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SUMMARY

Although animal studies provided significant insights
in understanding the neural basis of learning and
adaptation, they often cannot dissociate between
different learning mechanisms due to the lack of ver-
bal communication. To overcome this limitation, we
examined the mechanisms of learning and its limits
in a human intracortical brain-machine interface
(BMI) paradigm. A tetraplegic participant controlled
a 2D computer cursor by modulating single-neuron
activity in the anterior intraparietal area (AIP). By
perturbing the neuron-to-movement mapping, the
participant learned to modulate the activity of the re-
corded neurons to solve the perturbations by adopt-
ing a target re-aiming strategy. However, when no
cognitive strategies were adequate to produce cor-
rect responses, AIP failed to adapt to perturbations.
These findings suggest that learning is constrained
by the pre-existing neuronal structure, although it is
possible that AIP needs more training time to learn
to generate novel activity patterns when cognitive
re-adaptation fails to solve the perturbations.

INTRODUCTION

The brain-machine interface (BMI) is an emerging technology

that translates brain activity into motor actions. Besides being

a powerful tool that enables people with paralysis to control

external devices with their thoughts, the BMI has also shed light

on the neural representation of cognitive functions, such as

learning and motor adaptation (Armenta Salas and Helms Tillery,

2016; Carmena, 2013; Chase et al., 2012; Ganguly and Car-

mena, 2010; Golub et al., 2018; Hwang et al., 2013; Koralek
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et al., 2012; Sadtler et al., 2014; Wander et al., 2013). The main

advantage of BMIs for studying learning is that brain plasticity

associated with learning and adaptation can be explored within

a particular node in a network, without taking into account the

biomechanics of the limb or networks at lower levels, such as

the spinal cord (Carmena et al., 2003). Although recent BMI

studies have showed that behavioral performance improves

with practice, there is no strong consensus on the nature of

learning and its constraints in humans (Aflalo et al., 2015; Collin-

ger et al., 2013; Hochberg et al., 2006, 2012; Truccolo et al.,

2008; Wang et al., 2013). The two prevailing mechanisms that

have been considered to account for changes in neuronal activ-

ity associatedwith learning are the individual-neuronmechanism

and the intrinsic-variable mechanism. The first one posits that

entirely new patterns of neural activity can be learned by individ-

ual neurons or populations of neurons (Cerf et al., 2010; Chapin

et al., 1999; Fetz, 1969, 2007; Fetz and Baker, 1973; Fetz and Fi-

nocchio, 1971; Gage et al., 2005). In groundbreaking research,

Fetz and colleagues provided evidence that non-human pri-

mates (NHPs) could modulate single motor cortex neurons or

even pairs of neurons in opposite directions (Fetz, 1969, 2007;

Fetz and Baker, 1973). Moritz and colleagues further showed

that pairs of motor cortex neurons could arbitrarily change their

tuning to control stimulation of antagonist muscles in NHP limbs

in a limb movement task (Moritz et al., 2008). Although these

findings suggest that certain brain areas can generate novel

and arbitrary patterns of activity, an equally plausible interpreta-

tion is that animals generate only existing patterns of activity

within new contexts (Chase et al., 2010; Golub et al., 2018;

Hwang et al., 2013; Jarosiewicz et al., 2008). These patterns of

activity may be constrained by the pre-existing structure of the

network, and animals learn to manipulate an intrinsic variable

of the natural movement, such as target direction, to generate

activity patterns that comply with the new environmental de-

mands (Jarosiewicz et al., 2008; Paz et al., 2003; Paz and Vaadia,

2004; Wise et al., 1998). This mechanism prevents independent

adaptation of individual neurons, because the cognitive strategy
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influences a global network of neurons that are sensitive to the

intrinsic variable. Therefore, it is still unclear whether changes

in neural activity that accompany learning reflect individual-

neuron or intrinsic-variable learning.

To dissociate between these two learning mechanisms, we

need to explore whether brain areas are capable of generating

activity patterns that cannot be associatedwith any possible nat-

ural movement. The lack of any introspective description of stra-

tegies in animal BMI models of learning make the dissociation

between the two mechanisms at best correlative and inferred.

For instance, given that animals cannot be verbally instructed

on which effector to use to perform intended movements (e.g.,

thinking of using only the right wrist) in a BMI task, it would not

be possible to rule out that animals learn to produce the correct

responses by using cognitive strategies to explore portions of

the intrinsic manifold that were not identified in the baseline por-

tions of the task (e.g., generating unexplored patterns by thinking

about wiggling the toes) rather than generating truly novel pat-

terns of activity. These limitations reveal the importance of using

human subjects, who can be instructed to follow specific rules

during BMI tasks and can report whether cognitive strategies

were adopted to produce the correct responses. In the current

study, a human participant with tetraplegia (C3-C4 complete

lesion; 6 years post-injury) was implanted with a microelectrode

array in the anterior intraparietal area (AIP) and learned to modu-

late the activity of a single neuron to control a 2D cursor in a goal-

decoding BMI center-out task with two peripheral stimuli. The

participant was instructed to attempt intendedmovements using

only the right wrist and to not switch effectors during the task.

She was also instructed to verbally report the direction of the in-

tended movement after each trial in addition to any other strate-

gies she employed to solve the task. Only the start and the end

position of the cursor were presented to the participant. In a

BMI-pro task, the neuron’s intrinsic coding for desired direction

of wrist movements was used to decode the desired goal. In a

BMI-anti task, the neuron was trained to switch its activity so

that it was active for desired movements opposite the direction

of the goal stimulus. Besides the verbal feedback from the

participant, we also looked at the behavior of neurons that

were not used for decoding but were found to be selective for

wrist movement and therefore were part of the pre-existing

structure that plans wrist movements. These neurons are

referred to as untrained neurons, as opposed to trained neurons

that are used for decoding and, therefore, directly contribute to

the BMI output. If the untrained neurons do not change their

turning in the BMI-anti task, then the individual neuron mecha-

nism predominates; if they flip their preferred directions, then

intrinsic variable learning predominates. In favor of the intrinsic

variable mechanism, we found that both trained and untrained

neurons changed their tuning in the BMI-anti task. This change

reflected an explicit strategic choice of the subject, as the partic-

ipant reported that she solved the task by attempting intended

wrist movements in the direction opposite to the stimulus (i.e.,

re-aiming strategy).

