
1 © 2019 IOP Publishing Ltd Printed in the UK

Muhammad Saif-ur-Rehman1,8 , Robin Lienkämper1, Yaroslav Parpaley2,
Jörg Wellmer3, Charles Liu4, Brian Lee4, Spencer Kellis5, Richard Andersen5,
Ioannis Iossifidis6, Tobias Glasmachers7 and Christian Klaes1,9

1 Faculty of Medicine, Ruhr-University Bochum, Bochum, Germany
2 Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum, Bochum,
Germany
3 Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum,
Bochum, Germany
4 USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, California,
United States of America
5 Department of Biology and Biological Engineering, California Institute of Technology, Pasadena,
California, United States of America
6 Department of Computer Science, Ruhr West University of Applied Sciences, Mülheim an der Ruhr,
Germany
7 Institute for Neural Computation, Ruhr-University Bochum, Bochum, Germany
8 Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum, Bochum,
Germany

E-mail: christian.klaes@rub.de

Received 10 December 2018, revised 16 April 2019
Accepted for publication 1 May 2019
Published 23 July 2019

Abstract
Objective. In electrophysiology, microelectrodes are the primary source for recording neural
data (single unit activity). These microelectrodes can be implanted individually or in the form
of arrays containing dozens to hundreds of channels. Recordings of some channels contain
neural activity, which are often contaminated with noise. Another fraction of channels does not
record any neural data, but only noise. By noise, we mean physiological activities unrelated
to spiking, including technical artifacts and neural activities of neurons that are too far away
from the electrode to be usefully processed. For further analysis, an automatic identification
and continuous tracking of channels containing neural data is of great significance for
many applications, e.g. automated selection of neural channels during online and offline
spike sorting. Automated spike detection and sorting is also critical for online decoding
in brain–computer interface (BCI) applications, in which only simple threshold crossing
events are often considered for feature extraction. To our knowledge, there is no method that
can universally and automatically identify channels containing neural data. In this study,
we aim to identify and track channels containing neural data from implanted electrodes,
automatically and more importantly universally. By universally, we mean across different
recording technologies, different subjects and different brain areas. Approach. We propose a
novel algorithm based on a new way of feature vector extraction and a deep learning method,

Journal of Neural Engineering

SpikeDeeptector: a deep-learning based
method for detection of neural spiking
activity

M Saif-ur-Rehman et al

Printed in the UK

056003

JNEIEZ

© 2019 IOP Publishing Ltd

16

J. Neural Eng.

JNE

1741-2552

10.1088/1741-2552/ab1e63

Paper

5

Journal of Neural Engineering

IOP

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

2019

9 Author to whom any correspondence should be sent.

1741-2552/19/056003+20$33.00

https://doi.org/10.1088/1741-2552/ab1e63J. Neural Eng. 16 (2019) 056003 (20pp)

https://orcid.org/0000-0003-1774-7330
mailto:christian.klaes@rub.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ab1e63&domain=pdf&date_stamp=2019-07-23
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1741-2552/ab1e63

M Saif-ur-Rehman et al

2

which we call SpikeDeeptector. SpikeDeeptector considers a batch of waveforms to construct
a single feature vector and enables contextual learning. The feature vectors are then fed to
a deep learning method, which learns contextualized, temporal and spatial patterns, and
classifies them as channels containing neural spike data or only noise. Main results. We trained
the model of SpikeDeeptector on data recorded from a single tetraplegic patient with two
Utah arrays implanted in different areas of the brain. The trained model was then evaluated
on data collected from six epileptic patients implanted with depth electrodes, unseen data
from the tetraplegic patient and data from another tetraplegic patient implanted with two Utah
arrays. The cumulative evaluation accuracy was 97.20% on 1.56 million hand labeled test
inputs. Significance. The results demonstrate that SpikeDeeptector generalizes not only to the
new data, but also to different brain areas, subjects, and electrode types not used for training.
Clinical trial registration number. The clinical trial registration number for patients implanted
with the Utah array is NCT 01849822. For the epilepsy patients, approval from the local ethics
committee at the Ruhr-University Bochum, Germany, was obtained prior to implantation.

Keywords: deep learning, convolutional neural networks, contextual learning,
brain–computer interface, spike sorting

S Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

Introduction

The human brain contains approximately 100 billion neurons
(Herculano-Houzel 2009). Neurons communicate by propa-
gating action potentials (Hodgkin and Huxley 1952), also
referred to as ‘spikes’. The spikes generated by individual
neurons (sometimes called ‘units’) can be recorded with the
help of microelectrodes (Kita and Wightman 2008). State-of-
the-art development in microelectronics has allowed the fab-
rication of tiny but dense microelectrode arrays, containing
hundreds of channels (Frey et al 2008, Lambacher et al 2011,
Berényi et al 2013, Spira and Hai 2013). As a result, the activ-
ities of several hundreds or even thousands of neurons (Harris
et al 2017) can be recorded simultaneously. Spikes recorded
from only one neuron are called single-unit activity (SUA).
However, often it is not possible to determine if spikes origi-
nate from only a single source or multiple neurons in which
case the activity is called multi-unit activity (MUA).

Spike sorting is used to separate the activity of each
neuron and is usually done manually or semi-automatically
(Abeles and Goldstein 1977, Gibson et al 2012, Matthews
and Clements 2014). However, there are also some studies in
which automatic spike sorting methods are proposed (Spacek
et al 2009, Takekawa et al 2012, Bongard et al 2014, Carlson
et al 2014, Pachitariu et al 2016, Yger et al 2018). A standard
spike sorting pipeline includes spike event detection and
assignment to specific neurons (SUA). Most current spike
sorting methods require human input of some form and are
therefore prone to subjectivity and bias. Using a fully auto-
mated process could reduce the subjective bias and drastically
reduce the time needed for spike sorting.

Most existing spike sorting algorithms use band-pass filtering,
spatial whitening and threshold crossing before qualifying an
incoming waveform as an event. Finally, they apply clustering
on qualified events. This generally involves at least one or more

manual processing steps (Lewicki 1998, Einevoll et al 2012,
Marre et al 2012). Moreover, previous studies have shown that a
considerable fraction of dense implanted microelectrode arrays
does not record any neural data, but only external artifacts with
high amplitudes and/or noise (Lewicki 1998, Hill et al 2011,
Klaes et al 2015, Rey et al 2015). Human involvement in spike
sorting can be reduced by automatically identifying and dis-
carding meaningless channels at the first stage before any further
analysis. However, the background noise is composed of several
complex signals, including neuronal activity too far away from
the electrode to be useful, external artifacts and noise generated
by surrounding electrical components (Lewicki 1998, Einevoll
et al 2012). There are studies in which noise modeling is studied
(Yang et al 2011), for example in Yang et al (2011). In that study,
the authors enhanced the signal-to-noise ratio by estimating neu-
ronal signatures, noise shaping, and adaptive bandpass filtering.
However, the proposed model requires some training data to
optimize the value of the parameters in each recording session
for each electrode separately. Therefore, nonstationary behavior
of noise is a problem for automatically discarding meaningless
channels (Chung et al 2017).

In recent years it has been demonstrated that powerful
models can be learned with the help of huge amounts of labeled
data and deep artificial neural network architectures (Krizhevsky
et al 2012). A specific architecture, convolutional neural net-
works (CNN) (LeCun et al 1998), in combination with huge
labeled datasets (Jia et al 2009, Stallkamp et al 2011) has trans-
formed the field of computer vision and provided many state-
of-the-art results for image classification, object detection and
tracking (Guo et al 2017). In the current study, we used the
same approach to solve a different problem: discarding chan-
nels that do not contain spikes. After collecting and labeling a
large amount of spike data, we successfully trained a deep neural
network that enables us not only to detect but also to track the
channels containing neural data. As a result, noise channels can

J. Neural Eng. 16 (2019) 056003

https://doi.org/10.1088/1741-2552/ab1e63

M Saif-ur-Rehman et al

3

be discarded before doing further analysis. Our system acts as
a universal spike detector, which can also be used in online
analysis. By universal we mean that the trained model can be
employed to detect and track the channels containing neural data
recorded from different subjects, across different brain areas
and even with different types of recording hardware, without
any additional prep aration. To support this claim, we evaluated
SpikeDeeptector on the data recorded from eight different sub-
jects of different age and genders, recorded using different types
of microelectrodes across different areas of the brain.

The presented method is based on supervised deep learning,
which means ground-truth labels are required to define the
cost function (Kotsiantis 2007). It is difficult even for an
expert neuroscientist to judge a single event without the con-
text of other events. Here, we introduce a new way of labeling
that considers a batch of waveforms from the same channel,
instead of a single waveform, to construct a feature vector.
This approach establishes context for classifier learning and
decision making. Our data set contains 1.56 million labeled
feature vectors. By mimicking the way humans sort spikes,
SpikeDeeptector can generalize across different data sources.
We achieve an overall classification accuracy of 97.20%.

SpikeDeeptector can be employed to select meaningful
channels during online decoding for brain–computer interfaces
(BCIs), where previously unsorted action potentials were used
to extract feature vectors (Fraser et al 2009, Schwartz 2004,
Koyama et al 2009, Todorova et al 2014, Klaes et al 2015).
Such feature vectors also include threshold crossing events
of channels which do not contain neural data. In contrast,
SpikeDeeptector discards all the channels that do not contain
neural data. Thus, it allows to consider only those channels
where at least a minimum number of neural spikes is present.
Furthermore, SpikeDeeptector can be applied to the last step
of spike sorting, which often requires a human to accept or
reject clusters found by an algorithm (Hill et al 2011, Kadir
et al 2014, Rossant et al 2016). With SpikeDeeptector, it is
also possible to automatically detect which clusters are noise
and which clusters contain a unit.

Materials and methods

Approvals

For this study we used data from tetraplegic patients implanted
with Utah arrays (Blackrock Microsystems, Salt Lake City,

UT) and patients who were implanted with depth electrodes
in preparation for epileptic surgery. Tetraplegic patients were
recruited for two different BCI studies (Aflalo et al 2015,
Klaes et al 2015). These studies were approved by the institu-
tional review boards at the California Institute of Technology
(Pasadena, CA), Rancho Los Amigos National Rehabilitation
Center (Downey, CA), and the University of Southern
California (USC) (Los Angeles, CA). Further approval details
are available from (Aflalo et al 2015, Klaes et al 2015). For
the epilepsy patients, approval from the local ethics committee
at the Ruhr-University Bochum, Germany, was obtained prior
to implantation. Epilepsy patients were implanted for medical
reasons and we obtained informed consent from each patient
before they participated in the study.

