
OPEN ACCESS
IOP PUBLISHING JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 10 (2013) 046005 (12pp) doi:10.1088/1741-2560/10/4/046005

The utility of multichannel local field
potentials for brain–machine interfaces
Eun Jung Hwang1 and Richard A Andersen

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena,
CA 91125, USA

E-mail: eunjung@caltech.edu

Received 11 February 2013
Accepted for publication 21 May 2013
Published 7 June 2013
Online at stacks.iop.org/JNE/10/046005

Abstract
Objective. Local field potentials (LFPs) that carry information about the subject’s motor
intention have the potential to serve as a complement or alternative to spike signals for
brain–machine interfaces (BMIs). The goal of this study is to assess the utility of LFPs for
BMIs by characterizing the largely unknown information coding properties of multichannel
LFPs. Approach. Two monkeys were implanted, each with a 16-channel electrode array, in the
parietal reach region where both LFPs and spikes are known to encode the subject’s intended
reach target. We examined how multichannel LFPs recorded during a reach task jointly carry
reach target information, and compared the LFP performance to simultaneously recorded
multichannel spikes. Main Results. LFPs yielded a higher number of channels that were
informative about reach targets than spikes. Single channel LFPs provided more accurate
target information than single channel spikes. However, LFPs showed significantly larger
signal and noise correlations across channels than spikes. Reach target decoders performed
worse when using multichannel LFPs than multichannel spikes. The underperformance of
multichannel LFPs was mostly due to their larger noise correlation because noise de-correlated
multichannel LFPs produced a decoding accuracy comparable to multichannel spikes. Despite
the high noise correlation, decoders using LFPs in addition to spikes outperformed decoders
using only spikes. Significance. These results demonstrate that multichannel LFPs could
effectively complement spikes for BMI applications by yielding more informative channels.
The utility of multichannel LFPs may be further augmented if their high noise correlation can
be taken into account by decoders.

(Some figures may appear in colour only in the online journal)

Introduction

An electrical signal sensed by a microelectrode inserted in
the extracellular matrix of the cortex is typically decomposed
into action potentials and local field potentials (LFPs). The
action potential signal, often referred to as spikes, is generated
by a few neurons near the tip of the electrode. The LFP is
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a low-pass filtered signal, cut off at 300 Hz or less, and
largely reflects the sum of slow local synaptic currents in
thousands of neurons surrounding the electrode tip (Mitzdorf
1985, Poulet and Petersen 2008). Both spikes and LFPs can
carry important information about movements such as reach
target location, hand kinematics, hand grasp type, reach onset
time, and electromyograms (EMGs) of arm muscles (Mehring
et al 2003, Rickert et al 2005, Scherberger et al 2005, Heldman
et al 2006, Asher et al 2007, Spinks et al 2008, Hwang and
Andersen 2009, Bansal et al 2011, Flint et al 2012). Thus,
both types of neural signals can potentially serve as command
signals to control motor effectors (e.g., computer cursors, robot
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arms, paralyzed arms, etc) in brain–machine interface (BMI)
systems.

Most chronic BMIs implemented so far relied on spikes
to decode the subject’s intended movements (Carmena et al
2003, Musallam et al 2004, Collinger et al 2012, Ethier
et al 2012, Gilja et al 2012, Hochberg et al 2012). One
serious challenge encountered by those chronic BMIs is that
spike signals disappeared in many electrodes within a few
months (Polikov et al 2005, Simeral et al 2011). Probable
causes are neuro-degeneration following post-surgical glial
scar formation near the electrodes and changes of the electrode
location by uncontrolled physical perturbations including
cardiac and respiratory pulsations, mechanical movement of
the subject, and migration of neural tissue (Santhanam et al
2007, Dickey et al 2009, McConnell et al 2009).

In this light, LFPs may be a reliable complement or
alternative to spikes for chronic BMIs because compared
to spikes, they are less likely affected by glial scarring or
electrode location changes (Frien and Eckhorn 2000, Leopold
and Logothetis 2003, O’Leary and Hatsopoulos 2006, Stark
and Abeles 2007, Berens et al 2008, Jia et al 2011). The
low electrode location sensitivity of LFPs, however, may
pose a limitation on their utility for BMIs if multichannel
LFPs recorded from different physical sites encode highly
redundant information. The information redundancy in any
neural population depends on the structure of noise and
signal correlations between individual channels (Johnson
1980, Zohary et al 1994, Abbott and Dayan 1999, Andersen
et al 2004, Averbeck et al 2006, Quian Quiroga and Panzeri
2009). Here, the noise correlation refers to the similarity
between the trial-to-trial deviations from their respective
average responses, whereas the signal correlation refers to
the similarity in the mean responses across different stimuli
or outputs. In general, information redundancy is larger when
both signal and noise correlations are significant and in the
same direction than when they are in the opposite directions
or insignificant (Averbeck et al 2006, Achtman et al 2007,
Quian Quiroga and Panzeri 2009). For multichannel LFPs,
only overall correlations (i.e., a combined measure of both
signal and noise correlations) have been reported, and signal
and noise correlations have not been examined separately
(Destexhe et al 1999, Mehring et al 2003, Bansal et al 2011,
Eggermont et al 2011).

