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INTRODUCTION

In recent years considerable attention among extracellular electrophysiologists has
focused on the problem of simultaneously recording the activity of multiple neurons in
behaving animals. Such recordings, it is hoped, will provide much-needed insight into
the dynamics of neural ensemble computation and coding. Of particular interest are
recordings from neighboring neurons, for example cells that lie within a single column of
neocortex. Such cells are likely to share functional roles and to possess the anatomical
interconnectivity needed for ensemble coding, making them plausible participants in
local computational and signaling circuits.

Single cortical columns can be as little as 30um in cross-section, and so it is
difficult to introduce multiple independent electrodes into the same column in vivo. It
is important, therefore, to distinguish the extracellular traces of action potentials from
different cells gathered by a single electrode. The problem is made significantly easier
by the use of a multi-tip electrode, for example the four-wire bundle commonly called
a tetrode, that provides several slightly different electrical view-points on the same
group of cells. We have recently adapted the tetrode technology, introduced by Recce
and O’Keefe! for chronic recording in rat hippocampus, for use in behaving monkey
experiments?3.

In the current paper we discuss a solution to the problem of separating wave-
forms from multiple cells in a tetrode recording. We adopt an explicitly probabilistic
approach, constructing a parametric latent-variable model from which the data are
presumed to be generated. We find estimates of the parameters of the model using
maximum-likelihood techniques, and then, using these parameter values, infer the val-
ues of the latent variables, in particular the times of firing of the various cells. This
two-stage maximum-likelihood process reflects a commonly made approximation to the
full Bayesian posterior over the latent-variables®®. The correct estimates of the firing
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times should be made by integrating over the possible parameter values; for strongly
peaked posteriors, however, we can approximate this integral by evaluating the poste-
rior at the most probable value of the parameters. Given a weak prior, this point is the
same as the maximum-likelihood estimate.

DATA COLLECTION

Information about the construction of the electrode is available in an earlier paper.?
Here we mention only those parameters of the construction and data collection that
are relevant to the spike recognition problem.

The tetrode is a bundle of four individually insulated 13um-diameter wires twisted
together and cut so that the exposed ends lie close together. The potential at the tip of
each electrode is amplified (custom electronics), low-pass filtered (9-pole Bessel filter,
f. = 6.4 kHz) to prevent aliasing and digitized (f, = 12.8 to 20 kHz) (filters and A/D
converter from Tucker Davis Technologies). This data stream is recorded to digital
media; subsequent operations are currently performed off-line.

In preparation for inference, candidate events (where at least one cell fired) are
identified in the data stream. The signal is digitally high-pass filtered (f. = 0.05f;)
and the root-mean-square (RMS) amplitude on each channel is calculated. This value
is an upper bound on the noise power, and approaches the actual value when the firing
rates of resolvable cells are low. Epochs where the signal rises above three times the
RMS amplitude for two consecutive samples are taken to be spike events. The signal is
upsampled in the region of each such threshold crossing, and the time of the maximal
subsequent peak across all channels is determined to within one-tenth of a sample. A
1 ms section is then extracted at the original f; such that this peak time falls at a fixed
position in the extracted segment. One such waveform is extracted for each threshold
crossing.

GENERATIVE MODEL

Our basic model is as follows. The recorded potential trace V'(t) is the sum of
influences that are due to resolvable foreground cells (which have a relatively large
effect) and a background noise process. We write

V(t) =D (]St —7) + St —7) + ) +n(t) (1)

T

Here, c7, is an indicator variable that takes the value 1 if the mth cell fires at time
7 and 0 otherwise. If cell m fires at 7 it adds a deflection of shape S,,(t — 7) to the
recorded potential. The effect of all background neural sources, and any electrical noise,
is gathered into a single term 7(¢). For a multichannel probe, such as a tetrode, all of
V(t), n(t) and S,,(t) are vector-valued.

In this paper we take the waveform shape S,,(t) to be constant. In other work®
we discuss the possibility of variation in the underlying waveforms independent of
the common noise source 7(t). The c7, are assumed to be independently Bernoulli
distributed for each 7 and m, with constant firing probabilities, except that we will
enforce a refractory period between spikes from the same cell.

The distribution of the noise, 7(t), may intuitively be expected to be Gaussian;
if the waveform of a spike on the cell membrane is constant (and the preparation well
shielded), the noise in the recording is composed of thermal noise at the tip, noise in the
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Figure 1. Distribution of background noise. We extract 1ms segments from a bandpassed recording
sampled at 16 kHz from a four-channel electrode, avoiding the foreground spikes identified as
described in the text. Each segment is thus a 64-dimensional object. We find the principal
components of the ensemble of such vectors, and construct histograms of the projections of the
vectors in these directions. A few of these histograms are shown on a log-scale (points), as well as a
zero-mean Gaussian fit to the distribution projected along the same axes (lines).

signal amplification and conditioning electronics, and superimposed waveforms due to
the electrical activity of many “background” cells too far away to be distinguished in the
sorting process. The thermal and electronic noise are known to be Gaussian. Provided
that the number of cells contributing to the background noise is large, and their firing
relatively independent, the central limit theorem suggests that their influence too may
be taken to be well approximated by a Gaussian, although not necessarily an isotropic
one. The empirical distribution of the noise is shown in figure 1. It is clear that the
Gaussian is a reasonable description, although a slight excess in kurtosis is visible in
the higher principal components.

