 99.5% 
for SpikeDeeptector CNN. We chose b  =  20 for the remaining 
analyses in this research work, but we note that the selection of 
batch size depends on the application.

Tracking of neural data

Units on a channel can vanish or new units can appear over 
the recording period. Another important aspect of this work 
is to track the presence or absence of neural units on channels 
continuously at runtime. We support this claim by employing 

SpikeDeeptector CNN on the data of three different kinds of 
channels (figure 8), where the presence of a unit is stable, 
less stable or unstable. A fluctuation between presence and 
absence of neural units takes place occasionally in partially 
stable channels and much more frequently in unstable channels 
(shown in figure 8). On stable channels a unit is either present 
or absent during one complete recording session, as shown in 
figure 8. This result provides evidence that SpikeDeeptector 
CNN tracks the presence or absence of units comprehensively 
on all types of channels. Classifying a channel as stable or 
unstable can help determining which channels are useful, for 
example in BCI applications.

Figure 8. Performance of SpikeDeeptector CNN on tracking of neural data on different types of channels (stable, partially stable, unstable).

Figure 9. Randomly selected correctly classified examples. The events representing spikes are shown in blue and events presenting artifacts 
are shown in grey color.

J. Neural Eng. 16 (2019) 056003



M Saif-ur-Rehman et al

13

Figure 10. Randomly selected wrongly classified examples. The events representing spikes are shown in blue and events presenting 
artifacts are shown in grey color.

Table 5. Performance comparison of SpikeDeeptector CNN and SpikeDeeptector FNN with human experts across the selected recording 
session of subject U1.

Labeled by
Total spike 
channels (out of 96)

Total artifact 
channels (out of 96) False positives False negatives

SpikeDeeptector CNN 19 77 0 0
SpikeDeeptector FNN 18 78 0 1
Human expert 1 20 76 1 0
Human expert 2 16 80 0 3
Human expert 3 17 79 0 2
Human expert 4 17 79 1 3

Table 6. Performance comparison of SpikeDeeptector CNN and SpikeDeeptector FNN with human experts across the selected recording 
session of subject U2.

Labeled by
Total spike 
channels (out of 96)

Total artifact 
channels (out of 96) False positive False negative

SpikeDeeptector CNN 16 80 2 0
SpikeDeeptector FNN 14 82 2 2
Human expert 1 14 82 0 0
Human expert 2 12 82 0 2
Human expert 3 12 82 0 2
Human expert4 10 86 0 4

Table 7. Assigning reliability labels to the predicted outputs of SpikeDeeptector FNN and SpikeDeeptector CNN for the selected recording 
session of subject U1.

Reliable 
predictions: spike 
(correct, wrong)

Reliable 
predictions: artifact 
(correct, wrong)

Partially-reliable 
predictions: spike 
(correct, wrong)

Partially-reliable 
predictions: artifact 
(correct, wrong)

Unreliable 
predictions: spike 
(correct, wrong)

Unreliable 
channel: artifact 
(correct, wrong)

SpikeDeeptector 
CNN

(18, 0) (77, 0) (1, 0) (0, 0) (0, 0) (0, 0)

SpikeDeeptector 
FNN

(15, 0) (77, 0) (2, 0) (0, 1) (1, 0) (0, 0)
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Visualization of correctly and wrongly classified examples

We selected a small subset of correctly and wrongly classified 
input for the sake of visualization and evaluation of the perfor-
mance of SpikeDeeptector CNN. The examples were selected 
randomly from all 136 recording sessions and are shown in 
figures 9 and 10.

Performance comparison of SpikeDeeptector  
CNN with its counterparts

We assigned labels to channels based on the criteria explained 
in the methods section (see Assigning labels to channels). We 
then compared the classification accuracy of SpikeDeeptector 
CNN with SpikeDeeptector FNN and with four human experts 
(see tables  5 and 6). For this evaluation, we selected one 
recording session from each of the subjects with implanted 
Utah arrays (U1 & U2). Single Utah array contain 96 chan-
nels. The evaluation performance of SpikeDeeptector CNN, 
SpikeDeeptector FNN and the other participants (human 
experts) is given in tables 5 and 6.