We further tested whether the learning mechanism in AIP

varies with the complexity of the BMI task. In a second BMI

perturbation experiment, the participant had to control the

cursor by simultaneously modulating the activity of two trained
neurons. Similar to the first experiment, the activity patterns of

the trained and untrained neurons, aswell as the verbal feedback

from the participant, provide evidence in favor of the intrinsic

variable learning mechanism. These findings suggest that the

intrinsic variable learning mechanism predominates in AIP

regardless of the task complexity. However, it could be argued

that these tasks favor the intrinsic variable learning over the indi-

vidual neuron learning, because there is always a cognitive solu-

tion that can produce the correct responses. We designed a BMI

perturbation task in which no cognitive strategy could produce

the neural activity patterns necessary to solve the task. In this

case, an individual neuron mechanism was required. The partic-

ipant could not produce the correct responses, indicating that

AIP neurons were not capable of generating novel and arbitrary

patterns of activity to solve the task. This suggests that either AIP

neuron can only engage pre-existing structures of the neural

network for short-term learning (about 1 h) or a much more

extensive period of training may be required if AIP neurons can

learn to generate entirely new neuronal activity patterns.

RESULTS

Volitional Control of Single Neurons in a Goal-Decoding
BMI Task
We designed a BMI center-out task in which a participant with

tetraplegia intended wrist movements toward one of two stimuli

presented at diametrically opposing locations (i.e., up-down;

Figure 1A). Each session consisted of three task blocks in the

following order: BMI-calibration; BMI-pro; and BMI-anti. BMI-

calibration trials started with a peripheral cue randomly pre-

sented for 0.8 s at one of the two potential locations on the

screen. Following the cue offset, a delay period of 1.5 s ensued.

After the go signal, the participant had 2 s to attempt a wrist

movement toward the direction of the stimulus location. The

only verbal instruction given prior to the beginning of each ses-

sion was ‘‘attempt a wrist movement to the stimulus location af-

ter the go signal.’’ The average firing rate activity of the recorded

neurons after the go signal in the BMI-calibration was used to

identify a single neuron that best decodes the stimulus loca-

tion—i.e., a neuron that fires more spikes when intended wrist

movements are made to one stimulus over the other. We refer

to this neuron as trained, because it was used for decoding

and therefore directly contributed to the BMI output.

The BMI-pro task had a similar sequence to the calibration,

with an extra feedback period following the go period. The stim-

ulus feedback location was decoded from the firing rate of the

trained neuron during the go period, according to the following

stimulus response rule. If the firing rate of the trained neuron

was higher for stimulus S1 than for stimulus S2 in the calibration,

the BMI-pro rule was that higher firing rates for stimulus S1 than

for S2would result in correct trials—i.e., the participant should in-

crease the activity of the neuron in response to S1 and suppress

the activity of the neuron in response to S2 (Figure 1B). We used

linear discriminant analysis (LDA) to identify the firing rate

threshold that divides the high and the low firing rates (see

STAR Methods section for more details). If the firing rate con-

formed to the stimulus response rule, the stimulus feedback

location was placed at the same location as the stimulus location
Neuron 102, 694–705, May 8, 2019 695



Figure 1. Task Event Sequences and Stimulus-Response Rules of the Brain-Machine Interface Learning Experiment with a Single Neuron

(A) A graphical representation of the brain-machine interface (BMI) learning paradigm with a single neuron.

(B) The stimulus response rules for the BMI-calibration (left), the BMI-pro task (middle), and BMI-anti task (right). Each panel illustrates the firing rate (mean ± SEM)

of a hypothetical trained neuron for successful trials in each of the three tasks.
in the cue target period and a ‘‘yes’’ message was displayed on

the screen, indicating a successful trial. Otherwise, the stimulus

feedback location was placed opposite to the cue stimulus and a

‘‘no’’ message was presented, indicating an unsuccessful trial.

The BMI-anti task enforced the opposite stimulus response

rule of lower firing rate for stimulus S1 than for S2. This rule forced

the trained neuron to flip its preferred stimulus associated with

higher firing rates, between the BMI-pro and the BMI-anti trials.

In the BMI-anti task, the stimulus feedback location was placed

opposite to the intended wrist direction for successful trials and

at the same location otherwise.

The participant performed 8 experimental sessions in total,

each on different days. For each session, the neuron that

best discriminated between the two stimuli was selected as

the ‘‘trained’’ neuron. We did not attempt to maintain the

same neuron across sessions, in part, because we found that

neurons recorded on a channel would change from day to

day. The activities of two single trained neurons recorded in

the 1st and 3rd sessions are illustrated in Figures 2A and 2B,

respectively. In the BMI-pro task, the firing rates of the trained

neurons were properly discriminated between the two stimuli in

both sessions (Figures 2A and 2B, left column), because the

participant intended movements in the direction of the dis-

played stimulus. However, in the BMI-anti task, the trained

neuron of the 1st session was not correctly discriminated, indi-

cating that the participant was not able to modulate the activity

of the trained neuron to conform to the new stimulus response

rule (Figure 2A, middle and right panels). According to the ver-

bal report, the participant was still mostly performing intended

wrist movements to the direction of the presented stimulus,
696 Neuron 102, 694–705, May 8, 2019
even though she was also exploring some new strategies,

such as intending faster wrist movements. During the 3rd

session, and particularly at the end of the 1st block of the

BMI-anti task, the participant found and reported that the

best strategy to solve the task was to intend wrist movements

in a direction opposite to the stimulus goal (anti-wrist move-

ments). At this time, the firing rate of the trained neuron was

able to properly discriminate by producing the opposite pattern

from the BMI-pro task (Figure 2B, right panel). To confirm that

the activity of the trained neuron was modulated by anti-wrist

movements, we looked at the activity of the untrained neu-

rons—i.e., neurons that do not participate in the BMI control

but are part of the pre-existing structure that plans the wrist

movements. If the trained neuron modulates its activity inde-

pendently from the pre-existing structure (i.e., individual-neuron

mechanism), the untrained neurons will not flip their preferred

stimulus, similar to the trained neuron. On the other hand, if

the participant learns a new cognitive strategy (i.e., attempting

anti-wrist movements), the untrained neurons will also flip their

preferred stimulus (i.e., intrinsic variable learning mechanism).

Figures 3A and 3B depict the firing rates of one trained and

two untrained neurons, respectively, from a BMI-pro (top row)

and BMI-anti (bottom row) task from a typical session (i.e., neu-

rons recorded from a single day). Consistent with intrinsic var-

iable learning, the trained and untrained neurons flipped their

preferred stimuli in the BMI-anti task, verifying that the partici-

pant aimed in the opposite direction to the stimulus. The

average performance in the BMI-pro task across all 8 sessions

was 0.89 ± 0.11 (mean ± SD). For the BMI-anti task, in the first 2

sessions and the first block of the 3rd session, the average



Figure 2. Firing Rate Distributions of Single Neurons in BMI-Pro and BMI-Anti Tasks

(A and B) The firing-rate distributions of two different single trained neurons for each of the two stimuli in the BMI-pro and BMI-anti task blocks in (A) session 1

and (B) session 3 for both correct and incorrect trials.
performance was 0.21 ± 0.16. After adopting the anti-wrist

movement strategy, the performance increased to 0.84 ±

0.09 (the last block of the 3rd session + the last 5 sessions).