Some studies directly assessed the utility of multichannel
LFPs by decoding movement related parameters from
multichannel LFPs and spikes and comparing the two decoding
performances (Mehring et al 2003, Bansal et al 2011, Flint
et al 2012). The comparison results are inconsistent among
studies, which is difficult to reconcile without knowing the
underlying signal and noise correlations. Therefore, in this
study, we measured signal and noise correlations across
multichannel LFPs recorded in the macaque parietal reach
region (PRR) in which both LFPs and spikes were known to
carry the subject’s intended reach target information (Snyder
et al 1997, Scherberger et al 2005, Hwang et al 2012). In
addition, to assess the impact of these correlations on the
utility of multichannel LFPs for BMIs, we examined the
amount of reach target information that can be decoded from
multichannel LFPs in comparison to spikes.

Methods

Two male rhesus monkeys (Macaca mulatta, Y and G)
participated in this study. The California Institute of
Technology Institutional Animal Care and Use Committee
approved the animal procedures used in this study, which were
performed in accordance with NIH guidelines.

Behavioral experiment setup

The monkeys sat in a primate chair and viewed visual stimuli
presented on a vertical LCD monitor placed in the fronto-
parallel plane, ∼40 cm away from the eyes. Eye position
was recorded with an infrared eye tracker (240 Hz; ISCAN,
Burlington, MA) and hand position was recorded with a 19
inch translucent touch-sensitive screen (IntelliTouch; ELO
Systems, Menlo Park, CA) placed in front of the LCD monitor.
The visual stimulus presentation, online monitoring of eye and
hand positions, and reward control were handled by a real-time
LabView program running on a real-time operating system
(National Instruments, LabView7.1 and LabView Real-Time).

Delayed reach task

The monkeys began a trial by fixing their eyes on the eye-
fixation target and touching the hand-fixation target in the
screen center (figure 1(A)). After a 0.5 s fixation period, a
green circle appeared in the periphery. After a delay period
(1.5 ± 0.15 s), the hand-fixation target disappeared (go-
cue), signaling the monkeys to reach to the green circle
without moving their eyes. The monkeys were required to
hold their hand within 3◦ from the green circle and their eyes
on the fixation target for 0.3 s to receive a juice reward. Six
target locations, evenly spaced around a virtual circle (10.3◦

eccentricity), were randomly interleaved. The monkeys made
at least 11 successful trials per target location in each recording
session, and completed 45 recording sessions (38 sessions by
Y, 7 by G).

Neural signal recording

The monkeys were implanted with a head holder and a
recording chamber housing a 16-channel-movable-electrode
array (Neuralynx, Bowsman, MT). We placed an array of
16 electrodes in PRR which covers the medial wall of the
intraparietal sulcus (IPS) in monkey Y, and both the medial
wall of IPS and the anterior wall of the parieto-occipital sulcus
(POS) in monkey G (figure 1(B)). The electrode placement was
guided by magnetic resonance images. The electrodes were
spread over a 2 × 6.5 mm2 area of the dura for monkey Y and
3 × 5 mm2 for monkey G. Because each individual electrode
was attached to its own dedicated screw-mechanism drive,
the depth of each electrode was individually adjustable. To
maximize the number of channels showing single unit activity,
we moved the electrodes showing no discernible single units
in the beginning of each session, up to 1 mm from the depth
of the previous session or until clear single unit activity
emerged, whichever occurred first. A commercial 16-channel
neural signal recording system (Plexon MAP, Dallas, TX)
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(A)

(B)

(C)

Figure 1. (A) Task sequence of the delayed reach task. The square and the triangle in the center represent the eye- and hand-fixation targets,
respectively, and the circle in the periphery represents the reach target. (B) The locations of 16 electrodes (purple dots) overlaid on the
magnetic resonance image of each monkey’s brain. The yellow dashed lines indicate the intra-hemispheric fissure and major sulci including
the IPS, POS, lunate sulcus, superior temporal sulcus, and cingulate sulcus. The anterior, posterior, left, and right directions are indicated.
(C) Tuning curves, the mean delay response for each of six target locations, of LFP and spike units recorded from the same electrode. The
LFP power and spike firing rate (FR) in each tuning curve were normalized so that that the maximum is 1 and the minimum is 0. The error
bars are the standard deviations.