In the recording session selected from subject U1, 
SpikeDeeptector CNN performed slightly better than 
SpikeDeeptector FNN and all other participants (see table 5). 
SpikeDeeptector CNN predicted ‘spike’ channels and ‘arti-
fact’ channels with 100% accuracy. However, the average 
accuracy of human experts is 89.47% for correctly predicting 

‘spike’ channels and 99.35% for correctly predicting ‘artifact’ 
channels. Here, SpikeDeeptector FNN predicts the ‘spike’ 
channels with 94.74% accuracy, and ‘artifact’ channels with 
100%.

For the recording session from subject U2, SpikeDeeptector 
CNN achieved 2nd rank by making two mistakes (false posi-
tives), as shown in table 6. It has predicted all ‘spike’ chan-
nels correctly (100% accuracy), but wrongly predicted two 
‘Artifact’ channels as ‘spike’ channels (false positives) 
(97.57% accuracy). Average human expert accuracy is 
85.71% for ‘spike’ channels and 100% for ‘artifact’ chan-
nels. SpikeDeeptector FNN predict the ‘spike’ channels with 
85.71% accuracy, and the ‘artifact’ channels with 97.57% 
accuracy.

In order to compare SpikeDeeptector CNN and 
SpikeDeeptector FNN in terms of prediction reliability, we 
also assigned reliability tags (Assigning labels to chan-
nels)to the above predicted outputs of both SpikeDeeptector 
CNN and SpikeDeeptector FNN as shown in tables 7 and 8. 
SpikeDeeptector CNN has a performance of 100% for the U1 
dataset (table 5). More importantly, only one correct predic-
tion has been assigned with label ‘Partially reliable prediction: 
Spike’, and all other correct predictions are reliable predic-
tions (table 7). SpikeDeeptector FNN had one false negative 
for this same dataset (table 5), but more predictions were 
assigned with the tags ‘Partially reliable predictions: Spike’, 

Table 8. Assigning reliability labels to the predicted outputs of SpikeDeeptector FNN and SpikeDeeptector CNN for the selected recording 
session of subject U2.

Reliable 
predictions: 
spike  
(correct, 
wrong)

Reliable 
predictions: 
artifact 
(correct, 
wrong)

Partially-reliable 
predictions: spike 
(correct, wrong)

Partially-reliable 
predictions: artifact 
(correct, wrong)

Unreliable 
predictions: 
spike (correct, 
wrong)

Unreliable 
predictions: 
artifact 
(correct, 
wrong)

SpikeDeeptector CNN (14, 0) (80, 0) (0, 0) (0, 0) (0, 2) (0, 0)
SpikeDeeptector FNN (12, 0) (80, 0) (0, 1) (0, 2) (0, 1) (0, 0)

Figure 11. Average accuracy of SpikeDeeptector CNN (with one standard deviation) across the channels labeled as ‘spike’ and ‘artifact’, 
on the data of two different recording sessions of microwire subjects, rethresholded at four different values starting from  −4.5 to  −3.5 
times RMS of high pass filtered signal (cutoff frequency  =  250 Hz), with step size of  −0.25. (a) Average accuracy with one standard 
deviation of SpikeDeeptector CNN at different thresholding levels across the recording session of subject M1. For the recording session of 
M1, only one channel is labeled as ‘artifact’. Therefore, standard deviation is not shown. (b) Average accuracy with one standard deviation 
of SpikeDeeptector CNN at different thresholding levels across the recording session of subject M4. For the recording session of M4, only 
one channel is labeled as ‘spike’. Therefore, standard deviation is not shown.
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‘Partially reliable predictions: Artifact’ and ‘Unreliable pre-
dictions: Spike’ (table 7). Similarly, the same trend can be 
seen for the dataset from subject U2 (table 8). Because the 
assigned reliability tag to the predicted output is an indication 
of the certainty of the prediction, partially reliable or unstable 
outcomes may need to be reviewed by the researcher. As an 
example, SpikeDeeptector CNN has two prediction mistakes 
(false positives) (see table 6) in the recording session of subject 
U2, which were assigned with tag of ‘Unreliable prediction’.