Implantation information

We collected data from a total of eight patients (seven males,
one female), aged 20–63 years. Six of the patients were
implanted with microelectrodes in preparation for epilepsy
surgery using a Behnke-Fried configuration (Fried et al 1999).
The microelectrodes were coupled in a group of 8 or 16 indi-
vidual microwires with platinum coated tips. The other two
patients were tetraplegics recruited for a BCI study and were
implanted with Utah microelectrode arrays (Aflalo et al 2015,
Klaes et al 2015). A single Utah array consists of 100 micro-
electrodes arranged in a 10 × 10 grid with the four corner
electrodes left unconnected during manufacture. The place-
ment of the Utah array was based on a functional magnetic
resonance imaging (fMRI) task conducted prior to implant-
ation; details of the array placement and surgery are described
in Aflalo et al (2015) and Klaes et al (2015). The Utah array
electrodes were 1.0–1.5 mm long and presumably recorded
signals from cortical layer 5 (Aflalo et al 2015, Klaes et al
2015). Electrodes had platinum-coated tips and were spaced
400 µm apart. The location of the microelectrodes or elec-
trode arrays is shown in table 1 along with the total number of
recording sessions for each patient.

Behavioral setup

The subjects engaged in various behavioral tasks. More infor-
mation about the behavioral tasks of subject U1 and U2 can
be found in previous studies (Aflalo et al 2015, Klaes et al
2015). The epilepsy patients performed a reaching task in a

Table 1. Demographic information with implantation details.

Subject ID Sex Age (years) Place of implantation

Number of
recording
sessions

Total recording
time (minutes)

Number of
implanted electrode

U1 Male 32 Posterior parietal cortex 90 795.1 192 (2-Utah array)
U2 Male 63 Posterior parietal cortex 40 338.7 192 (2-Utah array)
M1 Male 23 Anterior hippocampus 1 14.1 16 (micro-wires)
M2 Male 63 Anterior hippocampus 1 13.2 16 (micro-wires)
M3 Male 20 Anterior hippocampus 1 12 16 (micro-wires)
M4 Male 57 Anterior hippocampus 1 15.9 8 (micro-wires)
M5 Female 52 Anterior hippocampus 1 40 8 (micro-wires)
M6 Male 55 Anterior hippocampus 1 8.5 16 (micro-wires)

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

4

virtual reality environment, programmed in Unity 3D (Unity
Technologies, San Francisco, CA, USA) and using the HTC
Vive virtual reality system (HTC Corporation, New Taipei,
Taiwan), or remained idle during recording.

Data collection

In the group of tetraplegic subjects, data was collected over
a period of two years in two–four study sessions per week.
From the group of epilepsy patients, data were gathered over
the course of one year with one study session per subject. Data
were recorded using a Neural Signal Processor (Blackrock
Microsystems, Salt Lake City, UT). Analog electrical activity
was amplified and digitized at a sampling rate of 30 kHz. Spike
candidates (events) were extracted with a thresholding proce-
dure (Lewicki 1998). The threshold for waveform detection was
set to −4.5 times the root-mean-square of the high-pass filtered,
full-bandwidth signal with cutoff frequency 250 Hz. Similar
settings were used in Klaes et al (2015) to select the mean-
ingful channels and extract feature vectors (unsorted threshold
crossing) for online decoding. However, to evaluate the robust-
ness of the spike detection algorithm, different threshold settings
were used (see Evaluation of robustness). Each detected wave-
form consists of 48 samples and represents a time duration of
1.6 ms, containing the 15 samples before and 32 samples after
the threshold crossing event. The value at each sampling interval
is the corresponding ampl itude represented in micro-volts.

Data labeling

We cast the problem of spike classification as a super-
vised learning task. This means that ground-truth labels
were required to train a machine learning model. In a single

recording session, a single channel records hundred and some-
times thousands of unlabeled waveforms. Moreover, we con-
sidered eight subjects and 136 recording sessions, resulting in
31.21 million unlabeled waveforms which may correspond to
neural events (action potentials) or any other external events
(e.g. artifacts from muscle activity or noise). We labeled the
data in a semi-automatic method consisting of the following
steps: first, we applied principal component analysis (PCA) on
all detected waveforms of a channel. Second, we visualized the
first two principal components of a subset of waveforms (see
figures 1(a2) and (b2)), which capture the direction of highest
variability in the data. After visual inspection, we employed
a Gaussian mixture model (GMM) on the datapoints in PCA
space to assign them to clusters, as shown in figures 1(a2) and
(b2). The number of clusters with their corre sponding centroids
(initial points) were defined manually. In some cases, semi-
automatic labeling provides unsatisfactory results. Therefore,
in such cases after visual inspection of the clustered points, the
waveforms were entirely manually labeled.

Batch size

It is hard even for expert neuroscientists to classify a single
event as a spike (neural activity) or as an artifact (non-neural
activity) in the absence of other events (figure 2(a)). However,
when a batch of waveforms of the same channel is considered,
the decision becomes much easier if the waveform in ques-
tion is a spike (figure 2(b2)) or an artifact (figure 2(b1)). Here,
we tried to replicate the way humans sort spikes by including
context in our feature vectors. A single feature vector is con-
structed by concatenating a batch of waveforms, regardless
of their category, thus, enabling SpikeDeeptector to aggregate
the statistics of the inputs in a better way.

Figure 1. The process of labeling data for two different kinds of channels. (a1) Labeled waveforms of a channel. (a2) First two principal
components of the waveforms in (a1), colored to reflect the result of the clustering algorithm (GMM). The two clusters are easily
discriminable: the blue cluster corresponds to neural data and the grey cluster corresponds to artifact. (b1) Labeled waveforms of another
channel recorded during the same recording session as (a1). (b2) First two principal components of the waveforms in (b1). Cluster centroids
(initial points) were defined manually and allowed the GMM to approximate the probability distribution functions (PDFs). Here, two
clusters are not well separated and visual inspection is required. As a result of visual inspection, a few waveforms along the boundaries
of clusters were re-labeled manually. After visual inspection and re-labeling, blue cluster corresponds to neural data and grey cluster
corresponds to artifacts.

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

5

Concretely, a single feature vector x is constructed by con-
catenating a batch of b waveforms of length w (in samples)
together, resulting in a vector xεRb×w. The batch size b is always
a positive integer (bεN+) and is considered a hyperparameter.

We labeled a feature vector x as a ‘spike’ (i.e. containing a
spike) if at least one of the concatenated events was labeled as
a spike during the labeling. Alternatively, if all the concat-
enated events represent non-neural activities, then x was
labeled as an artifact. For example, for b = 20, x would com-
prise twenty successive events of a channel concatenated
together, and if any of the twenty events was labeled as a
spike then, the x was labeled as a spike. Alternatively, if all
of twenty individual waveforms were labeled as artifacts, then
the x was labeled as an artifact.

Here, we only try to classify which batch of the waveforms
contain spikes, and not how many and which of the wave-
forms in batch represents spikes. Individual event classifica-
tion would be the next step.

Data distribution for training algorithm and evaluation
of generalization

The complete dataset contains 31.21 million labeled wave-
forms. Using a batch size of b = 20, that yields 1.56 million
labeled feature vectors. The total number of feature vectors
resulting from every single individual during recording ses-
sions are shown in table 2.

In machine learning, generalization is the most significant
quality of the algorithm. That means the evaluation perfor-
mance of the algorithm on unseen data plays a pivotal role.
Therefore, for training the algorithm, we used a small subset
of data, compiled from the first six recording sessions of a
subject U1. This training dataset comprised 40 657 feature
vectors (2.6% of the total dataset). We then evaluated the
trained model on the portion of data not used for training.

Figure 3 illustrates the distribution of the labeled feature
vectors of both classes within the training set. The ‘spike’ class
contains feature vectors with varying numbers of events repre-
senting artifacts, starting from no-contamination (0 artifacts)
to maximally-contaminated (19 artifacts), whereas the feature
vectors representing the ‘artifact’ class contain events that
exclusively represent artifact/noise. In the available dataset,
the spike class provided only 37% of feature vectors (15 024),
while the artifact class holds the remaining 63% of the feature
vectors (25 633). To avoid biases while training the algorithm,
we also prepared a more balanced dataset by performing sub-
sampling on the data of both classes. We selected a dataset
D = {

(
x1, y1

)
, ,

(
xN , yN

)
} with N = 30 000 labeled

examples, where xi refers to ith feature vector and yi to the
corresponding class label. From each class, 15 000 feature
vectors were selected at random.

We then sliced the dataset D into a training set Dtr con-
taining 70% percent of the data and a validation set Dva con-
sisting of the remaining 30%. Dtr was used to optimize the
parameters of the machine learning model and the hyper-
parameters of the employed optimization algorithm during
training. Dva was used to evaluate how well the machine
learning model performs on unseen data during training.

Figure 2. Illustrative example: explains the process of construction of the feature vectors by concatenating the batch of waveforms
and shows the significance of Contextual learning. (a) Shows the single unlabeled waveform, (b1) and (b2): shows the concatenated w
waveforms of two different channels representing neural data (spikes) and external artifacts. (b1): shows the unlabeled waveform, when put
into context of other events can be assigned as artifact. (b2): shows the similar unlabeled waveform, when put into context of other events
can assigned with label of spike.

Table 2. Number of feature vectors per patient.

Patient id No. of feature vectors

U1 756 802
U2 436 898
M1 3980
M2 5251
M3 874
M4 13 589
M5 342 951
M6 591

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

6

This validation error was used as a stopping criterion for the
training process. Training terminated if the validation error
stopped decreasing or remained the same for six consecutive
epochs.

SpikeDeeptector algorithm

The machine learning models were trained on Dtr , with
the goal to predict the correct label yi for each feature
vector xi using the output of a learnable parametric decoder
g (xi; θ) : xi ∈ Rb×w → yi by learning the parameters θ, itera-
tively from Dtr .