was used to record and store neural signals. LFPs and spikes
were separated by hardware band-pass filters in a preamplifier
(LFP: 3.3–88 Hz and spike: 154 Hz–8.8 kHz). To minimize
potential contamination by the power line noise, LFP signals
were filtered using a second-order notch filter with the center
frequency at 60 Hz and the bandwidth of 0.6 Hz. In this study,
each of the 16 channels corresponds to each of the 16 different
electrodes. In some sessions, only 15 channels were functional
because of faulty electrical connections.

Spike signal processing

For each channel, up to four spike units were isolated offline
using a commercially available software package (Plexon
Offline Sorter; T distributed expectation-maximization
methods). The validity of the automatic isolation was checked
by subsequent visual inspection. Each spike waveform was
recorded as a 32-time-point vector (0.8 ms long). For each time
point, we computed the mean and standard deviation of the
amplitude. The signal-to-noise ratio (SNR) of a spike unit was
defined as the ratio of the trough-to-peak amplitude of the mean
waveform to twice the standard deviation averaged across the
32 points. Those with a SNR greater than 1.5 were included for
analysis. By this criterion, both single unit (the spike signal of
a single neuron) and multi-units (the compound spike signals

of multiple indiscriminant neurons) were included. For each
isolated spike unit, we counted its number of occurrences
during the last 1 s of the delay period in each trial. These
spike counts were used for all spike signal analyses in this
study.

LFP processing

LFPs in PRR are known to carry reach target information via
power modulation in various frequency bands (Scherberger
et al 2005). Thus, we transformed the time-domain LFP traces
in the last 1 s delay period of each trial into frequency-domain
power spectra using a multi-taper method (bandwidth = 5 Hz)
(Pesaran et al 2002). In this transformation, the single one
second window was used for all frequencies. Since LFPs in
different frequency bands often carry different information
(Hwang and Andersen 2011), each spectrum was converted
to an 8 × 1 vector consisting of the average log-transformed
powers in eight frequency bands, 0–10 Hz, 10–20 Hz, . . . , 70–
80 Hz. The eight LFP powers were used for the main LFP
signal analyses in this study.

Tuning analysis

Because the current study aimed to assess the extent to which
LFP and spike signals in PRR are informative about the
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intended reach target, we examined the modulation of the
neural signals as a function of the reach target, i.e., the reach
target tuning (figure 1(C)). To determine the significance of the
target tuning of a spike unit, we applied an ANOVA test on the
spike count data, with the reach target as the single factor. If the
significance level p < 0.001 was satisfied, we rejected the null
hypothesis that the mean spike counts were statistically equal
across six targets. In other words, if the mean spike count for
at least one target was significantly different from the others,
the spike unit was considered to be significantly tuned to the
reach target. Similarly, we applied the ANOVA test to the LFP
power in each of the eight frequency bands. If any frequency
band met the significance level p < 0.001, the LFP channel
was considered to be significantly tuned.

As noted above, the ANOVA test indicates whether or not
the means of a neural signal differed for at least one target.
To estimate how many reach targets each tuned LFP or spike
unit could discriminate, we performed a six-target decoding
analysis described in the later section of the ‘Methods’. If a
majority of the reach trials associated with a specific target
was correctly decoded, we considered that the neural signal
could discriminate that specific target. The number of targets
that satisfied this condition was counted for each tuned neural
signal as a measure to the number of targets that affected the
neural signal.

Signal and noise correlations

For any two neural signals, the signal correlation was measured
as the Pearson’s correlation coefficient between their tuning
curves (Rickert et al 2005). The tuning curve was a six-element
vector with each element being the mean response for each of
the six targets. To measure the noise correlation, we computed
the response deviation of each trial from the mean response
for the corresponding target. Then, we computed the Pearson’s
correlation coefficient between the trial-by-trial deviations of
the two signals (Zohary et al 1994, Rickert et al 2005).

All statistical tests involving the correlation coefficients
were applied to the z values after transforming the correlation
coefficients through the Fisher transformation.