We show in tables 3 and 4, supplementary tables 12 and 
13 that SpikeDeeptector CNN has classified fewer false nega-
tives as compared to SpikeDeeptector FNN, across the data 
collected from all the subjects (Utah array and microwires). 
This prediction behavior of SpikeDeeptector CNN can also 

be observed when predicting channel labels instead of fea-
ture vectors (see tables 5 and 6). That means SpikeDeeptector 
CNN can consistently detect channels with label ‘spike’ 
more robustly as compared to SpikeDeeptector FNN. The 
results shown in tables  5 and 6 show that SpikeDeeptector 
CNN produces the least false negatives when compared with 
SpikeDeeptector FNN and even human experts. False nega-
tives are potentially harmful because useful channels can be 
lost. In terms of false positives, SpikeDeeptector CNN and 
SpikeDeeptector FNN have comparable performance (tables 
5 and 6). Finally, SpikeDeeptector CNN’s predictions are 
more reliable than SpikeDeeptector FNN’s (tables 7 and 8). 
For these reasons, SpikeDeeptector CNN is preferred over 
SpikeDeeptector FNN.

Figure 12. Average accuracy (with one standard deviation) of SpikeDeeptector CNN across the channels labeled as ‘spike’ and ‘artifact’, 
on the data of selected channels of two different recording sessions of Utah array subjects, rethresholded at four different values, starting 
from  −4.5 times RMS of high pass filtered signal (cutoff frequency  =  250 HZ) and stops at  −3.5 times RMS of high pass filtered signal 
(cutoff frequency  =  250 Hz), with step size of  −0.25. (a) Average accuracy with one standard deviation of SpikeDeeptector CNN at 
different thresholding levels of subject U1 for both classes. (b) Average accuracy with one standard deviation of SpikeDeeptector CNN at 
different thresholding levels of subject U2 for both classes.

Table 9. Evaluation of the performance of SpikeDeeptector CNN at different sampling rates across the recording session of subject U1.

Sampling rate (kHz)
Total spike 
channel (out of 96)

Total artifact 
channel (out of 96)

False positive  
(out of 96)

False negative  
(out of 96)

40 19 77 0 0
32 19 77 0 0
30 19 77 0 0
20 19 77 0 0
10 19 77 0 0
5 23 73 4 0
2.5 30 66 11 0

Table 10. Evaluation of the performance of SpikeDeeptector CNN at different sampling rates across the recording session of subject U2.

Sampling rate  
(kHZ)

Total spike channel 
(out of 96)

Total artifacts 
channel (out of 96)

False positive  
(out of 96)

False negative  
(out of 96)

40 16 80 2 0
32 16 80 2 0
30 16 80 2 0
15 16 80 2 0
10 16 80 2 0
5 18 78 3 0
2.5 28 68 13 0
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Evaluation of robustness

We trained the model of SpikeDeeptector CNN with the data 
collected at 30 kHz sampling rate and a threshold setting 
of  −4.5 times root-mean-square of the high pass filtered, full 
bandwidth signal with a cutoff frequency 250 Hz (see sec-
tion  Data collection for more details). To see if our results 
are robust, we evaluated the trained model of SpikeDeeptector 
CNN in three different ways.

 1.  Performance evaluation at different threshold settings.
 2.  Performance evaluation at different sampling rates.
 3.  Performance evaluation on a different species (non-

human primates (NHPs)) recorded using a different 
acquisition system.