Moreover, 91 untrained cells (out of a total of 281 recorded un-

trained cells across the last 5 sessions and the last block of the

3rd session) showed activity that discriminated between S1 and

S2 during the go period of the BMI-pro task. Eighty of those 91

cells (�88%) flipped their preferred stimulus between BMI-pro

and BMI-anti tasks during the go period (two-tailed t test p <

0.05; Figure 3C). The average activity of the untrained neurons,

whose activity flipped between the BMI-pro and BMI-anti task,

did not change between these two tasks (two-tailed t test p >

0.05 for all the untrained neurons that flipped their preferred

stimulus). The remaining 11 units (�12%) did not flip their

preferred stimulus.

Learning Mechanisms and Task Complexity
Although the single-neuron BMI experiment provides evidence in

favor of the intrinsic variable learning mechanism, it could be hy-

pothesized that individual neuron learning would be more likely

to be pursued for more cognitively complex tasks. In a second

experiment, we explored whether the preferred learning mecha-

nism varies with the task complexity. We designed a BMI-fsb

(fsb, feasible) task in which the cursor location was controlled

by the activity of two trained neurons at the same time. We refer

to this task as feasible, because it is still possible for the partic-

ipant to solve it by adopting a new cognitive strategy. Each

session consisted of three different task blocks in the following

order: BMI-calibration; BMI-pro; and BMI-fsb (Figure 4A). At

each stage, there were three epochs, cue target, delay, and

go, similar to the single-neuron BMI experiment. In the BMI-cali-

bration, the participant attempted wrist movements to eight radi-

ally arranged targets. Based on the tuning properties of two
trained neurons in calibration, we selected a pair of stimulus

locations (out of

�
8
2

�
= 28 possible pairs of stimuli) to be pre-

sented in the BMI-pro and the BMI-fsb tasks. The linear bound-

ary in the BMI-pro task was the one that best separated the two

firing-rate clusters, each formed by the activity of the two trained

neurons during the go period, for each stimulus in the BMI-cali-

bration. On the other hand, we selected the linear boundary for

the BMI-fsb task under two constraints: (1) it provides about

50% classification accuracy for both stimuli and (2) it best sepa-

rates the two clusters of another pair of targets. Therefore, the

participant could either alter the cognitive strategy (i.e., re-aim-

ing to directions away from the presented stimuli) or produce

new activity patterns through independent adaptation of the

trained neurons to match with the new stimulus response rule.

Both the BMI-pro and BMI-fsb tasks had the same sequence

as the BMI-calibration with an extra feedback period following

the go signal. A simplified, conceptual illustration of the stimulus

response rules in the two BMI tasks for the pair of stimuli (1, 5) is

shown in Figure 4B. The linear threshold (black continuous line)

in the BMI-pro task accurately separates the two firing-rate clus-

ters. On the other hand, the BMI-fsb threshold (black discontin-

uous line) divides the two clusters such that half of the trials lie

above and half below the threshold for both stimuli. However,

it accurately separates the clusters for intended wrist move-

ments toward the direction of targets 3 and 7 presented in the

BMI-calibration. Therefore, the participant could either attempt

wrist movements to the direction of 3 and 7 in response to stimuli

1 and 5, respectively, or she has to learn to generate activity

patterns that conform to the stimulus response rule through in-

dependent adaptation of the two trained neurons.

The participant performed 15 experimental sessions in total,

each on different days, with different pairs of stimuli and different
Neuron 102, 694–705, May 8, 2019 697



Figure 3. Trained and Untrained Neurons Flip Their Preferred Stimuli in the BMI-Anti Task
(A) The temporal dynamics of the firing rates for a trained AIP neuron that directly contributed to the BMI output in a typical session.

(B) Similar to (A) but for two untrained AIP neurons.

(C) The percentage of untrained neurons that flip their activity between BMI-pro and BMI-anti tasks after the participant adopted the anti-wrist movement

strategy.
linear threshold boundaries that ranged in direction between 0�

(i.e., horizontal line) and 180�. The average direction of the

threshold in the BMI-pro task was 88.8� ± 59.2� (mean ± SD)

and in the BMI-fsb task was 86.2� ± 55.8� across all 15 trials.

The average angle between the BMI-pro and the BMI-fsb

threshold was 95� ± 28.4�. In the BMI-pro task, the participant

immediately produced the appropriate activity patterns for

both trained neurons, achieving an average performance of

0.88 ± 0.12 (mean ± SD) across all 15 sessions. Within a time-

scale of a session, she also learned to generate activity patterns

that comply with the stimulus response rule in the BMI-fsb task,

achieving 0.78 ± 0.21 decode performance across all 15 ses-

sions. A characteristic example is illustrated in Figure 5, in which

the pair of stimuli (1, 4) was selected based on the tuning prop-

erties of the two trained neurons in BMI-calibration (Figure 5A).

According to the stimulus response rule in the BMI-pro task,

the averaged activity of the two trained neurons should fall above

the linear threshold (black line) for stimulus 4 and below the

threshold for stimulus 1 for successful trials. The task perfor-

mance accuracy was over 95% in the BMI-pro task, in which in-

tended wrist movements were planned to the direction of the

presented stimuli (Figure 5B). In the BMI-fsb task, the linear

threshold was selected so that it substantially deteriorated the

performance for intended wrist movements to the presented

stimuli (black discontinuous trace; Figure 5A). However, the

participant learned to generate rule-complying activity patterns

(Figure 5C), achieving performance greater than 90%. One way

to modulate the neural activity of the trained neurons was to

aim in different directions. We examined the behavior of the

trained neurons during the BMI-calibration to determine whether

planning movements to any of the tested directions could

have produced activity patterns that comply with the stimulus

response rule in the BMI-fsb task. The activity for stimulus 1 in

the BMI-fsb task matched the activity for intended wrist move-

ment toward stimulus 3, and the activity for stimulus 4 matched

the activity for intended wrist movements to stimulus 7 (Fig-
698 Neuron 102, 694–705, May 8, 2019
ure 5D). This is consistent with the verbal feedback provided

by the participant: she reported that she was mostly aiming in

the direction of stimulus 3 (cyan) in response to stimulus 1 and

toward stimulus 7 (red) in response to stimulus 4 (Figure 6A).