Offline reach target decoding algorithm

We used maximum likelihood decoders (Salinas and Abbott
1994, Scherberger et al 2005). The decoder input was a vector
comprising the spike counts and/or the LFP powers. Thus, for
N spike units and M LFP channels, the size of the input vector
was N, 8 · M, or N + 8 · M depending on the input signal. The
dimensionality of the input vector was reduced by selecting
only those vector elements with significant reach target tuning
based on the ANOVA test described earlier. If no element was
significantly tuned, the element with the smallest p-value from
the ANOVA test was selected. The decoder output was one of
the six targets. In the maximum likelihood decoders, we used
the following assumptions due to insufficient knowledge of
the statistical properties of input vectors (Hwang and Andersen
2012): (1) the prior probability across the six targets is uniform,
(2) the conditional probability distribution of each input signal
(i.e., spike count or LFP power) on any given target is normal,

(3) the covariance of the normal distributions are the same
across the six targets and only the means differ, and (4) the
input signals are independent (i.e., the covariance matrix is
diagonal). The last assumption was made because the sample
size (the number of trials) in our study was too small in
relation to the large dimensionality of the input signal to
estimate a robust inverse of the covariance matrix although
this assumption is invalid for multichannel LFPs as will be
shown and described in the ‘Results and Discussion’. For the
input signal of a given test trial, the log-likelihood that the
signal was associated with each target was computed using
the conditional probability function on each target that was
estimated from the training data. Then the target associated
with the maximum log-likelihood was selected as the decoder
output. A decoder output was computed for every trial using
all the other trials as training data. The decoding accuracy was
computed as the proportion of the trials for which the decoder
output was the actual reach target.

Neuron/LFP-channel dropping curves

In order to estimate how each additional signal source
contributes to improving the reach target decoding accuracy,
we computed neuron dropping curves and LFP-channel
dropping curves (Wessberg et al 2000). The neuron dropping
curve represents the average six-target decoding accuracy as
a function of the number of spike units or spike channels
that were available for decoding. Likewise, the LFP-channel
dropping curve represents the average six-target decoding
accuracy as a function of the number of LFP channels
that were available for decoding. To estimate the average
decoding performance for any number of channels N, the
decoding accuracy was computed using 100 randomly selected
combinations of N simultaneously recorded channels.

Trial shuffled multichannel LFPs

To examine the effect of noise correlations in LFPs on
the decoding accuracy, we applied the same LFP-channel
dropping curve analysis described above, using trial-shuffled
signals in which the trial order of LFPs from each channel was
randomly shuffled among the same target trials.

Sequential multichannel LFPs

To compare the decoding accuracy between simultaneously
recorded multichannel LFPs and sequentially recorded
multichannel LFPs, we constructed sequential multichannel
LFPs by combining LFP channels, each randomly selected
from different recording sessions. To compute the decoding
accuracy for sequential N-channel LFPs, we took the average
decoding accuracy across 100 randomly selected combinations
of N LFP channels, each from different recording sessions.
Suppose we recorded three separate sessions, each with three
LFP channels (figure 4(A)). An example of sequentially
recorded three-channel LFPs can be constructed using a
combination of LFP channel 3 in session 1, channel 2 in
session 2, and channel 1 in session 3. Then, trials in each
selected LFP channel were reordered in such a way that the
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selected channels were combined with the same reach target
sequence.

Data from the two monkeys are qualitatively similar, and
thus we combined data from the two monkeys in the current
paper unless specified otherwise.

Results

Single channel LFPs provide more robust target information
than single channel spikes

We first examined how LFPs and spikes encoded the reach
target information at the single channel level. Figure 1(C)
shows the tuning curves (i.e., the mean signal modulation
as a function of the reach target) of a LFP and two spike
units recorded from the same electrode. The tuning curves
of the LFP were computed separately for each of eight
frequency bands because different frequency bands could
encode information in different ways (Rickert et al 2005,
Belitski et al 2008, Hwang and Andersen 2011, Hwang and
Andersen 2012). Consistent with our previous report (Hwang
and Andersen 2011), in the example channel, the delay period
LFP in gamma bands (>40 Hz) was significantly tuned to the
visible reach target (ANOVA, p < 0.001). The delay period
spike count of one spike unit was also significantly tuned to the
reach target (ANOVA, p < 0.001). 68% of all LFP channels
recorded in this experiment showed significant target tuning
in at least one frequency band. The most prevalently tuned
frequency band was the 50–60 Hz band in which 57% of all
channels showed significant target tuning. In contrast, only
34% of all recorded channels contained at least one spike unit
with significant target tuning. More specifically, 58% of all
recorded channels contained distinguishable single or multi
spike units and among those channels, 58% contained at least
one unit that was significantly tuned.