Evaluation of SpikeDeeptector CNN at different threshold  
settings. To evaluate the performance of SpikeDeeptector 
CNN on different threshold settings, we selected two record-
ing sessions of subjects implanted with microwires. For a fair 
evaluation, we selected two recording sessions of different 
subjects (M1 & M4) one with more channels corresponding to 
class ‘spike’ and the other with more channels corresponding 
to class ‘artifact’. Similarly, we selected two recording ses-
sions, one from each subject (U1& U2) implanted with Utah 
arrays. From each Utah array recording session, we randomly 
selected four channels with true label ‘spike’ and other four 
channels with true label ‘artifact’. Then, we re-thresholded the 
data of all the selected recording sessions, starting from  −4.5 
times root-mean-square of the high pass filtered (cutoff fre-
quency  =  250 Hz) signal to  −3.5 times root-mean-square of 
the high pass filtered (cutoff frequency  =  250 Hz) signal, with 
a step size of  −0.25. By reducing the threshold, we are allow-
ing low amplitude noise in the feature vectors.

For the microwire array datasets (both recording sessions), 
SpikeDeeptector CNN produced comparable results at all 
threshold settings (figure 11). For subject M1, the minimum 
accuracy among both channel types at the most permissive 
threshold level is still more than 94% (figure 11(a)), meaning 
that all the channels can be labeled as reliable (see Assigning 
labels to channels). The performance of SpikeDeeptector 
CNN at different threshold values for data from subject M4 
is similarly robust with a minimum average accuracy of more 

than 90% (figure 11(b)). As a result, all the channels can be 
easily correctly classified with the highest defined reliability 
tag.

In case of Utah array recording sessions, overall perfor-
mance of SpikeDeeptector CNN can be seen in figure  12. 
At lowest threshold setting, for both recording sessions the 
average accuracy of SpikeDeeptector CNN drops considerably 
on the channels corresponding to class ‘spike’ (see figure 12). 
For the recording session of subject U1, at lowest threshold 
setting, classification accuracy of SpikeDeeptector CNN on 
individual channels corresponding to class ‘spike’ is 95.66%, 
76.71%, 89.59%, and 77.59%. As a result, all the channels can 
still be correctly classified, but according to defined criteria 
of assigning reliability tags, two channels (76.71%, 77.59%) 
will be assigned with the tag ‘Partially-reliable prediction: 
Spike’. Contrarily, performance of SpikeDeeptector CNN 
on most of the channels corresponding to artifacts is robust 
even at the lowest threshold setting as shown in figure 12(a). 
A Similar kind of behavior is observed in the recording ses-
sion of subject U2, where, at lowest threshold settings, the 
classification accuracy of SpikeDeeptector CNN on the chan-
nels corresponding to ‘spike’ is 82.51%, 84.36%, 82.79%, and 
79.51%. Here, the performance of SpikeDeeptector CNN on 
the channels corresponding to ‘artifact’ remains unaffected as 
shown in figure 12(b).

Evaluation of SpikeDeeptector CNN at different sampling 
rates. Data acquisition systems for neural data operate at 
various sampling rates. The Blackrock Neural Signal Proces-
sor runs with a maximum sampling rate of 30 kHz but there 
are systems with higher (Plexon Inc, OmniPlex at 40 kHz) and 
lower sampling rates. To test the performance of SpikeDeep-
tector CNN at different sampling rates, we resampled our data 
(see tables 9 and 10). For the sake of consistency, we used 
the same recording sessions of subjects implanted with Utah 
arrays as before (Performance comparison of SpikeDeep-
tector CNN with its counterparts). We first resampled the 
data to the desired sampling rate, and then applied interpola-
tion to normalize the number of samples in each waveform 
back to 48 (the native resolution of our system). The perfor-
mance of SpikeDeeptector CNN for different sampling rates 
is shown in tables 9 and 10. The performance of SpikeDeep-
tector CNN remains stable until the data is downsampled to 

Table 11. Evaluation of the performance of SpikeDeeptector CNN and SpikeDeeptector FNN on two different publicly available datasets 
(CRCNS—PMD 1, CRCNS-PPC1).