We implemented SpikeDeeptector in two variations,
SpikeDeeptector CNN and SpikeDeeptector FNN, to compare
two of the most popular forms of neural network architectures.
SpikeDeeptector CNN follows the standard architecture for
CNN (LeCun et al 1998) and SpikeDeeptector FNN follows
the standard architecture for fully connected neural networks
(FNN) (Goodfellow et al 2016). Both variants followed the
standard end-to-end machine learning pipeline. End-to-end
learning is decomposed in two parts: The first part maps the
raw feature space xi into the more meaningful feature space
Φ (xi; θΦ) with the learnable parameter matrices θΦ. The
second part consist of a classifier f with the parameter matrix
θf , which maps the feature space Φ into decision space g. The
parameters θΦ and θf were learned simultaneously using Dtr
by iteratively minimizing a single cost function.

Input representation and the architecture of SpikeDeeptector
convolutional neural network (SpikeDeeptector CNN)

We represented the input as a 2D array with the number of
time steps as width and the batch size as height (figure 4).

To classify raw input, we employed the standard architec-
ture of CNN used in computer vision tasks, as explained in
Krizhevsky et al (2012) and Guo et al (2017). This generic
CNN architecture can extract a wide range of features.

SpikeDeeptector CNN contains four convolutional layers
and three pooling layers, followed by a fully connected neural
network with one hidden layer and a Softmax classifier (Duan
et al 2003) as an output layer (see figure 4). During forward
propagation, each filter at each layer is convolved across the
width and height of the input volume and then slides with
stride = 1 over the width and height of the input volume. The
result consists of 2D convolved feature maps. These feature
maps are then further processed through nonlinear activa-
tion maps. We used Rectified Linear Units (ReLUs), where
f (x) = max (x, 0), as the activation function (Nair and Hinton
2010).

The first convolutional layer performs convolution across
time and tries to learn temporal patterns from the training data
as shown in figure 4. The second convolutional layer performs
convolution across space (batch size) and tries to learn the
spatial pattern; as a result, it enables contextual learning (see
figure 4). The subsequent convolutional layers perform convo-
lution across time as shown in figure 4. The size and number
of filters at each convolutional layer is illustrated in figure 4.

Except for the 1st convolutional layer, each convolutional
layer is followed by a pooling layer. We used max pooling to
downsample the convolved feature map and to extract more
abstract features. The size of each pooling window has height
1 and width 2 in the architecture of SpikeDeeptector CNN
defined in figure 4.

We padded zeros across the width of the input volume.
The zero padding was also added across the width before per-
forming downsampling at conv3 and conv4 in figure 4.

Figure 3. Distribution of training data and construction of the feature vector from the batch of waveforms, subject id: U1, Number of
sessions: 6. In this example, with batch size = 20, 20 waveforms were concatenated to get a single feature vector. The range of ‘spike’ class
feature vectors starts from no contamination, where every single concatenated waveform represents spike event, and ends at maximally
contaminated, where 19 of the concatenated waveforms represent artifact events and only one waveform represents spike event. The feature
vectors representing the ‘artifact’ class were created by concatenating the waveforms that exclusively represent artifacts events. 37% of data
represents feature vector of the spike class and the remaining 63% of data represents feature vectors of the artifact class.

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

7

Regularization techniques and optimization algorithm

We used batch normalization as a regularization technique,
which standardizes intermediate outputs of SpikeDeeptector
CNN to zero mean and unit variance, for the training exam-
ples equal to mini-batch size (Ioffe and Szegedy 2015). This
helps the employed optimization algorithm during training by
keeping inputs closer to normal distribution. The batch nor-
malization is applied to the output of the convolutional layer
before nonlinearity (ReLUs), as suggested in the original paper
by (Ioffe and Szegedy 2015). We applied dropout as another
regularization technique, which randomly sets the values of
some input neurons to zero (Srivastava et al 2014). Finally, we

added an L2 regularization (Krogh and Hertz 1991) term in the
cross-entropy cost (Mannor et al 2005) function J as shown in
equation (1), which ensures small values of all weight param-
eters (θw) to prevent the domination of a single weight param-
eter on the decision of the classifier. The equation contains two
terms. The first term is the usual cross-entropy cost to penalize
misclassifications, if it predicts giε (0, 1) instead of the true
label yiε{0, 1} for the ith training example xi. The second
term represents the sum of the square of all the weights in the
above defined architecture, also referred to as L2 regulariza-
tion. This term is scaled by a factor λ2n, where λ is a (positive)
hyperparam eter and n is the mini-batch size.

Figure 4. Architecture of SpikeDeeptector CNN. (a) Process of mapping input space into decision space. The input is convolved with
layers of kernels to get convolved feature maps. The pooling layer downsamples the convolved feature maps. The output of each layer
becomes the input of the subsequent layer. Finally, the Softmax classifier is used to produce an output decision. (b) Size, stride, and number
of kernels along with employed activation function to get the convolved feature map. Max pooling is used to downsample the convolved
feature map. The size and stride of the pooling is also documented.

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

8

J (θ) =
−1
n

n∑
i=1

[yi ln (gi) + (1 − yi) ln (1 − gi)] +
λ

2n

∑
θw

θ2
w.

 (1)
We used the mini-batch gradient descent with momentum
(Qian 1999) as an optimization technique to update the values
of weights and biases. The mini-batch gradient decent with
momentum considers n training examples to compute a
moving average of the gradients (see equation (2)) and then
update the weights and biases in a single iteration (θj rep-
resents jth learnable parameter). The required derivatives
were calculated by employing the backpropagation algorithm
(Rumelhart et al 1986). The term γ in equation (3) is referred
as momentum, which is also a hyperparameter.

Vt = γV(t−1) + (1 − γ)

(
1
n

n∑
m=1

∂j (θ)
∂θm

j

)
 (2)

θj := θj − αVt. (3)

Tuning of hyperparameters

The learning rate α in the mini-batch gradient descent with
momentum (SGDM, equation (3)) started at α = 0.1 and was
tuned in a piecewise manner, decreasing by a factor of 10
every 5 training epochs. The momentum γ in SGDM (equa-
tion (2)) was selected to be 0.9, so that the algorithm consid-
ered the last 10 iterations to calculate the moving average Vt

of the gradients (equation (3)). Besides that, the mini-batch
size n in equation (2) depends on the available GPU-memory.
We used n = 256, which was the optimized value for our
hardware.

We performed a grid search from 0 to 5, with a step size
of 0.2, to tune λ of L2 regularization (see equation (1)) and
found λ = 1.8 to be the optimized value. We also used the
early stopping criteria to avoid overfitting by monitoring
the validation error on validation data Dva, at each epoch. If
the validation error of six consecutive epochs increased or
remained the same, the training terminated. Lastly, dropout
regularization used a probability of 0.5 to determine whether
to drop an input neuron.

We have compared the classification accuracy of
SpikeDeeptector CNN with another variant of SpikeDeeptector
called SpikeDeeptector fully connected neural network.

The architecture of SpikeDeeptector Fully connected neural
network (SpikeDeeptector FNN)

The feature matrix x ∈ Rb×w was first reshaped into a
vector x ∈ R(b×w)×1 (see figure 5). Here, the batch size b
was considered 20 and w = 48, resulting in a feature vector
x ∈ R960×1. The input feature vector propagates forward from
input to hidden layers to output layer (figure 5). The number
of neurons in the hidden layers are 500, 250 and 125, and the
output layer contains two neurons.

We used Rectified Linear Units (ReLUs), with
f (x) = max (x, 0), as an activation function (Nair and Hinton

Figure 5. Architecture of SpikeDeeptector fully connected neural network. The input propagates through the input layer, three hidden
layers, and an output layer. The number of neurons in each hidden layer are 500, 250, 125; there are two neurons in the output layer.
Neurons of the following layer are fully connected to the neurons of the preceding layer.

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

9

2010) and Softmax classifier at the last layer (Duan et al
2003).

We used the same regularization and optimization tech-
niques as explained in section Regularization techniques
and optimization algorithm.

We tuned the hyperparameters of the above defined archi-
tecture, in a similar way as described in section Tuning of
hyperparameters. However, the optimized value of λ for L2
regularization was found to be 2.4 using the same grid search
method described above.

We used the ‘Deep learning’ and the ‘Neural Networks’
tool boxes of MATLAB (The MathWorks, Inc) to define and
train the deep-learning algorithms. The source code is avail-
able online (https://github.com/saifhanjra/SpikeDeeptector).

Assigning labels to channels

The current SpikeDeeptector algorithm can only predict the
labels of feature vectors (see section SpikeDeeptector algo-
rithm). However, the main aim of this study is to classify the
given channel as neural or artifact. Therefore, we introduced
a very simple criterion to assign labels to entire channels
y(channel)predby calculating the mode of the predicted out-
putsypred of all the feature vectors of the given channel (see
equation (4)).

y(channel)pred = mode(ypred). (4)

We predicted the labels of all channels (see equation (4)) and
assigned reliability tags of those predictions which fall in
three defined categories: reliable prediction, partially reliable
prediction, and unreliable prediction. To assign the reliability
tag to the predicted output of the channel y(channel)pred, we
calculated percentage of y(channel)pred from predicted out-
puts ypred . If the calculated percentage is greater than 80%,
it will be considered as a reliable prediction; if it is between
80% and 60%, it will be considered as partially-reliable; and,

if it is between 50% and 59%, then it will be considered as
an unreliable prediction. The thresholds (percentages) of the
defined reliability state show the certainty of acquired deci-
sions and can be freely adjusted.

Results

Training and evaluation

We compiled a training dataset from the first six recording
sessions of subject U1. The distribution of training data and
the exact number of feature vectors cast from each patient
is explained in section Data distribution for training
algorithm and evaluation of generalization. We trained
SpikeDeeptector CNN and SpikeDeeptector FNN on the Dtr
(training data). The training and the validation loss (regular-
ized cross-entropy) of both models were monitored during
training on Dtr and Dva (see figure 6), respectively. The
process of training was terminated once the validation error
stopped decreasing or remained unchanged for six consecu-
tive epochs. During training, SpikeDeeptector CNN achieved
its minimum validation error (0.027) at the 14th epoch, as
shown in figure 6(a). After that, there is a rise in validation
error and then it remains approximately constant. Training ter-
minated at the 20th epoch. Similarly, SpikeDeeptector FNN
achieved its minimum validation error (0.071) at the 17th
epoch and training terminated at the 23rd epochs, as shown
in figure 6(b). The values of parameters (weights and biases)
were saved at lowest validation error and were later used to
map test inputs to the decision space.