These findings suggest that the BMI-fsb task was solved by

re-aiming intended wrist movements—a form of intrinsic vari-

able learning. To confirm this hypothesis, we compared the ac-

tivity of the two trained neurons with 20 untrained neurons,

whose activity was significantly discriminated between the two

stimuli, for each successful BMI-fsb trial. We used a nearest-

neighbor decoding algorithm to infer the stimulus that the

neuronal population encoded. The decoding algorithm selected

the stimulus associated with the ensemble activity in the BMI-

calibration that was closest to the ensemble activity of a given

BMI-fsb trial in terms of the Euclidean distance. Figure 6B de-

picts the eight-target decoding results from the BMI-fsb task

across all successful trials (correspondence matrix). The x and

y axes represent the stimulus decoded by the two trained and

untrained neurons, respectively. The correspondence matrix

therefore allows us to visualize the degree of correspondence

between the stimulus specified by the trained and untrained

units. The two bright spots for stimuli 3 and 7 indicate that

they were encoded concurrently for the trained and the un-

trained neurons in most of the trials. These two stimuli were

the same two best-matching stimuli as inferred by the activity

pattern (Figure 5D) and reported by the participant (Figure 6A).

A more detailed analysis of how the activity distribution of the

untrained neurons is modulated to counter the perturbation of

the stimulus response rule in this particular example is pre-

sented in Figure S1. Overall, in about 50% of the BMI-fsb trials

across all sessions, both trained and untrained neurons en-

coded the same matching target (49.6% ± 3.93%; mean ±

SEM; across all 15 sessions; Figure 6C, blue curve). Similarly,

in about 50% of the BMI calibration trials, both trained and un-

trained neurons encoded the same cued target (48.4% ± 4.95%

trials across all 15 sessions; Figure 6C, red curve).



Figure 4. Task Event Sequences and Stimulus-Response Rules of the Brain-Machine Interface Learning Experiment with Two Neurons

(A) A graphical representation of the BMI learning paradigm with two neurons.

(B) A simplified, conceptual illustration of the stimulus response rules for the BMI-pro and BMI-fsb trials for the pair of stimuli 1 and 5. Points correspond to the

hypothetical firing rates of the two trained neurons in response to four stimuli (color coded) in the BMI-calibration.
Learning Mechanisms in BMI Tasks with No Feasible
Cognitive Strategies
So far, we explored the learning mechanisms for BMI tasks in

which there was always a feasible intrinsic variable remapping

strategy to compensate for perturbations. An interesting ques-

tion is what would happen if no cognitive strategy was adequate

to solve the BMI tasks. To address this question, we designed a

BMI-nfsb task (nfsb, non-feasible) in which there was no strategy

that could produce rule-complying activity patterns.We selected

a linear threshold that performed poorly on classifying the firing-

rate clusters of the two trained neurons for at least one of the two

stimuli presented in the BMI-nfsb task. Ideally, we looked for

a linear boundary that results in chance performance (50%)

regardless of the intended movement direction. We used evolu-

tionary algorithms (EAs) to identify such a linear threshold (see

STAR Methods section for more details). EAs are adaptive heu-

ristic algorithms that mimic the process of natural selection (Ban-

dyopadhyay et al., 1995; de la Fraga and Coello Coello, 2011;

Goldberg, 1989). As such, they represent a principled exploita-

tion of a random search to solve complex optimization problems.

The results show that, in the timescale of a session (i.e., about

1 h), neurons could not generate activity patterns that conform

to the stimulus response rule in the BMI-nfsb task.

A characteristic example is depicted in Figure 7. Based on the

tuning properties of the two trained neurons from the BMI-cali-

bration (Figure 7A), we selected the pair of stimuli 2 and 7 in

the BMI-pro and BMI-nfsb tasks. This pair was selected because

there is a linear threshold (black solid line), named BMI-pro

threshold, which accurately separates the two firing-rate clus-

ters of the trained neurons—i.e., the firing rates are above this

linear threshold for intended wrist movements to the stimulus 7

and below it for intended movements to the stimulus 2. We

used this threshold in the BMI-pro task. On the other hand, the

EAs generated a linear threshold for the BMI-nfsb task (black

discontinuous line), in which the activity of the two trained neu-

rons should fall within the right and the left side of this boundary

in response to the stimuli 2 and 7, respectively. Figure 7B depicts
the percentage of the calibration trials that fall into the right (blue)

and the left (red) side of the BMI-nfsb threshold for intendedwrist

movements to all possible 8 targets. Notice that the threshold

poorly separates the firing-rate clusters of the two trained neu-

rons for intended wrist movements to the seven out of eight

possible targets—except for target 2, in which the activity of

the two trained neurons of all calibration trials falls into the right

side of the threshold. On the other hand, the highest percentage

(�65%) of trials that fall into the left side of the threshold corre-

sponds to intended movements toward target 1. Therefore,

when stimulus 7 is presented in the BMI-nfsb task, the best per-

formance that the participant could achieve is about 65% by

aiming toward the direction where target 1 was located in the

BMI-calibration. This suggests that there is no cognitive strategy

that can produce high performance accuracy in response to

stimulus 7 in the BMI-nfsb task. Consequently, an individual

neuron mechanism is required to compensate for changes on

the stimulus response rule. On the other hand, when stimulus 2

is presented, the best performance (100%) could be achieved

for intended wrist movements toward target 2, suggesting that

the participant should not modify her strategy.

We found that, in the BMI-pro task, the participant immedi-

ately produced appropriate activity patterns for the two trained

neurons to solve the task, achieving performance accuracy

over 90% (Figure 7C). On the other hand, the two neurons could

not learn to generate rule-complying activity patterns for trials in

which stimulus 7 was presented in the BMI-nfsb task, achieving

performance accuracy of about 50% (Figure 7D). The participant

reported that, although she was re-aiming to different directions

to compensate for the applied perturbation, none of them

seemed to offset the perturbation and improve her performance

when stimulus 7 was presented. Overall, we ran 6 sessions on

different days, in which there was always a feasible intrinsic var-

iable remapping strategy to acquire one stimulus (i.e., cognitively

solvable stimulus), but not the other (i.e., cognitively non-solv-

able stimulus), after perturbing the stimulus response rule (i.e.,

BMI-nfsb task). Note that both stimuli could be achieved with
Neuron 102, 694–705, May 8, 2019 699



Figure 5. Evidence of Intrinsic-Variable Learning in the BMI-fsb Task

(A–C) The firing rates for the two trained neurons in response to the stimuli 1 and 4 (colored coded) in (A) the 8-target BMI-calibration, (B) BMI-pro, and (C) BMI-fsb

tasks. The black solid and dashed lines represent the linear thresholds used for decoding in the BMI-pro and BMI-fsb tasks, respectively.