Data set Recording hardware Electrode type
Subject 
id

Place of 
implantation

Ground truth: 
no. of spike 
channels 

Predicted label 
(SpikeDeeptector 
CNN): no. of 
spike channels

Predicted label 
(SpikeDeeptector 
FNN): no. of 
spike channels

CRCNS—PMD 
1

Black-rock Utah array MM M1 45 44 40

CRCNS—PMD 
1

Black-rock Utah array MM PMD 51 51 47

CRCNS—PMD 
1

Black-rock Utah array MT PMD 34 32 24

CRCNS—PPC 1 Plexon Single 
microelectrodes

X/ B PPC 5 5 3
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less than 10 kHz. Further reduction of the sampling rate dras-
tically reduced the performance of SpikeDeeptector CNN 
(see tables 9 and 10). A similar behavior has been reported in 
Navajas et al (2014), where the authors evaluated the perfor-
mance of a spike sorting algorithm at different sampling rates.

Evaluation of SpikeDeeptector CNN on the data recorded 
from NHPs using different data acquisition systems. We 
evaluated the trained models of SpikeDeeptector CNN and 
SpikeDeeptector FNN on two publicly available labeled data-
sets (CRCNS-PMD1 & CRCNS-PPC1) (table 11) (Shi et al 
2013, Lawlor et al 2018). These datasets contain data from 
three NHPs, recorded from three different regions of the brain 
(M1, PMD, PPC). Some of the data were recorded using a dif-
ferent recording system (Plexon, Inc.) and a different type of 
electrode (single microelectrodes). The dataset recorded with 
the Plexon system represents waveforms with 16 samples, so 
interpolation was required. Further details on the dataset can 
be found here (Shi et al 2013, Lawlor et al 2018). The perfor-
mance of SpikeDeeptector CNN and SpikeDeeptector FNN 
is given in table 11. Here, SpikeDeeptector CNN performed 
much better than SpikeDeeptector FNN. However, both data-
sets only contain data from channels where at least one unit 
is present.

Discussion

In this study, we presented two variants (SpikeDeeptector 
CNN, SpikeDeeptector FNN) of an algorithm we call 
‘SpikeDeeptector’, which discriminates SUA and MUA chan-
nels from channels recording only noise. SpikeDeeptector 
works with data collected from different subjects, brain areas, 
recording sessions and different types of recording micro-
electrodes. The evaluation performance of SpikeDeeptector 
CNN and SpikeDeeptector FNN on the data collected from 
eight subjects (see tables 3 and 4, supplementary tables 12 and 
13) show that the trained models can generalize to new data. 
The overall performance of both models (SpikeDeeptector 
CNN& SpikeDeeptector FNN) is generally comparable. 
However, SpikeDeeptector FNN seems to be more prone to 
false negatives which is usually less desirable for neurosci-
entific analyses, especially for online BCI. We showed that 
SpikeDeeptector CNN makes fewer mistakes on the fea-
ture vectors representing spike (neural data) as compared 
to SpikeDeeptector FNN, across the data collected from all 
the subjects (Utah array and microwires) (tables 3 and 4, 
supplementary tables  12 and 13). SpikeDeeptector CNN 
performs similarly when predicting channels labels instead 
of feature vectors labels (tables 5 and 6). This finding sug-
gests SpikeDeeptector CNN can detect neural channels more 
robustly compared to SpikeDeeptector FNN. SpikeDeeptector 
CNN produces the fewest false negatives across feature vec-
tors and channels compared to SpikeDeeptector FNN and 
human experts (tables 5 and 6). SpikeDeeptector CNN also 
outperformed SpikeDeeptector FNN on the publicly available 

NHP dataset (see table 11). Finally, SpikeDeeptector CNN’s 
predictions are more reliable as compared to SpikeDeeptector 
FNN’s (tables 7 and 8).