The architecture of SpikeDeeptector CNN is explained
in the section Input representation and the archi-
tecture of SpikeDeeptector Convolutional Neural
Network (SpikeDeeptector CNN) and the architecture
of SpikeDeeptector FNN is explained in the section The
architecture of SpikeDeeptector Fully Connected
Neural Network (SpikeDeeptector FNN). The process of

Figure 6. Training and validation cost of SpikeDeeptector variants (a) training and validation cost of SpikeDeeptector CNN (b) training
and validation cost of SpikeDeeptector FNN.

J. Neural Eng. 16 (2019) 056003

https://github.com/saifhanjra/SpikeDeeptector

M Saif-ur-Rehman et al

10

optimizing parameters of defined architecture is explained
in the section Regularization techniques and optim ization
algorithm and the process of tuning hyperparameters of
optim ization algorithm and the tuning of hyperparameters of
regularization algorithms are explained in the section Tuning
of hyperparameters.

Evaluation of generalization

The generalizability of the trained models was evaluated using
data from eight patients that remained unseen during training.
These patients were implanted with either Utah arrays or

microwires, targeting different brain structures and performing
different types of behavioral tasks under various experimental
and recording conditions. The performance of the trained
classifiers on data collected from patients implanted with Utah
arrays and microwires is shown separately in tables 3 and 4,
respectively.

The data distribution of the patients implanted with Utah
arrays is unbalanced. 34.4% of these data were labeled ‘spike’
and the remaining 65.6% of the data were labeled ‘artifact’
(table 3). Therefore, the evaluation accuracy of each individual
class is more important than the cumulative accuracy. The
main goal of the classifier is to detect and track the channels

Table 3. Classification accuracy of trained models (SpikeDeeptector CNN and SpikeDeeptector FNN) on the data collected from patients
implanted with Utah arrays.

Table 4. Classification accuracy of trained models (SpikeDeeptector CNN and FNN) on the data collected from all patients implanted with
microwires.

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

11

containing neural data. The accuracy of SpikeDeeptector
CNN and SpikeDeeptector FNN on the ‘spike’-labeled
feature vectors is 94.6% and 92.6%, respectively, with
SpikeDeeptector CNN outperforming SpikeDeeptector FNN
by 2%. The evaluation performance of SpikeDeeptector CNN
and SpikeDeeptector FNN on the ‘artifact’-labeled feature
vectors is 97.9% and 98.6%, respectively. The overall acc-
uracy of SpikeDeeptector CNN and SpikeDeeptector FNN is
96.7% and 96.5% (table 3).

The data distribution of patients implanted with microwires
is even more unbalanced. Only 1.65% of the data represent
feature vectors of class ‘spike’ and remaining 98.35% data rep-
resent feature vectors of class ‘artifact’ (table 4). Accuracy of
SpikeDeeptector CNN and SpikeDeeptector FNN on the ‘spike’
feature vectors is 97.2% and 91.9%. Here, SpikeDeeptector
CNN outperforms SpikeDeeptector FNN with a difference in
evaluation performance of 5.3%. The evaluation performance
of SpikeDeeptector CNN and SpikeDeeptector FNN on the
‘artifact’ feature vectors is 98.9% and 98.6%. The overall
accuracy of SpikeDeeptector CNN and SpikeDeeptector FNN
is 98.9% and 98.6% (table 4).

The results in tables 3 and 4 show the classification acc-
uracy of SpikeDeeptector CNN and SpikeDeeptector FNN on
feature vectors constructed by considering all the recording
sessions of Utah array and microwire patients. To evaluate
the consistency of both models, we tested them on the feature
vectors of all individual patients (see supplementary tables 12
and 13 (stacks.iop.org/JNE/16/056003/mmedia)) and on the
feature vectors constructed exclusively from some specific
channels of selected recording sessions (see supplementary
tables 14–17). For a few recording sessions of different sub-
jects, we also evaluated SpikeDeeptector CNN specifically at
each channel, separately. For more details, see supplementary
material: Reliability evaluation. The overall performance of
SpikeDeeptector CNN and SpikeDeeptector FNN is compa-
rable as shown in tables 3 and 4, supplementary tables 12 and

13. However, across all the recording sessions of individual
patients, SpikeDeeptector CNN consistently outperforms
SpikeDeeptector FNN on the feature vectors corresponding to
‘spike’ class (see supplementary tables 12 and 13). As a result,
SpikeDeeptector CNN produces fewer false negatives, which
are usually less desirable for neuroscientific analyses including
online BCI. The results shown in supplementary material:
Reliability evaluation also show that SpikeDeeptector CNN
has successfully generalized across different data sources.

Impact of batch size

The box plots in figure 7 show the classification accuracy on
the validation data Dva, when SpikeDeeptector CNN is trained
and evaluated ten times for each batch size. The time on the
x-axis, which is also referred to as batch accumulation time
(BAT), is the average time across all channels to accumulate
waveforms equal to the corresponding batch size. The valida-
tion accuracy remains consistent during most of the training
trials at the corresponding batch size. However, there are few
outliers at three different points (batch size =65, 80, 100).
Based on Tukey’s rule, we considered the classification acc-
uracy as an outlier if it is larger than the 3rd quartile (Q3) by at
least 1.5 times the interquartile range (IQR), or smaller than
1st quartile (Q1) by at least 1.5 times the IQR .

Classification accuracy increases with increasing batch size
(see figure 7), but BAT also increases. This trade-off between
the classification accuracy and choosing the right batch size
needed to be optimized. The classification accuracy with batch
size 20 was 97.5% and reached 99.5% with batch size 65 before
saturating. BAT is a critical factor in online decoding, however,
and the time to construct a feature vector with batch size = 10
is 280 ms, which provides an acceptable classification of 97%
with SpikeDeeptector CNN. Therefore, it is possible to con-
struct a feature vector and track neural data from each channel
during online decoding. On the other hand, for offline spike

Figure 7. Impact of batch size on classification accuracy and time to construct feature vector ‘BAT (sec)’. Time on the x-axis shows the
mean time (calculated on the dataset D) to accumulate the number of waveforms required by the corresponding batch size. The red dots are
outliers (see text). The y -axis shows classification accuracy.

J. Neural Eng. 16 (2019) 056003

http://stacks.iop.org/JNE/16/056003/mmedia

M Saif-ur-Rehman et al

12

sorting there may be more leeway to choose a larger batch size,
up to b = 65 where classification acc uracy saturates at 99.5%
for SpikeDeeptector CNN. We chose b = 20 for the remaining
analyses in this research work, but we note that the selection of
batch size depends on the application.

Tracking of neural data

Units on a channel can vanish or new units can appear over
the recording period. Another important aspect of this work
is to track the presence or absence of neural units on channels
continuously at runtime. We support this claim by employing

SpikeDeeptector CNN on the data of three different kinds of
channels (figure 8), where the presence of a unit is stable,
less stable or unstable. A fluctuation between presence and
absence of neural units takes place occasionally in partially
stable channels and much more frequently in unstable channels
(shown in figure 8). On stable channels a unit is either present
or absent during one complete recording session, as shown in
figure 8. This result provides evidence that SpikeDeeptector
CNN tracks the presence or absence of units comprehensively
on all types of channels. Classifying a channel as stable or
unstable can help determining which channels are useful, for
example in BCI applications.

Figure 8. Performance of SpikeDeeptector CNN on tracking of neural data on different types of channels (stable, partially stable, unstable).

Figure 9. Randomly selected correctly classified examples. The events representing spikes are shown in blue and events presenting artifacts
are shown in grey color.

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

13

Figure 10. Randomly selected wrongly classified examples. The events representing spikes are shown in blue and events presenting
artifacts are shown in grey color.

Table 5. Performance comparison of SpikeDeeptector CNN and SpikeDeeptector FNN with human experts across the selected recording
session of subject U1.

Labeled by
Total spike
channels (out of 96)

Total artifact
channels (out of 96) False positives False negatives

SpikeDeeptector CNN 19 77 0 0
SpikeDeeptector FNN 18 78 0 1
Human expert 1 20 76 1 0
Human expert 2 16 80 0 3
Human expert 3 17 79 0 2
Human expert 4 17 79 1 3

Table 6. Performance comparison of SpikeDeeptector CNN and SpikeDeeptector FNN with human experts across the selected recording
session of subject U2.

Labeled by
Total spike
channels (out of 96)

Total artifact
channels (out of 96) False positive False negative

SpikeDeeptector CNN 16 80 2 0
SpikeDeeptector FNN 14 82 2 2
Human expert 1 14 82 0 0
Human expert 2 12 82 0 2
Human expert 3 12 82 0 2
Human expert4 10 86 0 4

Table 7. Assigning reliability labels to the predicted outputs of SpikeDeeptector FNN and SpikeDeeptector CNN for the selected recording
session of subject U1.

Reliable
predictions: spike
(correct, wrong)

Reliable
predictions: artifact
(correct, wrong)

Partially-reliable
predictions: spike
(correct, wrong)

Partially-reliable
predictions: artifact
(correct, wrong)

Unreliable
predictions: spike
(correct, wrong)

Unreliable
channel: artifact
(correct, wrong)

SpikeDeeptector
CNN

(18, 0) (77, 0) (1, 0) (0, 0) (0, 0) (0, 0)

SpikeDeeptector
FNN

(15, 0) (77, 0) (2, 0) (0, 1) (1, 0) (0, 0)

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

14

Visualization of correctly and wrongly classified examples

We selected a small subset of correctly and wrongly classified
input for the sake of visualization and evaluation of the perfor-
mance of SpikeDeeptector CNN. The examples were selected
randomly from all 136 recording sessions and are shown in
figures 9 and 10.

Performance comparison of SpikeDeeptector
CNN with its counterparts

We assigned labels to channels based on the criteria explained
in the methods section (see Assigning labels to channels). We
then compared the classification accuracy of SpikeDeeptector
CNN with SpikeDeeptector FNN and with four human experts
(see tables 5 and 6). For this evaluation, we selected one
recording session from each of the subjects with implanted
Utah arrays (U1 & U2). Single Utah array contain 96 chan-
nels. The evaluation performance of SpikeDeeptector CNN,
SpikeDeeptector FNN and the other participants (human
experts) is given in tables 5 and 6.