(D) The firing rates of the same two trained neurons in response to targets 3 (cyan) and 7 (red) in the BMI-calibration (the arrows indicate the relationship between

the stimulus and matched target locations). The two stimuli (cyan and red) correspond to the matched target locations.
high performance in the BMI-pro task by aiming directly to their

locations. We measured the performance as the number of trials

in which the activity of the two trained neurons fell on the correct

side of the boundary. The participant was able to produce the

appropriate activity pattern for the pair of trained neurons in

the BMI-pro and BMI-nfsb tasks for the cognitively solvable

stimulus, achieving performance of 94.03% ± 2.65% (mean ±

SEM) in the BMI-pro and 87.22% ± 3.0791% in the BMI-fsb

tasks across 6 sessions (no significant differences in the perfor-

mance between the two tasks for the cognitively solvable stim-

ulus; two-tailed t test p = 0.1324; Figure 7E). However, she could

not learn to produce rule-complying activity patterns for the

cognitively non-solvable stimulus in the BMI-nfsb task, and her

performance was significantly deteriorated from 88.90% ±

3.93% in the BMI-pro task to 50.0% ± 5.55% in the BMI-nfsb

task across 6 sessions (two-tailed t test p < 0.001; Figure 7E).

We interpret these findings as evidence that AIP neurons cannot

learn to produce novel and arbitrary patterns of activity to

comply with the stimulus response rule in the BMI-nfsb task.

These results suggest that either there is a constraint on learning

imposed by the existing neural structure of AIP ormore extensive

training is required to generate entirely novel neuronal activity

patterns.

DISCUSSION

General
Although a large body of evidence suggests that both humans

and animals are able to learn a variety of new tasks and adapt

to unpredictable changes of the environment, to our knowledge,

there have been no systematic studies of single-neuron learning

in humans. The prevailing hypotheses suggest that neurons

learn new tasks by either generating entirely new patterns of ac-

tivity, independently of the pre-existing neuronal structure (indi-

vidual neuron learning; Cerf et al., 2010; Chapin et al., 1999; Fetz,

1969, 2007; Fetz and Baker, 1973; Fetz and Finocchio, 1971;

Gage et al., 2005) or they combine existing patterns of activity
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that are already part of the natural repertoire of the neural popu-

lation (intrinsic variable learning; Golub et al., 2018; Hwang et al.,

2013; Paz et al., 2003; Paz and Vaadia, 2004; Wise et al., 1998).

However, most of these studies have used laboratory animal

models, making it challenging (or even impossible) to distinguish

between these two mechanisms without verbal instruction and

feedback from the participants. To overcome this issue, we de-

signed BMI center-out intended wrist movement tasks, where a

human participant with tetraplegia controls a 2D computer

cursor by modulating the activity of AIP neurons. The participant

was instructed to use only the right wrist. Verbal feedback

reports were obtained on every trial about the strategy that

was followed to solve the BMI tasks. By perturbing the mapping

between the neural activity and the cursor location, we provide

evidence in favor of the intrinsic variable learning mechanism.

In particular, we found that the participant learned to volitionally

control neuronal activity in AIP by re-aiming in directions that

offset the perturbation. Importantly, when there were no cogni-

tive strategies that could solve the BMI tasks, AIP neurons could

not generate novel patterns of activity, independent of the pre-

existing neuronal structure. These findings suggest that the

pre-existing neuronal structure constrains learning, and this

may explain why learning a new task is easier when it is related

to skills that we already have.

From Animal- to Human-BMI: Human Participants Help
to Dissociate the Two Learning Mechanisms
Animal BMI studies have significantly contributed in understand-

ing the mechanisms underlying learning and adaptation (Golub

et al., 2016). Their main advantage is that we can directly

compare neural activity between manual control and BMI con-

trol, enabling insights on the cortical reorganization during the

process of learning neuroprosthetic control (Carmena et al.,

2003; Chapin et al., 1999; Ganguly et al., 2011; Vyas et al.,

2018; Zacksenhouse et al., 2007). For instance, a growing

body of research indicates that, when switching from manual

control to neuroprosthetic control, the brain enters into a novel



Figure 6. Trained and Untrained Neurons

Encode the Same Matching Targets in the

BMI-fsb Task

(A) The proportion of trials for the eight targets that

the participant verbally reported to have attempted a

wrist movement in response to stimuli 1 and 4 during

the BMI-fsb task in the example session described in

Figure 5.

(B) Correspondence matrix for the BMI-fsb session

presented in Figure 5. It shows the proportion of

trials for the eight targets decoded by the trained

versus untrained neurons. The x axis represents the target decoded by the trained neurons and the y axis the target decoded by the untrained neurons in the

example session described in Figure 5.

(C) Probability distribution (blue trace) across 15 sessions of the difference between the targets decoded by the trained and untrained neurons in the BMI-fsb task

when the target decoded from the trained neurons was a matching target. The red trace describes the probability distribution from 15 sessions of the difference

between the targets decoded from the trained and untrained neurons in the 8-target BMI-calibration when the target decoded by the trained neurons was the

BMI-calibration target. The peak at zero corresponds to the case in which the trained and the untrained neurons encode the same matching target. Error bars

represent SEM, and red and blue lines show the spline interpolation to the data.
state, producing new representations in the untrained neurons

(Clancy et al., 2014; Ganguly et al., 2011; So et al., 2012). Animal

models also provide a valuable tool to gain additional insights

into the mechanism of neuroplasticity in learning during BMI by

disrupting neural activity using invasive techniques, such as op-

togenetics (Gulati et al., 2017). Similar to our work, previous BMI

studies in NHPs perturbed the neuron-to-movement map and

provided evidence that animals learn to volitionally control the

activity of the recorded neurons to adapt to perturbations (Golub

et al., 2018; Hwang et al., 2013; Jarosiewicz et al., 2008). Consis-

tent with our findings, Hwang et al. (2013) showed that NHPs can

alter the pattern of activity of a trained posterior parietal cortex

(PPC) neuron in a BMI task; however, the simultaneously re-

corded untrained neurons also changed their activity patterns

in a predictable manner consistent with the intrinsic variable

learning mechanism (Hwang et al., 2013). The activity of the un-

trained PPC neuronsmaintained consistent strength of tuning af-

ter the animals adapted to external perturbations, as we also

found in the untrained AIP neurons. Additionally, in a neural pop-

ulation M1 study, after dimensionality reduction, NHPs were

trained to make BMI movements within or out of the manifold

of intrinsic dimensions in M1 (Sadtler et al., 2014). Within the

manifold, perturbations could be solved by adopting new

cognitive strategies, whereas out-of-the-manifold perturbations

require the animals to generate novel neuronal activity patterns.

The results showed that the animals could solve the within the

manifold perturbations in a single day by re-associating existing

activity patterns with different intended movements (a form of

intrinsic variable learning; Golub et al., 2018). However, the

out-of-the-manifold perturbations could not be solved. These

findings are consistent with easier intrinsic variable (i.e., within

themanifold) rather than individual neuron (i.e., outside themani-

fold) learning mechanisms.