Next, to compare the quality of target tuning between
single channel LFPs and single channel spikes, we performed
reach target decoding analyses using each signal separately
(Methods). When decoding six reach targets from any single
channel LFP that was significantly tuned to the reach target, the
mean decoding accuracy was 39 ± 11.1%. The mean accuracy
using any single significantly tuned spike unit was 34 ± 10.4%.
The difference was significant (Wilcoxon rank-sum test,
p < 0.001).

The two neural signals also differed in terms of the number
of targets that they could discriminate (Methods). The single
channel LFP shown in figure 2(A) discriminated four targets.
Notice the four bright diagonal elements, which indicates that a
majority of the trials associated each of the four discriminable
targets was decoded correctly. Of all tuned single channel
LFPs, 43% could discriminate four or more targets, whereas
only 20% of all tuned single spike units could discriminate 4
or more targets (figure 2(B)).

Both signal and noise correlations are larger between LFP
channels than between spike units

The single channel analysis results above appear to support the
view that LFPs can serve as an alternative to spikes for BMI

applications. However, to extract quality information for BMI
control, it is necessary to pool signals from multiple channels
(sites), and the amount of information in multichannel neural
signals is not a simple sum of information carried by individual
channels but depends on signal and noise correlations between
channels (Johnson 1980, Zohary et al 1998, Schneidman
et al 2003). Thus, despite more target information at the
single channel level, multichannel LFPs could be less efficient
than multichannel spikes depending on their signal and
noise correlations. We therefore characterized correlations
between LFP channels in comparison to those between spike
units.

To systematically characterize correlations in
multichannel LFPs, we computed their signal and noise
correlations, separately as described in the ‘Methods’. The
signal correlation coefficient measured the similarity between
the tuning curves of two neural signals, whereas the noise
correlation coefficient measured the similarity between
the trial-to-trial deviations from their respective average
responses. The correlation analysis was performed between
all pairs of LFP channels that were simultaneously recorded
and significantly tuned to the reach target (N = 2025 pairs,
1539 for Y and 486 for G). We found that both the signal
and noise correlation coefficients have significantly positive
mean values in all frequency bands (t-test on Fisher’s z
values, p < 0.001; figures 3(A) and (B)). For instance, in
the 40–50 Hz band, the mean signal and noise correlation
coefficients between different LFP channels were 0.74 and
0.36, respectively. The mean noise correlation showed a small
but significant decrease as the frequency increased (slope =
−0.008, p < 0.001). Furthermore, in all frequency bands,
channel pairs with a strongly positive signal correlation
coefficient tended to have a strongly positive noise correlation
coefficient as well. The correlation coefficients between
the noise and signal correlations range 0.29–0.49 and are
significant (Spearman’s rank correlation, the significance
levels were too small to measure; figure 3(C)), suggesting that
multichannel LFPs in PRR carry the reach target information
in a highly redundant manner (Averbeck et al 2006, Achtman
et al 2007, Quian Quiroga and Panzeri 2009).

For comparison, we performed the same correlation
analysis on all pairs of spike units that were simultaneously
recorded and significantly tuned (N = 2243 pairs, 2040 for
Y and 203 for G). The mean signal and noise correlation
coefficients between tuned spike units were 0.11 and 0.07,
respectively, significantly smaller than those between tuned
LFP pairs in all frequency bands (two-sample t-test, p < 0.001;
figures 3(D)–(F)). The higher signal and noise correlations
between LFP channels than between spike units suggest that
multichannel LFPs would encode target information in a more
redundant manner than multichannel spikes.

Information gain by additional signal source is smaller for
LFPs than spikes

Although we could decode the target information more
accurately from single channel LFPs than single channel spike
signals, the higher redundancy across multichannel LFPs than
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(A)
(B)

Figure 2. (A) An example LFP channel which discriminated four reach targets. The matrix represents the six-target decoding result from the
example LFP channel. The color of each square represents the proportion of the trials for which the actual target corresponds to the row
number and the decoded target corresponds to the column number. Each row is normalized such that the sum across the columns of each row
is 1. The four squares with thick black borders indicate that a majority of trials in their corresponding row is decoded correctly, i.e., the
actual target in each of those rows is discriminable. (B) The distribution of the number of discriminable reach targets by single tuned LFPs
or spike units.

spike signals predicts that information gain by additional
channels would be smaller for LFPs than spikes. To test
this prediction, we decoded the reach target information from
multichannel LFPs and multichannel spikes, and compared the
decoding accuracy between the two types of neural signals.
The LFP-channel and neuron dropping curves in figure 4(B)
represent the average target decoding accuracy as a function
of the number of tuned LFP channels or tuned spike units,
respectively. Because the purpose of the analysis was to
compare information gain by additional signal sources that
were informative on the reach target, we used only tuned
neural signals in this analysis (see following sections for
analysis regardless of tuning significance). Consistent with
our prediction, the LFP-channel dropping curve fell below
the neuron dropping curve for all numbers of channels/units
greater than 3 although the LFP curve started off higher
initially (figure 4(B)). In other words, the decoding accuracy
from single LFP channels was higher than that from single
spike units as described earlier, but decoding accuracy by
incorporating additional channels increased more slowly for
LFPs than spikes. For instance, the number of LFP channels
required to achieve 70% accuracy was 9, whereas the number
of spike units was 6. Therefore, the pool of LFPs is less efficient
in providing the reach target information than the pool of
spikes.