In the recording session selected from subject U1,
SpikeDeeptector CNN performed slightly better than
SpikeDeeptector FNN and all other participants (see table 5).
SpikeDeeptector CNN predicted ‘spike’ channels and ‘arti-
fact’ channels with 100% accuracy. However, the average
accuracy of human experts is 89.47% for correctly predicting

‘spike’ channels and 99.35% for correctly predicting ‘artifact’
channels. Here, SpikeDeeptector FNN predicts the ‘spike’
channels with 94.74% accuracy, and ‘artifact’ channels with
100%.

For the recording session from subject U2, SpikeDeeptector
CNN achieved 2nd rank by making two mistakes (false posi-
tives), as shown in table 6. It has predicted all ‘spike’ chan-
nels correctly (100% accuracy), but wrongly predicted two
‘Artifact’ channels as ‘spike’ channels (false positives)
(97.57% accuracy). Average human expert accuracy is
85.71% for ‘spike’ channels and 100% for ‘artifact’ chan-
nels. SpikeDeeptector FNN predict the ‘spike’ channels with
85.71% accuracy, and the ‘artifact’ channels with 97.57%
accuracy.

In order to compare SpikeDeeptector CNN and
SpikeDeeptector FNN in terms of prediction reliability, we
also assigned reliability tags (Assigning labels to chan-
nels)to the above predicted outputs of both SpikeDeeptector
CNN and SpikeDeeptector FNN as shown in tables 7 and 8.
SpikeDeeptector CNN has a performance of 100% for the U1
dataset (table 5). More importantly, only one correct predic-
tion has been assigned with label ‘Partially reliable prediction:
Spike’, and all other correct predictions are reliable predic-
tions (table 7). SpikeDeeptector FNN had one false negative
for this same dataset (table 5), but more predictions were
assigned with the tags ‘Partially reliable predictions: Spike’,

Table 8. Assigning reliability labels to the predicted outputs of SpikeDeeptector FNN and SpikeDeeptector CNN for the selected recording
session of subject U2.

Reliable
predictions:
spike
(correct,
wrong)

Reliable
predictions:
artifact
(correct,
wrong)

Partially-reliable
predictions: spike
(correct, wrong)

Partially-reliable
predictions: artifact
(correct, wrong)

Unreliable
predictions:
spike (correct,
wrong)

Unreliable
predictions:
artifact
(correct,
wrong)

SpikeDeeptector CNN (14, 0) (80, 0) (0, 0) (0, 0) (0, 2) (0, 0)
SpikeDeeptector FNN (12, 0) (80, 0) (0, 1) (0, 2) (0, 1) (0, 0)

Figure 11. Average accuracy of SpikeDeeptector CNN (with one standard deviation) across the channels labeled as ‘spike’ and ‘artifact’,
on the data of two different recording sessions of microwire subjects, rethresholded at four different values starting from −4.5 to −3.5
times RMS of high pass filtered signal (cutoff frequency = 250 Hz), with step size of −0.25. (a) Average accuracy with one standard
deviation of SpikeDeeptector CNN at different thresholding levels across the recording session of subject M1. For the recording session of
M1, only one channel is labeled as ‘artifact’. Therefore, standard deviation is not shown. (b) Average accuracy with one standard deviation
of SpikeDeeptector CNN at different thresholding levels across the recording session of subject M4. For the recording session of M4, only
one channel is labeled as ‘spike’. Therefore, standard deviation is not shown.

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

15

‘Partially reliable predictions: Artifact’ and ‘Unreliable pre-
dictions: Spike’ (table 7). Similarly, the same trend can be
seen for the dataset from subject U2 (table 8). Because the
assigned reliability tag to the predicted output is an indication
of the certainty of the prediction, partially reliable or unstable
outcomes may need to be reviewed by the researcher. As an
example, SpikeDeeptector CNN has two prediction mistakes
(false positives) (see table 6) in the recording session of subject
U2, which were assigned with tag of ‘Unreliable prediction’.

We show in tables 3 and 4, supplementary tables 12 and
13 that SpikeDeeptector CNN has classified fewer false nega-
tives as compared to SpikeDeeptector FNN, across the data
collected from all the subjects (Utah array and microwires).
This prediction behavior of SpikeDeeptector CNN can also

be observed when predicting channel labels instead of fea-
ture vectors (see tables 5 and 6). That means SpikeDeeptector
CNN can consistently detect channels with label ‘spike’
more robustly as compared to SpikeDeeptector FNN. The
results shown in tables 5 and 6 show that SpikeDeeptector
CNN produces the least false negatives when compared with
SpikeDeeptector FNN and even human experts. False nega-
tives are potentially harmful because useful channels can be
lost. In terms of false positives, SpikeDeeptector CNN and
SpikeDeeptector FNN have comparable performance (tables
5 and 6). Finally, SpikeDeeptector CNN’s predictions are
more reliable than SpikeDeeptector FNN’s (tables 7 and 8).
For these reasons, SpikeDeeptector CNN is preferred over
SpikeDeeptector FNN.

Figure 12. Average accuracy (with one standard deviation) of SpikeDeeptector CNN across the channels labeled as ‘spike’ and ‘artifact’,
on the data of selected channels of two different recording sessions of Utah array subjects, rethresholded at four different values, starting
from −4.5 times RMS of high pass filtered signal (cutoff frequency = 250 HZ) and stops at −3.5 times RMS of high pass filtered signal
(cutoff frequency = 250 Hz), with step size of −0.25. (a) Average accuracy with one standard deviation of SpikeDeeptector CNN at
different thresholding levels of subject U1 for both classes. (b) Average accuracy with one standard deviation of SpikeDeeptector CNN at
different thresholding levels of subject U2 for both classes.

Table 9. Evaluation of the performance of SpikeDeeptector CNN at different sampling rates across the recording session of subject U1.

Sampling rate (kHz)
Total spike
channel (out of 96)

Total artifact
channel (out of 96)

False positive
(out of 96)

False negative
(out of 96)

40 19 77 0 0
32 19 77 0 0
30 19 77 0 0
20 19 77 0 0
10 19 77 0 0
5 23 73 4 0
2.5 30 66 11 0

Table 10. Evaluation of the performance of SpikeDeeptector CNN at different sampling rates across the recording session of subject U2.

Sampling rate
(kHZ)

Total spike channel
(out of 96)

Total artifacts
channel (out of 96)

False positive
(out of 96)

False negative
(out of 96)

40 16 80 2 0
32 16 80 2 0
30 16 80 2 0
15 16 80 2 0
10 16 80 2 0
5 18 78 3 0
2.5 28 68 13 0

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

16

Evaluation of robustness

We trained the model of SpikeDeeptector CNN with the data
collected at 30 kHz sampling rate and a threshold setting
of −4.5 times root-mean-square of the high pass filtered, full
bandwidth signal with a cutoff frequency 250 Hz (see sec-
tion Data collection for more details). To see if our results
are robust, we evaluated the trained model of SpikeDeeptector
CNN in three different ways.

 1. Performance evaluation at different threshold settings.
 2. Performance evaluation at different sampling rates.
 3. Performance evaluation on a different species (non-

human primates (NHPs)) recorded using a different
acquisition system.

Evaluation of SpikeDeeptector CNN at different threshold
settings. To evaluate the performance of SpikeDeeptector
CNN on different threshold settings, we selected two record-
ing sessions of subjects implanted with microwires. For a fair
evaluation, we selected two recording sessions of different
subjects (M1 & M4) one with more channels corresponding to
class ‘spike’ and the other with more channels corresponding
to class ‘artifact’. Similarly, we selected two recording ses-
sions, one from each subject (U1& U2) implanted with Utah
arrays. From each Utah array recording session, we randomly
selected four channels with true label ‘spike’ and other four
channels with true label ‘artifact’. Then, we re-thresholded the
data of all the selected recording sessions, starting from −4.5
times root-mean-square of the high pass filtered (cutoff fre-
quency = 250 Hz) signal to −3.5 times root-mean-square of
the high pass filtered (cutoff frequency = 250 Hz) signal, with
a step size of −0.25. By reducing the threshold, we are allow-
ing low amplitude noise in the feature vectors.

For the microwire array datasets (both recording sessions),
SpikeDeeptector CNN produced comparable results at all
threshold settings (figure 11). For subject M1, the minimum
accuracy among both channel types at the most permissive
threshold level is still more than 94% (figure 11(a)), meaning
that all the channels can be labeled as reliable (see Assigning
labels to channels). The performance of SpikeDeeptector
CNN at different threshold values for data from subject M4
is similarly robust with a minimum average accuracy of more

than 90% (figure 11(b)). As a result, all the channels can be
easily correctly classified with the highest defined reliability
tag.

In case of Utah array recording sessions, overall perfor-
mance of SpikeDeeptector CNN can be seen in figure 12.
At lowest threshold setting, for both recording sessions the
average accuracy of SpikeDeeptector CNN drops considerably
on the channels corresponding to class ‘spike’ (see figure 12).
For the recording session of subject U1, at lowest threshold
setting, classification accuracy of SpikeDeeptector CNN on
individual channels corresponding to class ‘spike’ is 95.66%,
76.71%, 89.59%, and 77.59%. As a result, all the channels can
still be correctly classified, but according to defined criteria
of assigning reliability tags, two channels (76.71%, 77.59%)
will be assigned with the tag ‘Partially-reliable prediction:
Spike’. Contrarily, performance of SpikeDeeptector CNN
on most of the channels corresponding to artifacts is robust
even at the lowest threshold setting as shown in figure 12(a).
A Similar kind of behavior is observed in the recording ses-
sion of subject U2, where, at lowest threshold settings, the
classification accuracy of SpikeDeeptector CNN on the chan-
nels corresponding to ‘spike’ is 82.51%, 84.36%, 82.79%, and
79.51%. Here, the performance of SpikeDeeptector CNN on
the channels corresponding to ‘artifact’ remains unaffected as
shown in figure 12(b).