Although providing important insights, it could be argued that

NHP studies cannot conclusively determine the type of learning

mechanisms employed to overcome external perturbations. This

is because NHPs cannot be asked what strategy they follow to

solve a task and they cannot be instructed to constrain how

they solve the task. A constrained strategy is important to disso-

ciate between learning mechanisms, especially when recording

from cortical regions with high-dimensional mixed representa-
tions. Recent electrophysiological studies reported that neurons

in NHP prefrontal cortex, rodent PPC, and human AIP are tuned

to mixtures of task-related variables (Fusi et al., 2016; Raposo

et al., 2014; Rigotti et al., 2013; Zhang et al., 2017). Therefore,

a BMI-nfsb task does not necessarily require implicit generation

of novel activation profiles. Instead, it is possible that the partic-

ipant could solve the task by attempting movements using other

effectors or cognitive strategies (e.g., finger, arm, or foot move-

ments). Given that NHPs and rodents are non-verbal animals,

they can explore and select other intrinsic variables to solve

the BMI tasks. In our study, we constrained the participant to

attempt intended movements using only her right wrist. The

participant was allowed to explore different cognitive strategies

for improving her performance, but she had to always perform

the intended actions by using her right wrist. By verbally instruct-

ing the participant to use a constrained strategy, we restrict the

available interpretations to intrinsic variable or individual neuron

learning mechanisms.

Verbal reporting is also important to interpret the behavior

of the untrained neurons—i.e., neurons that do not directly

contribute to the BMI output but are part of the pre-existing

neuronal structure that plans the wrist movements. According

to our findings, both trained and untrained neurons fluctuate their

activity together and in a predictable way based on the cognitive

strategy used. Although this is a form of intrinsic variable

learning, it could be equivalently interpreted as individual neuron

learning that affects both the trained and the untrained neurons.

In other words, cortical plasticity may result in new patterns of

activity in both trained and untrained neurons, even when indi-

vidual neuron learning occurs. However, the participant reported

a target re-aiming strategy, indicating that the changes of the

neuronal activity in the trained and untrained neurons reflect

an intrinsic variable learning mechanism. Overall, verbally in-

structed strategies and self-reports are major advantages,

because they can better reveal how individuals learn new tasks

and compensate for perturbations. However, it could be argued

that the participant may not be capable of providing an accurate

description of her strategies, because she might be unaware of

changes in her mental strategy when trying to compensate for

the perturbation. Although this is possible, whatever changes

in her strategy may have occurred proved incapable of
Neuron 102, 694–705, May 8, 2019 701



Figure 7. AIP Fails to Generate Novel Patterns of Activity in the BMI-nfsb Task

(A) The firing rates for the 2 trained neurons in response to the eight stimuli (color and shape coded) in the 8-target BMI-calibration. The pair of stimuli 2 and 7 was

selected in the BMI-pro and BMI-nfsb tasks. The black solid and dashed lines represent the linear boundaries used for decoding in the BMI-pro and BMI-nfsb

tasks, respectively.

(B) Percentage of trials that fall into the left (red) and right (blue) side of the BMI-nfsb task threshold in response to the eight stimuli in the 8-target BMI-calibration.

(C) The firing rates for the two trained neurons in response to the stimuli 2 and 7 in the BMI-pro. To be successful, the activity of the two trained neurons should fall

below and above the BMI-pro threshold in response to stimuli 2 and 7, respectively.

(D) Similar to (C) but for the BMI-nfsb task. To be successful, the activity of the two trained neurons should fall on the right and left side of the BMI-nfsb threshold in

response to stimuli 2 and 7, respectively.

(E) Proportion of successful trials (i.e., performance) across 6 sessions. Successful trials were achieved when the activity of the trained neurons during the go

period fell on the correct side of the boundary. Participant achieved performance accuracy 94.03%±2.65% (mean ± SEM) in the BMI-pro and 87.22%±3.0791%

in the BMI-nfsd across 6 sessions (no significant difference in the performance; two-tailed t test; p = 0.1324) for the cognitively solvable stimulus—i.e., stimulus

that could be acquired by adopting a cognitive strategy. However, the performance was significantly deteriorated from 88.90% ± 3.93% in the BMI-pro to

50.0% ± 5.55% in the BMI-nfsb (two-tailed t test p < 0.001) across the 6 sessions for the cognitively non-solvable stimulus—i.e., stimulus that could not be

acquired by adopting any cognitive strategy. Instead, an individual neuron mechanism was required to generate novel patterns of activity and was not

accomplished during each daily session.
generating novel activity patterns that comply with the stimulus

response rule in the BMI-nfsb task. Further, from this perspec-

tive, an inability of the participants to explain how a solution is

achieved itself becomes an interesting finding, as may be the

case for individual neuron learning.

When Cognitive Strategies Are Not Enough to Solve the
BMI Tasks
One major limitation in most of the previous studies is that they

assessed the neural mechanisms of learning in different brain

areas by using BMI tasks that favor one hypothesis over the

other. For instance, it could be argued that perturbations that

can be solved by adopting new cognitive strategies, such as

re-aiming to different directions, favor the intrinsic variable
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learning over the individual neuron learning mechanism. Hence,

it is likely that trained neurons could modulate their activity inde-

pendently from the pre-existing structure of the brain network

only when cognitive strategies fail to solve the BMI tasks. To

test this hypothesis, we designed a BMI task in which there

was no cognitive strategy that can produce neural activity pat-

terns that conform to the stimulus response rule. In this case,

an individual neuron mechanism is required. Because the partic-

ipant was instructed to use only the right wrist for intending

movements, successful outcomes would indicate that AIP neu-

rons are capable of generating arbitrary patterns of activity that

do not belong to the response set of the BMI movements. The

results show that AIP neurons could not generate novel and arbi-

trary patterns of neural activity, at least within a single session, to



solve the BMI perturbation task. This result suggests that either

the individual neuron mechanism is a slow learning process—

and therefore extensive training is required before neurons can

generate novel and arbitrary activity patterns—or AIP cannot

elicit arbitrary activity patterns.

Constraints on Learning
Although our findings suggest that learning is constrained by the

neural structure of the implanted area, it does not imply that

intrinsic variable learning is the only mechanism for learning in

AIP or other brain areas. Instead, it could be hypothesized that

learning in BMI tasks, in which cognitive strategies can produce

rule-complying activity patterns, involves fast timescale mecha-

nisms that underlie adaptation (Salinas 2004). On the other hand,

when no cognitive strategies are adequate to solve the BMI

tasks, learning may engage mechanisms required for acquiring

new skills (Picard et al., 2013; Rioult-Pedotti et al., 2000), and

therefore, people may need an extensive period of training to

improve their performance (Sadtler et al., 2014). Additionally, it

is possible that the individual neuron learning mechanism exists

in other brain areas, such as the primary motor cortex (M1)

(Ganguly et al., 2011). For instance, neural recordings in M1

from NHPs during brain control showed that the effects were

subtle on untrained neuron activity, usually consisting of a reduc-

tion in gain rather than changes in tuning direction (Ganguly et al.,

2011). Noticeably, the gain reduction of the untrained neurons af-

ter learning brain control of a cursor seems to be at odds with our

findings—i.e., no significant gain modulation of the untrained

neurons after learning to adapt to perturbations in BMI tasks.