The distribution of 7(¢), then, is described by a single correlation function. In
practice the noise will be correlated over only a short time-lag and such a function will
be equivalent to a Toeplitz covariance matrix, X,. The parameters of the model to be
discovered, then, are X, S,, and p,,. Once these are estimated we can proceed to find
estimates for the spike times c],, which are the quantities we ultimately seek.

ESTIMATING NOISE PARAMETERS

The covariance of the background noise is measured directly from segments with-
out foreground spikes. We can use the covariance to whiten the noise so that further
inference proceeds in the context of decorrelated noise. To do this we fit an autore-
gressive (AR) process of order greater than the measured correlation length to the
background, using the Yule-Walker equations. We then subtract the forward predictor
given by this model. It is important to note that the resultant signal is not white:
only the background is decorrelated. The complete signal is quite non-Gaussian and so
cannot be decorrelated by second-order methods.

ESTIMATING WAVEFORMS

We now extract candidate spike waveforms from the whitened signal around the
threshold crossings, as was described before. We will write V* for the ith extracted
event and assume that it represents a spike from a single cell (that is, only one of
the ¢, is non-zero). This is an unreasonable assumption; we can shore it up partially
by eliminating from our collection of V' segments that appear heuristically to contain
overlaps (for example, double-peaked waveforms). Ultimately, however, we will need to
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make our inference procedure robust enough that the parameters describing the model
are well estimated despite the errors in the data.

The benefit of this assumption is that it allows the waveforms to be modeled as
arising from a mixture distribution, each waveform coming from a single multivariate
Gaussian cluster with mean S,,, (which is now viewed as a vector). We can achieve ro-
bustness by introducing additional mixture components, one centered at zero to account
for false triggers of the event extraction heuristic and others with broad covariances to
“mop up” any remaining overlaps. In what follows we will not write these clusters
explicitly.

We consider the case of M cells, each of which generates events drawn from a multi-
variate Gaussian distribution with mean S, and identity covariance (assuming that the
noise has been whitened). For conciseness, we write the probability of a given observa-
tion V? under the mth Gaussian as G,,(V?) = (27)~%/?exp (—(Vi —Sp)T(VE— Sm)/Z).
The prior probability of a spike arising from the mth cell is written p,,, and the param-
eters are collected into a single vector 8. Neglecting, for the moment, the refractory
constraint, the log-likelihood of the mixture model, given a sequence of observations
{V*}, is simply

1(0; {V*}) Zlog <me ) (2)

The effect of the refractory period on thlS likelihood will be discussed below.

The EM approach to the fitting of such a Gaussian mixture model is well known”> 8.
We introduce indicator variables ¢, similar to the ¢7,. For each i exactly one of the
corresponding ¢!, assumes the value 1 and the rest 0, thus indicating the cluster from
which the given observation was drawn. If the ¢¢, could be observed and thus used to
augment the data V* the (complete data) log-likelihood would be

6 {V',cn}) = 3 (logpm + log G (V7)) . (3)

The indicator variables allow us to bring the logarithm inside the summation, consid-
erably simplifying the task of model fitting.

The EM procedure now proceeds in two steps, iterated to convergence. In the
first (E) step we find the expected value of the log-likelihood (3) under the distribution
P(c, | {V'},0). Since the log-likelihood is linear in the variables ¢!, this simply
involves replacing the ¢/, with the corresponding expected value. We write r? for
E[ct,] (these are often called the responsibilities) and obtain

BlU(6; {V',ch )] = 33 rin (logpm +log Gm (V7)) , @)
with, by Bayes’ rule,
i i i _ pme(Vi)

The second (M) step involves maximizing this expected log-likelihood over the
model parameters . This is easily seen to reduce to independently fitting each of the
Gaussians to the data, weighted by the corresponding responsibilities.

We now consider the alterations to this standard approach that are necessary to
accommodate the refractory constraint. The likelihood [(8; {V?,c%,}) is identical to (3)
in most cases, but for sequences of ¢!, that violate the constraint it diverges to —oo.
In taking the expected value of the log-likelihood, however, the probability of such
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divergence is 0 and so the E step results in a form similar to (4), except that the values
of E[ct,] are different. We will use ¢, to denote these new responsibilities, reserving
ri for the values in (5).