Evaluation of SpikeDeeptector CNN at different sampling
rates. Data acquisition systems for neural data operate at
various sampling rates. The Blackrock Neural Signal Proces-
sor runs with a maximum sampling rate of 30 kHz but there
are systems with higher (Plexon Inc, OmniPlex at 40 kHz) and
lower sampling rates. To test the performance of SpikeDeep-
tector CNN at different sampling rates, we resampled our data
(see tables 9 and 10). For the sake of consistency, we used
the same recording sessions of subjects implanted with Utah
arrays as before (Performance comparison of SpikeDeep-
tector CNN with its counterparts). We first resampled the
data to the desired sampling rate, and then applied interpola-
tion to normalize the number of samples in each waveform
back to 48 (the native resolution of our system). The perfor-
mance of SpikeDeeptector CNN for different sampling rates
is shown in tables 9 and 10. The performance of SpikeDeep-
tector CNN remains stable until the data is downsampled to

Table 11. Evaluation of the performance of SpikeDeeptector CNN and SpikeDeeptector FNN on two different publicly available datasets
(CRCNS—PMD 1, CRCNS-PPC1).

Data set Recording hardware Electrode type
Subject
id

Place of
implantation

Ground truth:
no. of spike
channels

Predicted label
(SpikeDeeptector
CNN): no. of
spike channels

Predicted label
(SpikeDeeptector
FNN): no. of
spike channels

CRCNS—PMD
1

Black-rock Utah array MM M1 45 44 40

CRCNS—PMD
1

Black-rock Utah array MM PMD 51 51 47

CRCNS—PMD
1

Black-rock Utah array MT PMD 34 32 24

CRCNS—PPC 1 Plexon Single
microelectrodes

X/ B PPC 5 5 3

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

17

less than 10 kHz. Further reduction of the sampling rate dras-
tically reduced the performance of SpikeDeeptector CNN
(see tables 9 and 10). A similar behavior has been reported in
Navajas et al (2014), where the authors evaluated the perfor-
mance of a spike sorting algorithm at different sampling rates.

Evaluation of SpikeDeeptector CNN on the data recorded
from NHPs using different data acquisition systems. We
evaluated the trained models of SpikeDeeptector CNN and
SpikeDeeptector FNN on two publicly available labeled data-
sets (CRCNS-PMD1 & CRCNS-PPC1) (table 11) (Shi et al
2013, Lawlor et al 2018). These datasets contain data from
three NHPs, recorded from three different regions of the brain
(M1, PMD, PPC). Some of the data were recorded using a dif-
ferent recording system (Plexon, Inc.) and a different type of
electrode (single microelectrodes). The dataset recorded with
the Plexon system represents waveforms with 16 samples, so
interpolation was required. Further details on the dataset can
be found here (Shi et al 2013, Lawlor et al 2018). The perfor-
mance of SpikeDeeptector CNN and SpikeDeeptector FNN
is given in table 11. Here, SpikeDeeptector CNN performed
much better than SpikeDeeptector FNN. However, both data-
sets only contain data from channels where at least one unit
is present.

Discussion

In this study, we presented two variants (SpikeDeeptector
CNN, SpikeDeeptector FNN) of an algorithm we call
‘SpikeDeeptector’, which discriminates SUA and MUA chan-
nels from channels recording only noise. SpikeDeeptector
works with data collected from different subjects, brain areas,
recording sessions and different types of recording micro-
electrodes. The evaluation performance of SpikeDeeptector
CNN and SpikeDeeptector FNN on the data collected from
eight subjects (see tables 3 and 4, supplementary tables 12 and
13) show that the trained models can generalize to new data.
The overall performance of both models (SpikeDeeptector
CNN& SpikeDeeptector FNN) is generally comparable.
However, SpikeDeeptector FNN seems to be more prone to
false negatives which is usually less desirable for neurosci-
entific analyses, especially for online BCI. We showed that
SpikeDeeptector CNN makes fewer mistakes on the fea-
ture vectors representing spike (neural data) as compared
to SpikeDeeptector FNN, across the data collected from all
the subjects (Utah array and microwires) (tables 3 and 4,
supplementary tables 12 and 13). SpikeDeeptector CNN
performs similarly when predicting channels labels instead
of feature vectors labels (tables 5 and 6). This finding sug-
gests SpikeDeeptector CNN can detect neural channels more
robustly compared to SpikeDeeptector FNN. SpikeDeeptector
CNN produces the fewest false negatives across feature vec-
tors and channels compared to SpikeDeeptector FNN and
human experts (tables 5 and 6). SpikeDeeptector CNN also
outperformed SpikeDeeptector FNN on the publicly available

NHP dataset (see table 11). Finally, SpikeDeeptector CNN’s
predictions are more reliable as compared to SpikeDeeptector
FNN’s (tables 7 and 8).

We showed some correctly and the wrongly classified
examples (see figures 9 and 10). The correctly classified
examples confirm that SpikeDeeptector CNN properly dis-
tinguished neural data from artifacts. Some of the wrongly
classified examples are very difficult even for human experts
to classify, e.g. events representing spikes in figure 10 (top
left) and some of the events representing artifacts (figure 10;
bottom right).

We trained the SpikeDeeptector CNN model on data col-
lected at 30 kHz sampling rate and a threshold setting of −4.5
times the root-mean-square of the noise in the high pass fil-
tered signal (see section Data collection for more details). We
evaluated the robustness of our algorithm to different sam-
pling rates, electrode types, threshold settings, and acquisition
systems. The results in Evaluation of robustness show that
SpikeDeeptector CNN consistently performed best. We also
showed that our algorithm runs competitively across species
using different acquisition systems and implanted with dif-
ferent kinds of electrodes.

Over the years many other studies on automatic spike detec-
tion have been published (Kim and McNames 2007, Ji et al
2011, Wen-Jyi et al 2014, Gerhard et al 2018). In Kim and
McNames (2007), the authors proposed a method to detect
spikes called ‘adaptive template matching’. This proposed
method detects the spike events by processing the input signal
x(n) in four different stages. In the first stage the inputs signal
x (n) is enhanced to detect peaks by calculating the instanta-
neous powerxp(n) of x (n), and by applying low pass filter with
a cutoff frequency equal to the maximum firing rate fmax of the
neurons, which must be specified by the user. In the second
stage, the estimation of probability density function (PDF)
of similarity maxima is required to estimate the threshold.
In the third stage, the detected spikes are used to estimate
the template and to measure a degree similarity between the
input signal template. The signals recorded from the brain are
highly nonstationary (time varying signal) and the placement
of implanted electrodes can also change with the passage of
time. Therefore, it is possible that the same implanted elec-
trode records the activity of different sources (neurons) in two
different recording sessions, which invalidates the estimated
parameters of the algorithm proposed in Kim and McNames
(2007). Another drawback of adaptive template matching is
that it estimates a separate model for each electrode. State-
of-the-art microelectrode arrays contain hundreds of channels
and would require hundreds of parameter models, which might
then become invalidated in subsequent recording sessions.
Adaptive template matching also requires some input from
the user, e.g. neuronal firing rate, to estimate the parameters,
which is not the case in our proposed method.

There are some studies in which supervised machine
learning methods are used to detect and sort spikes (Oghalai
et al 1994, Horton et al 2007, Yang et al 2017). However, none
of these studies have investigated the generalization quality

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

18

of machine learning across different recording sessions, sub-
jects, and types of implantable electrodes.

SpikeDeeptector has several other useful applications.
During online decoding in invasive brain computer interface
(BCI) systems, feature vectors are often constructed from
threshold crossing events (Fraser et al 2009, Koyama et al 2009,
Aflalo et al 2015, Klaes et al 2015). With SpikeDeeptector
threshold crossing events not representing neuronal activity
can be easily discarded. As a result, more meaningful feature
vectors can be constructed. Moreover, it has also been shown
in previous BCI studies that units disappear or appear with the
passage of time (Sanchez et al 2004, Moritz and Fetz 2011,
Lebedev 2014). By employing SpikeDeeptector, one can auto-
matically track the presence or absence of single unit activity
at runtime (see Tracking of neural data).

Most existing spike sorting methods operate either manu-
ally or semi-automatically (Lewicki 1998, Einevoll et al 2012,
Marre et al 2012, Quiroga 2012). Many of them follow a pro-
cess pipeline, which typically includes a step of feature reduc-
tion, either for visualization, for feature vector extraction
for clustering algorithms, or for both. In such manual spike
sorting methods, human intervention is required for channel
selection and for clustering. The latter is done by examining
the features in a 2D projection and manually defining clus-
ters. Here, SpikeDeeptector can be employed to reduce the
time and effort needed at the first stage by automatically dis-
carding the channels that contain only artifacts. Another way
of manual spike sorting is the hoop technique, where different
hoops (thresholds) are defined manually at each channel of
implanted array to sort spikes from multiple neurons. The
process of defining hoops is time intensive and has to be
adjusted as signals change over time, either acutely (within
session) or chronically (across sessions). Typically, threshold
settings for hoop sorting cannot simply be reused in consecu-
tive recording sessions. It is possible that many channels of
the implanted array do not record neural data at all. Here,
SpikeDeeptector can be employed to reduce the time and
effort needed in the first stage of spike sorting by automati-
cally discarding channels that contain only artifacts, therefore
considerably reducing human effort. Hoop sorting can then be
applied on the remaining channels.

In semi-automatic spike sorting, clustering is done auto-
matically, but the user must curate in order to decide which
clusters to reject and which clusters to accept (Hill et al 2011,
Kadir et al 2014, Rossant et al 2016). SpikeDeeptector can
automatically promote ‘spike’ clusters and reject ‘artifact’
clusters (see Batch size). However, if the clustering algorithm
wrongly merged two distinct units, or a unit and artifact, or
if the clustering algorithm wrongly split a unit into two dis-
tinct clusters, the current version does not provide a solution
to manipulate clustering.

SpikeDeeptector is a supervised learning algorithm and
needs labeled data for training. We carefully labeled the
data as explained in Data labeling. However, ground truths
are based on human judgment and could contain errors.

However, this is not unusual since all big data sets in the field
of computer vision (image net, MNIST, CIFAR-100) are hand
labeled and could contain errors. Nonetheless, deep learning
algorithms usually perform well on test data even though the
possibility of ground truth errors cannot be excluded. We
showed in the result section Performance comparison of
SpikeDeeptector CNN with its counterparts that the perfor-
mance of SpikeDeeptector is comparable to different human
experts.