However, Ganguly et al. (2011) observed the down-modulation

of the untrained neurons when comparing manual control with

brain control. On the other hand, the comparison in our study

was between two BMI tasks—i.e., BMI-pro and BMI-anti—and

therefore it is possible that the gain of the untrained neurons

was already reduced in the BMI-pro task—a hypothesis that

could not be tested due to lack of manual control data from

the participant. Furthermore, Jarosiewicz et al. (2008) found

that, although the dominant response to a rotation of a subset

of the neural population was compensation based on re-aiming

(a form of intrinsic-variable learning that affects all of the neur-

ons in the population equally), re-weighting and re-mapping

compensation (forms of individual neuron learning in which the

tuning curves of a subset of neurons in the population are modu-

lated through a plastic mechanism) were also present in the neu-

ral responses (Chase et al., 2010; Jarosiewicz et al., 2008).

Although these findings favor some degree of short-term individ-

ual neuron learning, the lack of verbal feedback cannot conclu-

sively support one mechanism over the other for the reasons

that we explained above.

Where Does Intrinsic Variable Learning Occur?
We showed that intrinsic variable learning is the predominant

strategy in AIP to compensate for perturbations in BMI tasks.

However, this does not necessarily mean that learning occurs

within AIP. In fact, it is likely that learning emerges in other brain

regions and then is transferred to AIP. An intrinsic variable

learning mechanism, such as re-aiming to directions that offset

the perturbation, should be implemented by brain areas that
remap the actual stimulus location to intended motor actions.

Most of the recorded AIP neurons in our study encode only the

selected motor action (see example units in Figures 3A and

3B)—i.e., activity increases only after the go signal. One candi-

date area that transforms sensory information (i.e., target loca-

tion) into motor actions (i.e., intended arm movements) is the

human homolog of the macaque parietal reach region (PRR). A

study in our lab showed that PRR neurons encode the task

rule before the appearance of the stimulus location (Gail and An-

dersen, 2006). By training NHPs to perform pro- and anti-reach

movements and presenting the task rule (i.e., pro- versus anti-

reaches) prior to stimulus onset, Gail and Andersen (2006) re-

ported that PRR neurons integrate cue location with the task

rule to encode the desired action plan. Therefore, one hypothesis

is that human PRR combines the stimulus location with the stim-

ulus response rule (i.e., intended movements to the stimulus

location versus re-aiming to different directions) to generate

the appropriate action plans. Then, this information is transferred

to AIP and other motor regions to specify the characteristics of

the action plans. This hypothesis is also supported by other

studies showing that PRR neurons encode both the potential

and the selected reach plans in contrast to other regions within

PPC, such as area 5d (Cui and Andersen, 2011) and the primary

motor cortex (Cisek and Kalaska, 2005), which encode only the

selected reach plan. Overall, it is likely that intrinsic variable

involving spatial remapping of reach targets occurs in PRR

before it is transferred to AIP. However, we do not have

recording data from human PRR, and therefore, further work is

required to validate this hypothesis.

Conclusions
This study is the first systematic examination of single neuron

learning in a human BMI paradigm, which is an important

advance considering previous studies used laboratory animal

models for eventual application to humans. We recorded neural

activity from a tetraplegic human participant implanted with a

96-channel microelectrode array in AIP to test two potential

mechanisms of learning in BMI tasks. By perturbing themapping

between the neural activity and the cursor location, we found

that the participant learned to volitionally control single neuron

activity in AIP by using existing patterns of activity that are

already part of the natural repertoire of the neuronal populations.

These findings suggest that the ability to learn new BMI tasks is

limited by the pre-existing structure of the brain network. It re-

mains to be determined whether AIP and/or other brain areas

in humans can learn to generate novel and arbitrary patterns of

activity over longer timescales.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB R2016a Mathworks RRID:SCR_001622; https://www.mathworks.com/

Psychophysics toolbox PTB3 N/A RRID:SCR_002881; http://psychtoolbox.org/

Other

Neuroport Recording System, Utah array implant Blackrock Microsystems https://blackrockmicro.com/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to andwill be fulfilled by the Lead Contact, Sofia Sakellaridi (sofia@

caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The participant of this study was N.S., a 60 years old female tetraplegic patient, who has a complete spinal cord injury at cervical level

C3-C4 (implanted 6 years post injury) with paralysis of all limbs. All procedures were approved by the California Institute of Technol-

ogy, University of California Los Angeles, and Casa Colina Center for Rehabilitation Internal Review Boards. Informed consent was

obtained fromNS after the nature of the study and the possible risks were explained. Study sessions were performed at most 3 days/

week at Casa Colina Center for Rehabilitation.

METHOD DETAILS

Behavioral setup
All the tasks were performed with N.S. seated in her motorized wheelchair in front of a 27-inch LCDmonitor in a lit room. The monitor

was positioned so that the screen occupied approximately 40 degrees of visual angle. Stimulus presentation was controlled using the

psychophysics toolbox for MATLAB (Mathworks) (Brainard, 1997).

Implant methodology and physiological recordings
Subject N.S. was implanted with two 96-channel Neuroport arrays. One array was implanted on the surface of the Superior Parietal

Lobule (putative human BA5) and one at the junction of the intraparietal sulcus with the postcentral sulcus (putative human AIP), two

areas that are specialized in reaching and grasping movements, respectively. The implantation locations were determined based on

preoperative fMRI (Aflalo et al., 2015). NS performed an imagined hand reaching and grasping task during a functional magnetic reso-

nance imaging (fMRI) scan. A Siemens Trio 3T scanner at the University of California, Los Angeles Semel Institute for Neuroscience &

Human Behavior Imaging Center was used for scanning. Anatomical sequences were acquired using a T1-weighted MP-RAGE

sequence with the following parameters (TR = 1590 ms; TE = 2.7ms; fov = 176 3 256 3 256 mm; 1 mm isotropic voxels). The pa-

rameters for the functional scans were as follows: T2*-weighted single-shot echo-planar acquisition sequence (TR = 2000 ms; slice

thickness = 3 mm; in-plane resolution = 3x3mm; TE = 30ms; flip angle = 80; fov = 192 3 192mm; matrix size = 64 x64; 33 slices

(no-gap) oriented 20 degrees relative to ACPC line). Surface reconstruction of the cortex was performed using the Freesurfer soft-

ware (http://surfer.nmr.mgh.harvard.edu/). NS was asked to imagine or attempt different reaching and grasping movements with

visual and attentional controls in order to localize limb and hand areas in SPL and AIP. The BOLD responses from the reaching

and the grasping tasks were used to determine the implantation sites for the surgery. The surgery was performed at the UCLA

Medical Center on August 26, 2014. A single craniotomy wasmade over SPL and AIP of the dominant hemisphere and the two arrays

were implanted in the hand/limb regions of SPL and AIP. The AIP array was placed at Talairach coordinate [-36 lateral, 48 posterior,

53 superior]. More information about the implantation method can be found in a previous study from our lab (Aflalo et al., 2015).