One may be interested in seeing the best possible, instead
of the average, decoding performance. Figure 4(C) shows
the best performance that can be achieved by each number
of tuned neural signals. Multichannel spikes outperformed
multichannel LFPs also in the best performance comparison.
For spikes, perfect decoding performance could be achieved
using only 11 best units. For LFPs, the decoding performance
reached 94% correct with 7 best channels.

The high noise correlation of multichannel LFPs contributes
to information redundancy

In order to determine how much the noise correlation
was responsible for the lower efficiency of multichannel
LFPs versus multichannel spike signals, we removed noise
correlations in multichannel LFPs and computed an LFP-
channel dropping curve. We constructed noise de-correlated
multichannel LFPs by combining different LFP channels, each
recorded in different sessions (figure 4(A)). These sequentially
recorded multichannel LFPs produced decoding performance
that was not significantly different from multiple spikes
at any number of channels/units (Wilcoxon rank-sum test,
p > 0.1; figure 4(B)), suggesting that the high noise correlation
between LFP channels rather than the high signal correlation is
primarily responsible for the lower efficiency of multichannel
LFPs compared to spikes. If indeed noise de-correlation
effectively boosted decoding accuracy for the sequential LFPs,
noise de-correlation of data within each session through a
random shuffling among the same target trials would also result
in a decoding accuracy boost. Consistent with this prediction,
the trial-shuffled LFPs produced a decoding accuracy as good
as the sequential LFPs (figure 4(B)).

Multichannel LFPs effectively complement spikes for reach
target decoding

Although the simultaneous multichannel LFPs carried highly
redundant information about the reach target, the target
decoding accuracy monotonically increased with the number
of tuned LFP channels, reaching up to approximately 75%
for a six-target discrimination when using 14 tuned channels
(figure 4(B)). The performance enhancement by adding each
additional channel continued to be significant up to six
channels (Wilcoxon rank-sum test on adjacent numbers of
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(A) (D)

(E)

(F)

(B)

(C)

Figure 3. (A) The histogram of signal correlations between all pairs of LFP channels (N = 2025) that were simultaneously recorded. LFP
correlations were computed separately for each of the eight frequency bands (only four bands are shown). The red line and the abutting
number indicate the mean of the distribution. (B) The histogram of LFP noise correlations. (C) Signal correlation versus noise correlation.
Each dot represents an individual LFP pair. The correlation coefficients are z-transformed. The green lines represent the linear regression.
Spearman’s correlation coefficient between the two correlations is marked on the top of each plot. The significance level of the LFPs was
virtually zero. (D)–(F) The same as (A)–(C) but for all pairs of spike units (N = 2243).

channels, p < 0.001). After that, more than one additional
channel was required to gain a significant improvement in
the decoding accuracy. Thus, different LFP channels provide,
though limited, non-redundant information regarding the
intended reach target. Furthermore, multichannel LFPs are
more efficient in the yield of tuned channels than spikes as
shown earlier. Across all 45 recording sessions, the number
of channels with tuned LFPs in each session was 10.8 ± 3.23
(mean ± s.d.) whereas the number of channels with tuned spike
units was 5.3 ± 2.07. These correspond to 69 ± 21.5% and
34 ± 13.6% of all channels. It was not necessary to record a
tuned spike signal at the same electrode in order to record
a tuned LFP. Nor was it necessary to record distinct action
potentials. LFPs were tuned in 71% of the channels with
untuned spike units, and in 47% of the channels without
action potentials. These observations predict that multichannel
LFPs, despite their high information redundancy, could play
an effective complementary role to spikes for BMIs (Hwang
and Andersen 2010).