Source separation is another important issue that still needs
to be addressed. Although many methods exist to solve this
issue, very few of them offer fully automated spike sorting
(Chung et al 2017, Grossberge et al 2018, Hossein Nadian
et al 2018) and none of them offer a universal fully automated
spike sorter. We aim to extend the SpikeDeeptector algorithm
so that it will not only determine the presence or absence of
neural data on the channel, but also detect and track individual
neural sources, universally.

The current version of SpikeDeeptector detects and tracks
channels containing neural data recorded from multiple
human subjects and one nonhuman primate. In the future we
also want to extend the scope of SpikeDeeptector to data from
different spike types (excitatory, inhibitory) (Becchetti et al
2012), cell types, and species (rat, cat).

Conclusions

In this study, we propose a novel algorithm called
SpikeDeeptector to detect and track channels containing
neural data from implanted electrodes, automatically and uni-
versally. To the best of our knowledge, there is no method that
can universally and automatically extract channels containing
neural data. We supported our claim by evaluating our method
on the data collected from six epileptic patients implanted with
depth electrodes and two tetraplegic patients implanted with
two Utah arrays. SpikeDeeptector has potential for online and
offline automatic spike sorting in BCI applications. The sig-
nificance of SpikeDeeptector could potentially increase when
microelectrode arrays with larger sizes become available. As
a result, SpikeDeeptector could be envisioned to become an
integral part of data analysis of single cell recordings. In the
future, we aim to extend the scope of SpikeDeeptector to the
data collected from even more different species and different
types of neural cells. We also intend to extend our method so
that it detects and tracks every present neural source on the
channel.

Acknowledgments

This study was funded by the Deustche Forschungsgemein-
schafts (DFG, German Research Foundation) under proj-
ects number KL 2990/1-1—Emmy Noether Program, and
122679504—SFB 874. We would also like to acknowledge
Nina Misselwitz for providing clinical support during the
recording sessions of the epilepsy patients.

J. Neural Eng. 16 (2019) 056003

M Saif-ur-Rehman et al

19

ORCID iDs

Muhammad Saif-ur-Rehman https://orcid.org/0000-0003-
1774-7330

References

Abeles M and Goldstein M 1977 Multispike train analysis Proc.
IEEE 65 762–73

Aflalo T et al 2015 Neurophysiology. Decoding motor imagery
from the posterior parietal cortex of a tetraplegic human
Science 348 906–10

Becchetti A, Gullo F, Bruno G, Dossi E, Lecchi M and Wanke E
2012 Exact distinction of excitatory and inhibitory neurons in
neural networks: a study with GFP-GAD67 neurons optically
and electrophysiologically recognized on multielectrode arrays
Frontiers Neural Circuits 6 63

Berényi A, Somogyvári Z, Nagy A J, Roux L, Long J D,
Fujisawa S, Stark E, Leonardo A, Harris T D and Buzsáki G
2013 Large-scale, high-density (up to 512 channels) recording
of local circuits in behaving animals J. Neurophysiol.
111 1132–49

Bongard M, Micol D and Fernández E 2014 NEV2lkit: a new open
source tool for handling neuronal event files from multi-
electrode recordings Int. J. Neural Syst. 24 1450009

Carlson D E et al 2014 Multichannel electrophysiological spike
sorting via joint dictionary learning and mixture modeling
IEEE Trans. Biomed. Eng. 61 41–54

Chung J E, Magland J F, Barnett A H, Tolosa V M, Tooker A C,
Lee K Y, Shah K G, Felix S H, Frank L M and Greengard L F
2017 A fully automated approach to spike sorting Neuron
95 1381–94

Duan K, Keerthi S, Chu W, Shevade S and Poo A 2003 Multi-
category classification by soft-max combination of binary
classifiers MCS’03 Proc. of the 4th Int. Conf. on Multiple
Classifier Systems (Berlin: Springer) pp 125–34

Einevoll G T, Franke F, Hagen E, Pouzat C and Harris K D 2012
Towards reliable spike-train recordings from thousands of
neurons with multielectrodes Curr. Opin. Neurobiol. 22 11–7

Fraser G, Chase S, Whitford A and Schwartz A 2009 Control of a
brain–computer interface without spike sorting J. Neural Eng.
6 055504

Frey U, Egert U, Heer F, Hafizovic S and Hierlemann A 2008
Microelectronic system for high-resolution mapping of
extracellular electric fields applied to brain slices Biosens.
Bioelectron. 24 2191–8

Fried I, Wilson C, Maidment N, Engel J Jr, Behnke E, Fields T A,
MacDonald K A, Morrow J W and Ackerson L 1999
Cerebral microdialysis combined with single-neuron and
electroencephalographic recording in neurosurgical patients.
Technical note J Neurosurg. 91 697–705

Gerhard G, Pauly O, Franz F, Albert J C, Hannes P and Tilmann K
2018 F08. Automatic spike detection in intracerebral depth
electrode recordings Clin. Neurophysiol. 129 e69

Gibson S, Judy J and Marković D 2012 Spike sorting: the first step
in decoding the brain: the first step in decoding the brain IEEE
Signal Process. Mag. 29 124–43

Goodfellow I, Bengio Y and Courville A 2016 Deep feedforward
Network Deep Learning (Cambridge, MA: MIT Press) pp
161–217

Grossberge L, Battaglia P and Vinck M 2018 Unsupervised
clustering of temporal patterns in high-dimensional neuronal
ensembles using a novel dissimilarity measure PLoS Comput.
Biol. 14 e1006283

Guo T, Dong J, Li H and Gao Y 2017 Simple convolutional neural
network on image classification IEEE 2nd Int. Conf. on Big
Data Analysis (Beijing: IEEE) (https://doi.org/10.1109/
ICBDA.2017.8078730)

Harris K, Quiroga R, Freeman J and Smith S 2017 Improving
data quality in neuronal population recordings Nat. Neurosci.
19 1165–74

Herculano-Houzel S 2009 The human brain in numbers: a linearly
scaled-up primate brain Frontiers Hum. Neurosci. 3 31

Hill D, Mehta S and Kleinfeld D 2011 Quality metrics to
accompany spike sorting of extracellular signals J. Neurosci.
31 8699–705

Hodgkin A and Huxley A 1952 A quantitative description of
membrane current and its application to conduction and
excitation in nerve J. Physiol. 117 500–44

Horton P, Nicol A, Kendrick K and Feng J 2007 Spike sorting
based upon machine learning algorithms (SOMA) J. Neurosci.
Methods 160 52–68

Hossein Nadian M, Karimimehr S, Doostmohammadi J,
Ghazizadeh A and Lashgari R 2018 A fully automated spike
sorting algorithm using t-distributed neighbor embedding and
density based clustering (bioRxiv: 418913)

Ioffe S and Szegedy C 2015 Batch normalization: accelerating deep
network training by reducing internal covariate shift Int. Conf.
on Machine Learning (Lille) (arXiv:1502.03167)

Ji Z, Wang X, Takenao S, Satoru G and Masatoshi N 2011
Automatic spike detection based on real-time multi-channel
template 4th Int. Conf. on Biomedical Engineering and
Informatics (Shanghai: IEEE) (https://doi.org/10.1109/
BMEI.2011.6098388)

Jia D, Wei D, Richard S, Li-Jia L, Kai L and Li F 2009 ImageNet:
a large-scale hierarchical image database Computer Vision and
Pattern Recognition, 2009 (Miami, FL: IEEE) (https://doi.
org/10.1109/CVPR.2009.5206848)

Kadir S, Goodman D and Harris K 2014 High-dimensional cluster
analysis with the masked EM algorithm Neural Comput.
26 2379–94

Kim S and McNames J 2007 Automatic spike detection based on
adaptive template matching for extracellular neural recordings
J. Neurosci. Methods 165 165–74

Kita J and Wightman R 2008 Microelectrodes for studying
neurobiology Curr. Opin. Chem. Biol. 12 491–6

Klaes C et al 2015 Hand shape representations in the human
posterior parietal cortex J. Neurosci. 35 15466–76

Kotsiantis S 2007 Supervised machine learning: a review of
classification Informatica 31 249–68

Koyama S, Chase S, Whitford A, Velliste M, Schwartz A and
Kass R 2009 Comparison of brain–computer interface
decoding algorithms in open-loop and closed-loop control
J. Comput. Neurosci. 29 73–87

Krizhevsky A, Sutskever I and Hinton G 2012 ImageNet
classification with deep convolutional neural networks
Commun. ACM 60 84–90

Krogh A and Hertz J 1991 A simple weight decay can improve
generalization Neural Information Processing Systems

Lambacher A, Vitzthum V, Zeitler R, Eickenscheidt M,
Eversmann B, Thewes R and Fromherz P 2011 Identifying
firing mammalian neurons in networks with high-resolution
multi-transistor array (MTA) Appl. Phys. A 102 1–11

Lawlor P, Perich M, Miller L and Kording K 2018 Linear-nonlinear-
time-warp-poisson models of neural activity J. Comput.
Neurosci. 45 173–91

Lebedev M 2014 How to read neuron-dropping curves? Frontier
Syst. Neurosci. 8 101

LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Gradient-based
learning applied to document recognition IEEE pp 2278–324