We showed some correctly and the wrongly classified 
examples (see figures  9 and 10). The correctly classified 
examples confirm that SpikeDeeptector CNN properly dis-
tinguished neural data from artifacts. Some of the wrongly 
classified examples are very difficult even for human experts 
to classify, e.g. events representing spikes in figure  10 (top 
left) and some of the events representing artifacts (figure 10; 
bottom right).

We trained the SpikeDeeptector CNN model on data col-
lected at 30 kHz sampling rate and a threshold setting of  −4.5 
times the root-mean-square of the noise in the high pass fil-
tered signal (see section Data collection for more details). We 
evaluated the robustness of our algorithm to different sam-
pling rates, electrode types, threshold settings, and acquisition 
systems. The results in Evaluation of robustness show that 
SpikeDeeptector CNN consistently performed best. We also 
showed that our algorithm runs competitively across species 
using different acquisition systems and implanted with dif-
ferent kinds of electrodes.

Over the years many other studies on automatic spike detec-
tion have been published (Kim and McNames 2007, Ji et al 
2011, Wen-Jyi et  al 2014, Gerhard et  al 2018). In Kim and 
McNames (2007), the authors proposed a method to detect 
spikes called ‘adaptive template matching’. This proposed 
method detects the spike events by processing the input signal 
x(n) in four different stages. In the first stage the inputs signal 
x (n) is enhanced to detect peaks by calculating the instanta-
neous powerxp(n) of x (n), and by applying low pass filter with 
a cutoff frequency equal to the maximum firing rate fmax of the 
neurons, which must be specified by the user. In the second 
stage, the estimation of probability density function (PDF) 
of similarity maxima is required to estimate the threshold. 
In the third stage, the detected spikes are used to estimate 
the template and to measure a degree similarity between the 
input signal template. The signals recorded from the brain are 
highly nonstationary (time varying signal) and the placement 
of implanted electrodes can also change with the passage of 
time. Therefore, it is possible that the same implanted elec-
trode records the activity of different sources (neurons) in two 
different recording sessions, which invalidates the estimated 
parameters of the algorithm proposed in Kim and McNames 
(2007). Another drawback of adaptive template matching is 
that it estimates a separate model for each electrode. State-
of-the-art microelectrode arrays contain hundreds of channels 
and would require hundreds of parameter models, which might 
then become invalidated in subsequent recording sessions. 
Adaptive template matching also requires some input from 
the user, e.g. neuronal firing rate, to estimate the parameters, 
which is not the case in our proposed method.

There are some studies in which supervised machine 
learning methods are used to detect and sort spikes (Oghalai 
et al 1994, Horton et al 2007, Yang et al 2017). However, none 
of these studies have investigated the generalization quality 
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of machine learning across different recording sessions, sub-
jects, and types of implantable electrodes.

SpikeDeeptector has several other useful applications. 
During online decoding in invasive brain computer interface 
(BCI) systems, feature vectors are often constructed from 
threshold crossing events (Fraser et al 2009, Koyama et al 2009, 
Aflalo et  al 2015, Klaes et  al 2015). With SpikeDeeptector 
threshold crossing events not representing neuronal activity 
can be easily discarded. As a result, more meaningful feature 
vectors can be constructed. Moreover, it has also been shown 
in previous BCI studies that units disappear or appear with the 
passage of time (Sanchez et al 2004, Moritz and Fetz 2011, 
Lebedev 2014). By employing SpikeDeeptector, one can auto-
matically track the presence or absence of single unit activity 
at runtime (see Tracking of neural data).