To obtain the new responsibilities, consider first the simple case where only two
spikes have been observed and the second appears within a refractory period of the
first. We have a joint distribution over ¢}, and ¢ with

1 2\ 0 ifm=n
Plem, eu) —{ Thr2/Z otherwise (6)

where Z =32, Y nsm r+.r2 is an appropriate normalizing constant. The expected values
we seek are then just the marginals of this joint distribution, e.g.

Smo = Y mTalZ = tm(1-10)/Z (7)
n#m
where we have used the fact that 3 rf = 1.
This result easily generalizes to the case of many spikes

se=2 I (-1 ®)

i,j refractory

where Z' is the appropriate normalizer.
The M step is still a weighted Gaussian estimation, the weights now being the new
responsibilities s?,,.

SPIKE TIME INFERENCE

Three issues are left unresolved by this clustering process. First, the event iden-
tification heuristic could be improved upon once the true spike shapes have been de-
termined. Second, if all events are to be clustered the sorting process must occur
off-line, ruling out experiments in which rapid feedback about the cells’ responses is
needed. Third, superposed events have been discarded, rather than resolved into their
constituent spike forms.

These issues are addressed by building matched filters for the identified spike
waveforms. The filters are applied to the recorded signal to identify spike occurrences,
thus improving event detection. The same filtering process can also be applied to
further data from the same site as they are collected, facilitating real-time experimental
monitoring of subsequent data. The algorithm is easily implemented on DSP hardware.
Finally, as we shall see, the filtering process resolves spike superpositions.

Our filtering process arises as a direct solution to the maximum likelihood state-
ment of the problem. For clarity, we will restrict ourselves here to the case of a single-
channel continuous signal with spikes from two cells corrupted by white Gaussian noise.
This simple formulation demonstrates the essence of the approach. The treatment is
easily extended to four discrete-sampled channels with multiple cells.

We consider a recorded signal V'(¢) which is composed of spikes of two shapes S (t)
and S(t) occurring at times 7 (i = 1...N;) and 74 (i = 1...N;) respectively, and
which is corrupted by stationary Gaussian noise with zero mean and standard deviation
0. The log-likelihood of the model given by the times {7{} and {73} is proportional to

; 1 M M A\’
({mm, Sm}; V(¢)) ox —2—0—2/ (V(t) = stl(t —1) - ZSz(t = T;)> dt.  (9)
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Figure 2. Block diagram illustrating the adaptive-threshold filter-based detection scheme for two
spike shapes. The symbol ® represents convolution. Consult text for an explanation of the other
symbols.

We wish to maximize this likelihood with respect to the model.

We expand the square (bearing in mind that spikes from a single source cannot
overlap), and, with some rearrangement and removal of terms independent of the times
7t , we obtain the following expression:

({7, Sm}; V(1)) o é (Z/V(t)Sl(t —ri)dt - /Sl(t)Zdt)
+ f (2/V(t)52(t — 75) dt — /52(t)2 dt) (10)
- X (2/Sl(t—7f)52(t—Tg)dt).

i, 7] close

The notation “r%, 7'{ close” means that the sum is taken over those pairs of times
where the two associated spike shapes overlap.

The integrals within the first two summations dictate the matched filter form. The
output of the mth matched filter (which has impulse response S,,(—t)) is compared to
the threshold set by the squared power of the filter, a,,, to compute a time-dependent
quantity F,.

Oy, = 1/ Sm(t))? dt (11)
Fonl7) :/V (= 7) dt — oy (12)

Disregarding, for the moment, the final term in (10), this implies that we increase the
likelihood of the model by choosing times 7, which fall at the peaks of F,,, provided
that those peaks are positive and do not fall closer together than one spike-width.

The final term in (10) describes the interaction between the spikes. We can view
it as a time-dependent modification of the threshold «,, caused by a spike in cell n. If
a spike in the nth cell has been detected at 7,,, then the adjustment at time ¢ after the
detection is B(mn)(Tn + ¢), leading to output Fm.

Biammy (7o +6) = /s t — 6)Sa(t) dt (13)
/V m(t—T7)dt — o — Zﬁ(mn) (14)

Jj#i
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Thus, whenever a spike is detected according to (12), the thresholds for other spike
shapes are transiently altered by the term (3. This allows the correct resolution of
superpositions. The process is illustrated in figure 2.

This adaptive-threshold process is thus seen to find the maximum likelihood esti-
mate of the spike times, given the signal, the noise characteristics and the spike shapes.

DISCUSSION

The algorithms presented here are optimal, in the maximum-likelihood sense, given
the simple Gaussian generative model described. They resolve overlaps correctly and
can be run in real time. In this respect, they represent a significant advance over
commonly used approaches to this problem.

The model examined may well prove to be too simple to apply to all experimental
preparations®!?. Tt is, however, possible to extend this same framework to describe
non-Gaussian variability as well as dynamic variation of spike shape during bursts®.
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