J. Neural Eng. 16 (2019) 056003

https://orcid.org/0000-0003-1774-7330
https://orcid.org/0000-0003-1774-7330
https://orcid.org/0000-0003-1774-7330
https://doi.org/10.1109/PROC.1977.10559
https://doi.org/10.1109/PROC.1977.10559
https://doi.org/10.1109/PROC.1977.10559
https://doi.org/10.1126/science.aaa5417
https://doi.org/10.1126/science.aaa5417
https://doi.org/10.1126/science.aaa5417
https://doi.org/10.3389/fncir.2012.00063
https://doi.org/10.3389/fncir.2012.00063
https://doi.org/10.1152/jn.00785.2013
https://doi.org/10.1152/jn.00785.2013
https://doi.org/10.1152/jn.00785.2013
https://doi.org/10.1142/S0129065714500099
https://doi.org/10.1142/S0129065714500099
https://doi.org/10.1109/TBME.2013.2275751
https://doi.org/10.1109/TBME.2013.2275751
https://doi.org/10.1109/TBME.2013.2275751
https://doi.org/10.1016/j.neuron.2017.08.030
https://doi.org/10.1016/j.neuron.2017.08.030
https://doi.org/10.1016/j.neuron.2017.08.030
https://doi.org/10.1016/j.conb.2011.10.001
https://doi.org/10.1016/j.conb.2011.10.001
https://doi.org/10.1016/j.conb.2011.10.001
https://doi.org/10.1088/1741-2560/6/5/055004
https://doi.org/10.1088/1741-2560/6/5/055004
https://doi.org/10.1016/j.bios.2008.11.028
https://doi.org/10.1016/j.bios.2008.11.028
https://doi.org/10.1016/j.bios.2008.11.028
https://doi.org/10.3171/jns.1999.91.4.0697
https://doi.org/10.3171/jns.1999.91.4.0697
https://doi.org/10.3171/jns.1999.91.4.0697
https://doi.org/10.1016/j.clinph.2018.04.171
https://doi.org/10.1016/j.clinph.2018.04.171
https://doi.org/10.1109/MSP.2011.941880
https://doi.org/10.1109/MSP.2011.941880
https://doi.org/10.1109/MSP.2011.941880
https://doi.org/10.1109/ICBDA.2017.8078730
https://doi.org/10.1109/ICBDA.2017.8078730
https://doi.org/10.1038/nn.4365
https://doi.org/10.1038/nn.4365
https://doi.org/10.1038/nn.4365
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.1523/JNEUROSCI.0971-11.2011
https://doi.org/10.1523/JNEUROSCI.0971-11.2011
https://doi.org/10.1523/JNEUROSCI.0971-11.2011
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1016/j.jneumeth.2006.08.013
https://doi.org/10.1016/j.jneumeth.2006.08.013
https://doi.org/10.1016/j.jneumeth.2006.08.013
http://arxiv.org/abs/1502.03167
https://doi.org/10.1109/BMEI.2011.6098388
https://doi.org/10.1109/BMEI.2011.6098388
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1162/NECO_a_00661
https://doi.org/10.1162/NECO_a_00661
https://doi.org/10.1162/NECO_a_00661
https://doi.org/10.1016/j.jneumeth.2007.05.033
https://doi.org/10.1016/j.jneumeth.2007.05.033
https://doi.org/10.1016/j.jneumeth.2007.05.033
https://doi.org/10.1016/j.cbpa.2008.06.035
https://doi.org/10.1016/j.cbpa.2008.06.035
https://doi.org/10.1016/j.cbpa.2008.06.035
https://doi.org/10.1523/JNEUROSCI.2747-15.2015
https://doi.org/10.1523/JNEUROSCI.2747-15.2015
https://doi.org/10.1523/JNEUROSCI.2747-15.2015
https://doi.org/10.1007/s10827-009-0196-9
https://doi.org/10.1007/s10827-009-0196-9
https://doi.org/10.1007/s10827-009-0196-9
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s00339-010-6046-9
https://doi.org/10.1007/s00339-010-6046-9
https://doi.org/10.1007/s00339-010-6046-9
https://doi.org/10.1007/s10827-018-0696-6
https://doi.org/10.1007/s10827-018-0696-6
https://doi.org/10.1007/s10827-018-0696-6
https://doi.org/10.3389/fnsys.2014.00102
https://doi.org/10.3389/fnsys.2014.00102

M Saif-ur-Rehman et al

20

Lewicki M 1998 A review of methods for spike sorting: the detection
and classification of neural action potentials Network 9 R53–78

Mannor S, Peleg D and Rubinstein R 2005 The cross entropy
method for classification ICML ‘05 Proc. of the 22nd Int. Conf.
on Machine Learning (Bonn: ACM Digital Library) pp 561–8

Marre O, Amodei D, Deshmukh N, Sadeghi K, Soo F, Holy T and
Berry M 2012 Mapping a complete neural population in the
retina J. Neurosci. 32 14859–73

Matthews B A and Clements M A 2014 Spike sorting by joint
probabilistic modeling of neural spike trains and waveforms
Comput. Intell. Neurosci. 2014 643059

Moritz C and Fetz E 2011 Volitional control of single cortical
neurons in a brain-machine interface J. Neural Eng. 8 025017

Nair V and Hinton G 2010 Rectified linear units improve restricted
boltzmann machines 27th, Int. Conf. on Machine Learning
(Haifa, Israel) pp 807–14

Navajas J, Barsakcioglu D Y, Eftekhar A, Jackson A G,
Constandinou T and Quiroga R Q 2014 Minimum
requirements for accurate and efficient real-time on-chip spike
sorting J. Neurosci. Methods 230 51–64

Oghalai J S, Street W N and Rhode W S 1994 A neural network-
based spike discriminator J. Neurosci. Methods 54 9–22

Pachitariu M, Steinmetz N, Kadir S, Carandini M and Harris K 2016
Fast and accurate spike sorting of high-channel count probes
with KiloSort Advances in Neural Information Processing
Systems 29 (NIPS 2016) (Barcelona, Spain: NIPS) pp 4455–63

Qian N 1999 On the momentum term in gradient descent learning
algorithms Neural Netw. 12 145–51

Quiroga R 2012 Concept cells: the building blocks of declarative
memory functions Nat. Rev. Neurosci. 13 587–97

Rey H, Pedreira C and Quiroga Quian R 2015 Past, present
and future of spike sorting techniques Brain Res. Bull. B
119 106–17

Rossant C et al 2016 Spike sorting for large, dense electrode arrays
Nat. Neurosci. 19 634–41

Rumelhart D, Hinton G and Williams R 1986 Learning
representations by back-propagating errors Nature 323 533–6

Sanchez J, Carmena J, Lebedev M, Nicolelis M, Harris J and
Principe J 2004 Ascertaining the importance of neurons to
develop better brain-machine interfaces IEEE Trans. Biomed.
Eng. 51 943–53

Schwartz A 2004 Cortical neural prosthetics Ann. Rev. Neurosci.
27 487–507

Shi Y, Apker G and Buneo C 2013 Multimodal representation
of limb endpoint position in the posterior parietal cortex
J. Neurophysiol. 109 2097–107

Spacek M, Blanche T and Swindale N 2009 Python for large-scale
electrophysiology Frontier Neuroinform. 2 9

Spira M and Hai A 2013 Multi-electrode array technologies for
neuroscience and cardiology Nat. Nanotechnol. 8 83–94

Srivastava N, Hinton G, Krizhevsky A, Sutskever I and
Salakhutdinov R 2014 Dropout: a simple way to prevent neural
networks from overfitting J. Mach. Learn. Res. 15 1929–58

Stallkamp J, Schlipsing M, Salmen J and Igel C 2011 The
German Traffic Sign Recognition Benchmark: A multi-class
classification competition The 2011 Int. Joint Conf. on Neural
Networks Neural Networks (San Jose, CA: IEEE) 6 5

Takekawa T, Isomura Y and Fukai T 2012 Spike sorting of
heterogeneous neuron types by multimodality-weighted PCA
and explicit robust variational Bayes Frontier Neuroinform. 6 5

Todorova S, Sadtler P, Batista A, Chase S and Ventura V 2014
To sort or not to sort: the impact of spike-sorting on neural
decoding performance J. Neural Eng. 11 15

Wen-Jyi H, Szu-Huai W and Ya-Tzu H 2014 Spike detection based
on normalized correlation with automatic template generation
Sensors 11049–69

Yang K, Wu H and Zeng Y 2017 A simple deep learning method for
neuronal spike sorting J. Phys.: Conf. Ser. 910 012062

Yang Z, Hoang L, Zhao Q, Keefer E and Liu W 2011 1/f neural
noise reduction and spike feature extraction using a subset of
informative samples Ann. Biomed. Eng. 39 1264–77

Yger P et al 2018 A spike sorting toolbox for up to thousands of
electrodes validated with ground truth recordings in vitro and
in vivo eLIFE 7 e34518

J. Neural Eng. 16 (2019) 056003

https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1523/JNEUROSCI.0723-12.2012
https://doi.org/10.1523/JNEUROSCI.0723-12.2012
https://doi.org/10.1523/JNEUROSCI.0723-12.2012
https://doi.org/10.1155/2014/643059
https://doi.org/10.1155/2014/643059
https://doi.org/10.1088/1741-2560/8/2/025017
https://doi.org/10.1088/1741-2560/8/2/025017
https://doi.org/10.1016/j.jneumeth.2014.04.018
https://doi.org/10.1016/j.jneumeth.2014.04.018
https://doi.org/10.1016/j.jneumeth.2014.04.018
https://doi.org/10.1016/0165-0270(94)90155-4
https://doi.org/10.1016/0165-0270(94)90155-4
https://doi.org/10.1016/0165-0270(94)90155-4
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1038/nrn3251
https://doi.org/10.1038/nrn3251
https://doi.org/10.1038/nrn3251
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1038/nn.4268
https://doi.org/10.1038/nn.4268
https://doi.org/10.1038/nn.4268
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/TBME.2004.827061
https://doi.org/10.1109/TBME.2004.827061
https://doi.org/10.1109/TBME.2004.827061
https://doi.org/10.1146/annurev.neuro.27.070203.144233
https://doi.org/10.1146/annurev.neuro.27.070203.144233
https://doi.org/10.1146/annurev.neuro.27.070203.144233
https://doi.org/10.1152/jn.00223.2012
https://doi.org/10.1152/jn.00223.2012
https://doi.org/10.1152/jn.00223.2012
https://doi.org/10.3389/neuro.11.009.2008
https://doi.org/10.3389/neuro.11.009.2008
https://doi.org/10.1038/nnano.2012.265
https://doi.org/10.1038/nnano.2012.265
https://doi.org/10.1038/nnano.2012.265
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.3389/fninf.2012.00005
https://doi.org/10.3389/fninf.2012.00005
https://doi.org/10.1088/1741-2560/11/5/056005
https://doi.org/10.1088/1741-2560/11/5/056005
https://doi.org/10.1088/1742-6596/910/1/012062
https://doi.org/10.1088/1742-6596/910/1/012062
https://doi.org/10.1007/s10439-010-0201-5
https://doi.org/10.1007/s10439-010-0201-5
https://doi.org/10.1007/s10439-010-0201-5
https://doi.org/10.7554/eLife.34518
https://doi.org/10.7554/eLife.34518