Most existing spike sorting methods operate either manu-
ally or semi-automatically (Lewicki 1998, Einevoll et al 2012, 
Marre et al 2012, Quiroga 2012). Many of them follow a pro-
cess pipeline, which typically includes a step of feature reduc-
tion, either for visualization, for feature vector extraction 
for clustering algorithms, or for both. In such manual spike 
sorting methods, human intervention is required for channel 
selection and for clustering. The latter is done by examining 
the features in a 2D projection and manually defining clus-
ters. Here, SpikeDeeptector can be employed to reduce the 
time and effort needed at the first stage by automatically dis-
carding the channels that contain only artifacts. Another way 
of manual spike sorting is the hoop technique, where different 
hoops (thresholds) are defined manually at each channel of 
implanted array to sort spikes from multiple neurons. The 
process of defining hoops is time intensive and has to be 
adjusted as signals change over time, either acutely (within 
session) or chronically (across sessions). Typically, threshold 
settings for hoop sorting cannot simply be reused in consecu-
tive recording sessions. It is possible that many channels of 
the implanted array do not record neural data at all. Here, 
SpikeDeeptector can be employed to reduce the time and 
effort needed in the first stage of spike sorting by automati-
cally discarding channels that contain only artifacts, therefore 
considerably reducing human effort. Hoop sorting can then be 
applied on the remaining channels.

In semi-automatic spike sorting, clustering is done auto-
matically, but the user must curate in order to decide which 
clusters to reject and which clusters to accept (Hill et al 2011, 
Kadir et al 2014, Rossant et al 2016). SpikeDeeptector can 
automatically promote ‘spike’ clusters and reject ‘artifact’ 
clusters (see Batch size). However, if the clustering algorithm 
wrongly merged two distinct units, or a unit and artifact, or 
if the clustering algorithm wrongly split a unit into two dis-
tinct clusters, the current version does not provide a solution 
to manipulate clustering.

SpikeDeeptector is a supervised learning algorithm and 
needs labeled data for training. We carefully labeled the 
data as explained in Data labeling. However, ground truths 
are based on human judgment and could contain errors. 

However, this is not unusual since all big data sets in the field 
of computer vision (image net, MNIST, CIFAR-100) are hand 
labeled and could contain errors. Nonetheless, deep learning 
algorithms usually perform well on test data even though the 
possibility of ground truth errors cannot be excluded. We 
showed in the result section  Performance comparison of 
SpikeDeeptector CNN with its counterparts that the perfor-
mance of SpikeDeeptector is comparable to different human 
experts.

Source separation is another important issue that still needs 
to be addressed. Although many methods exist to solve this 
issue, very few of them offer fully automated spike sorting 
(Chung et  al 2017, Grossberge et  al 2018, Hossein Nadian 
et al 2018) and none of them offer a universal fully automated 
spike sorter. We aim to extend the SpikeDeeptector algorithm 
so that it will not only determine the presence or absence of 
neural data on the channel, but also detect and track individual 
neural sources, universally.

The current version of SpikeDeeptector detects and tracks 
channels containing neural data recorded from multiple 
human subjects and one nonhuman primate. In the future we 
also want to extend the scope of SpikeDeeptector to data from 
different spike types (excitatory, inhibitory) (Becchetti et al 
2012), cell types, and species (rat, cat).

Conclusions

In this study, we propose a novel algorithm called 
SpikeDeeptector to detect and track channels containing 
neural data from implanted electrodes, automatically and uni-
versally. To the best of our knowledge, there is no method that 
can universally and automatically extract channels containing 
neural data. We supported our claim by evaluating our method 
on the data collected from six epileptic patients implanted with 
depth electrodes and two tetraplegic patients implanted with 
two Utah arrays. SpikeDeeptector has potential for online and 
offline automatic spike sorting in BCI applications. The sig-
nificance of SpikeDeeptector could potentially increase when 
microelectrode arrays with larger sizes become available. As 
a result, SpikeDeeptector could be envisioned to become an 
integral part of data analysis of single cell recordings. In the 
future, we aim to extend the scope of SpikeDeeptector to the 
data collected from even more different species and different 
types of neural cells. We also intend to extend our method so 
that it detects and tracks every present neural source on the 
channel.
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