To test this prediction, we computed decoding
performance from LFPs alone, spikes alone, and both LFPs and
spikes. Unlike the LFP-channel and neuron dropping curves
in the previous analysis, this analysis included all N channels,
regardless of their significance of target tuning, in order to
estimate the average decoding performance expected when
N electrodes were implanted at random locations in PRR.
Thus, this analysis took into account both the redundancy
and the yield of tuned signals. The decoding accuracy using
LFPs was better than or as good as the accuracy from
spike signals up to eight channels (figure 4(D)). Even after
8, the performance difference between the two signals was
not as large as the previous analysis because the higher
yield of tuned signals for LFPs compensates for the less
efficient information decoding from multichannel LFPs than
spikes. More importantly, decoding performance using both
signals was higher than that using either signal alone. For
instance, decoding accuracy using eight channels was 77 ± 0.2
(mean ± s.e.m.), 62 ± 0.3, and 61 ± 0.2% respectively for
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(A)

(B) (C) (D)

Figure 4. (A) The construction procedure for sequential multichannel LFPs. Each column represents a single channel. Each row represents a
single trial. Different filling colors indicate different reach targets. A set of channels is selected from different sessions, and the trial
sequences are reordered such that the selected channels have the same target sequence. (B) The average decoding performance for each
number of tuned LFP channels or tuned spike units, for the simultaneously recoded data, trial-shuffled data, and sequentially recorded data.
(C) The best decoding performance for each number of simultaneously tuned LFP channels or spike units. (D) The average decoding
performance for each number of simultaneously recorded electrodes, when using spike units, LFPs, and both signals. The error bars indicate
the standard errors of means.

both signals, spikes only, and LFPs only. All combinatorial
comparisons showed significant differences (Wilcoxon rank-
sum test, p < 0.001). These results clearly demonstrate that
multichannel LFPs can efficiently complement spikes when
decoding the subject’s intended reach target.

Signal and noise correlations between LFP channels
decrease with the physical distance

So far, we dealt with only the mean signal and noise
correlations of LFPs and spike signals across all possible pairs.
However, the physical distance between a pair was not constant
and varied between 0.5 and 10 mm. Thus we examined the
effect of distance on the correlations. Figure 5 shows the
signal and noise correlation coefficients as a function of the
distance between recording channels. For LFPs, we found that
the slope of the linear regression was significantly negative for
frequency bands below 40 Hz (p < 0.001) but not in the more

informative frequency bands (i.e., 40–60 Hz) (figure 5(A)).
On the other hand, the noise correlation decreased with the
distance between recording channels in all frequency bands
(figure 5(B)).

Compared to LFPs, the spike signal and noise correlations
decreased at a much faster rate (figures 5(C) and(D)). The
correlation coefficient for the distance of 0 was computed
between pairs of spike units recorded at the same electrode.
Notably, when the spike units recorded at the same electrode
were excluded from the analysis, the mean signal and noise
correlation coefficients were 0.03 and 0.03, respectively and
neither was significantly different from 0 (t-test on Fisher’s z
values; p > 0.05; figure 5(C)). In addition, the regression slope
became insignificant for both signal and noise correlations
(p > 0.05). Thus, pairs of spike units recorded from different
sites in PRR are not significantly correlated, at least for the
distance beyond the distance of 0.5 mm.
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(A) (C)

(D)(B)

Figure 5. (A) The signal correlation as a function of the distance between LFP channels. Each dot represents a single LFP site. The black
line indicates the mean correlation coefficient for a given distance and the gray band indicates the standard deviation. The green line shows
the linear regression on the distance and correlation coefficient. The slope of the linear regression and the significance level of the slope are
indicated on the top of each plot. (B) The same as (A) but for the noise correlation. (C)–(D) The same as (A)–(B) but for spikes.

Discussion

The current study, for the first time to our knowledge,
measured noise and signal correlations between LFP channels.
Both noise and signal correlations between LFP channels in
PRR were significantly larger than those between spikes. To
examine how these correlations impact their utility for BMI
applications, decoding analyses were performed. We found
that the target information decoded from multichannel signals
was less accurate for LFPs than spikes. The underperformance
of multichannel LFPs was mostly due to their larger
noise correlation because noise de-correlated multichannel
LFPs (sequentially recorded and shuffled LFPs) produced
a decoding accuracy comparable to multichannel spikes.
In other words, noise correlation between LFP channels
significantly influences the amount of information that one can
decode from multichannel LFPs. The result also confirms the
previous warning that decoding performance estimated from
sequentially recorded data should be used with caution (Quian
Quiroga and Panzeri 2009).