Although a different subject participated, the same procedure was followed to implant and record the neural data.

Data collection
The data were collected 2 years after implanting the recording arrays, over a period of about 1 year (including pauses) in 2-3 study ses-

sions per week. Each session lasted about 1h. Neural activity was amplified, digitized, and recorded at 30 kHz from each recording
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electrode using the Neuroport neural signal processor (NSP). Unsorted action potential threshold crossings of �4.5 times the root-

mean-square of the high-pass filtered (250Hz) full bandwidth signal was used to register action potentials for on-line analysis. Clearly

isolatable single-units were sorted using a window discriminator approach when possible. For offline analysis single and multiunit ac-

tivitywassortedusingmixtureofGaussianmodelingof thewaveformsdetectedby thresholdcrossings (for further information regarding

the data collection see (Aflalo et al., 2015)). Due to a lack of single units in SPL, only data from AIP was analyzed in the current study.

Task procedure
In the single-neuron experiment, each session consisted of three primary task blocks: BMI-calibration, BMI-pro, BMI-anti. The first

4 sessions were performed in separate blocks, in which one block of BMI-pro trials preceded two blocks of BMI-anti trials. In the last

4 sessions, blocks of BMI-pro trials were randomly interleaved with blocks of BMI-anti trials. NS ran 20 calibration trials (10 per stim-

ulus), 48.88 ± 2.8 (MEAN ± SEM) BMI-pro trials and 61.25 ± 10.92 BMI-anti trials per session. In the two-neuron experiments, each

session consisted of three primary blocks in the following order: BMI-calibration, BMI-pro and BMI-fsb (for a pair of feasible stimuli) or

BMI-nfsb (for one feasible and one non-feasible stimulus). NS ran 48 calibration trials (6 trials per stimulus), 32.67 ± 1.18 BMI-pro

trials, 97.33 ± 5.89 BMI-fsb trials and 72 BMI-nfsb trials per session. In between blocks, NS rested for about 1 min. Prior to exper-

imental trials, NS was instructed to control the 2D location of the cursor on the screen using only her right wrist and no other body

parts. In particular, the only instruction given to NS was ‘‘attempt a wrist movement with your right hand after the go-signal.’’ We also

instructed NS after each trial to verbally report the direction of the intended movement based on points on a clock (e.g., intended

movement at 12 o’clock).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed using MATLAB 2016a.

Linear discriminants in the BMI tasks with one neuron
In the single-neuron experiment, we used linear discriminant analysis (LDA) in the BMI-calibration to identify the linear threshold that

divides the high and low firing rates under the assumption of a uniform prior distribution. In particular, the classifier took as input a

vector comprised of the number of spikes occurring after the go-signal for the trained neuron. The following assumptions were made

for the classification models: (a) the prior probability across the classes was uniform, (b) the conditional probability distribution of

each feature on any given class was normal, (c) only the mean firing rates differ for each class (the covariance of the normal distri-

butionswere the same for each class), and (d) the firing rates of each input are independent (covariance of the normal distribution was

normal). We evaluated the classification accuracy offline using the calibration data based on leave-one out cross-validation. The

linear threshold from the LDA classification was used both in the BMI-pro and the BMI-anti tasks, with the difference that the stimuli

associated with high versus low firing rate was flipped in the BMI-anti task. Classification accuracy for the on-line decoding in the

BMI-pro and BMI-anti tasks was based on subject’s performance during the testing session.

Linear discriminants in the BMI tasks with two neurons
Similarly, in the BMI-pro task with two trained neurons, the linear boundary that divides the two-firing rate clusters was found using

LDA under the assumption of a uniform prior and independent distribution. The linear boundary for the BMI-pro task was the one that

best separated the two-firing rate clusters acquired during the BMI-calibration– i.e., ideally 100% classification accuracy for both

stimuli. For the BMI-fsb task, we selected a linear threshold based on the classification accuracy in the BMI-calibration of each

possible pair of stimuli, except the one used in the BMI-pro task. In particular, we computed all 27 linear thresholds for each pair

of stimuli in the BMI-calibration that was not presented in the BMI-pro task and selected one under the following constraints: i) it

poorly classifies the two firing-rate clusters for the presented pair of stimuli in the BMI-pro task and ii) it best separates the firing-

rate clusters formed by intended wrist movements to another pair of stimuli.

Finally, for the BMI-nfsb task, the linear threshold was selected using evolutionary algorithms (EAs) (Bandyopadhyay et al., 1995;

de la Fraga and Coello Coello, 2011; Goldberg, 1989). The criterion (fitness function) that was used to generate the linear boundary

was given as follows:

f =
X8

i = 1

ri; where ri =

8>>><
>>>:

groupi
1

groupi
1 +groupi

2

; if groupi
1 < groupi

2

groupi
2

groupi
1 +groupi

2

; if groupi
2 < groupi

1

Where groupi
x is the number of trials for the stimulus i in the BMI-calibration in which the firing rate of the two trained neurons falls

within the one (x = 1) or the other (x = 2) side of the linear boundary. Note that ri takes values between 0 (i.e., best classification –

all trials are classified into one of the groups) to 0.5 (chance classification – half of the trials are classified into one of the group

and the rest of them to the other). The linear boundary was given by maximizing the fitness function f – i.e., maxðfÞ = P8
i = 1

0:5 = 4.
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Each chromosome in the EA population consists of 4 genes, which correspond to the 2-dimensional points ðx1; y1Þ and ðx2; y2Þ that
define the linear threshold. The parameters of the EA algorithm were as follows: Population = 100 (i.e., number of chromosomes),

Generations = 100 (i.e., total number of iterations), probability of crossover = 0.8, probability of mutations = 0.2.

DATA AND SOFTWARE AVAILABILITY

Data and MATLAB analysis scripts available upon request from Sofia Sakellaridi (sofia@caltech.edu).

ADDITIONAL RESOURCES

This study was conducted as part of NIH clinical trial NCT01958086.
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