Correlations in LFPs in other areas of the brain

How can we generalize this finding from PRR to other
brain areas? In the frontal eye field (FEF), trial-shuffled (i.e.,
noise de-correlated) versus original multichannel LFPs did not
yield different accuracy when decoding eye movement targets
(Markowitz et al 2011). This suggests that the multichannel
LFPs in FEF may not show significant noise correlations
between channels. In M1, reach target decoding performance
was similar between simultaneous and sequential multichannel

LFPs (Mehring et al 2003). This result also suggests that the
noise correlation of LFPs in the frontal cortex may not be
as significant as in PRR. By comparison, signal correlations
across multichannel LFPs seem to be significant in M1 because
the overall correlations across multichannel LFPs in M1 are as
large as in PRR (Bansal et al 2011, Mehring et al 2003).

Several studies in M1 also compared the decoding
accuracy acquired from multichannel LFPs versus spikes.
The results are mixed. The reach target was more accurately
decoded from multichannel LFPs than spikes (Mehring et al
2003). Decoding performance for the EMG patterns of arm
muscles during reach and grasp was comparable between
LFPs and spikes (Flint et al 2012). When decoding hand
kinematics during reach and grasp, multichannel spikes
outperformed multichannel LFPs (Bansal et al 2011). Such
mixed results could occur if signal and noise correlations
across multichannel neural signals differ depending on the
parameter defined as the signal, which remains to be shown.

LFP noise correlations and frequency

We found that noise correlation between channels decreased
with LFP frequency. In other words, for a given distance
between two channels, LFP noise correlation is smaller for
higher than lower frequency. This trend is similar to previous
observations regarding the overall correlation between LFP
channels in cat cerebral cortices (Destexhe et al 1999,
Eggermont et al 2011). The smaller spatial extent of higher
frequency LFPs are not attributable to biophysical filtering
properties of the extracellular space because the electrical
conductance of the extracellular space is relatively constant
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across frequencies (Logothetis et al 2007). Instead the spatial
extent might be determined by the size of the oscillation
generators and the nature of neural events underlying them.
For instance, Jia et al (2011) found that the spatial extent can
vary even for the same frequency LFPs depending on the task
condition. Regardless of the exact mechanisms, the smaller
noise correlation in higher frequency bands is suggestive of
less redundancy in higher frequency LFPs, calling for future
investigations of LFPs at even higher frequencies than the
frequency bands currently examined.

Noise correlation in spikes

The mean noise correlation between spike units in PRR
was 0.07 ± 0.165, and significantly different from 0.
However, this significant correlation was mainly driven by
the noise correlations between spike units recorded at the
same electrode because the mean noise correlation became
statistically insignificant after excluding pairs of units recorded
from the same electrode. The mean noise correlation in PRR
is substantially smaller than that reported for area MT, but
comparable to those reported for the dorsal medial superior
temporal area and primary visual cortex (V1) (Zohary et al
1994, Ecker et al 2010, Gu et al 2011). The low noise
correlation in PRR after factoring out the reach target-
dependent signal correlation is consistent with the idea that
the reach target is the major common variable that drives the
activity of neurons in this region (Hwang et al 2013).

Higher signal and noise correlations across LFPs than spikes

The finding that LFPs show higher signal correlation than
spikes is consistent with the previous observation that LFPs
show less sensitivity to changes in recording location than
spikes in the same region (Frien and Eckhorn 2000, Leopold
and Logothetis 2003, O’Leary and Hatsopoulos 2006, Berens
et al 2008). The different sensitivity may be explained by
their distinct signal origins. LFPs resemble sub-threshold
membrane potentials of nearby neurons which are highly
correlated with one another even if their spikes are not
correlated (Penttonen et al 1998, Lampl et al 1999, Poulet
and Petersen 2008). The high correlation of the membrane
potentials is likely due to shared synaptic inputs (Shadlen
and Newsome 1998), while the uncorrelated spikes may be
explained by nonlinear transformations (e.g., threshold and
saturation) that are sensitive to small specific differences in the
excitatory synaptic inputs between neurons (Poo and Isaacson
2009, Yu et al 2009, Renart et al 2010). Moreover, summing
the membrane potentials of thousands of neurons will further
reduce the LFP sensitivity to recording locations (Mitzdorf
1985, Poulet and Petersen 2008).

Until the current study, noise correlations in LFPs have
not been studied. The higher noise correlation in LFPs
than spikes may reflect common synaptic inputs or global
neuromodulatory signals to the region that are not specific to
reach targets, such as arousal and motivation. The influence of
such global signals would persist in the sum of local currents.

Decoders incorporating noise correlations

The decoding performance from multichannel LFPs in our
study should not be viewed as the best possible performance
that one can achieve. We used one of the most simplistic
decoders, which was a maximum likelihood decoder based
on a multivariate Gaussian model with multiple assumptions
(e.g., noise independence between different channels, the same
variance between conditional distributions on different targets,
etc; see ‘Methods’). Given that our independence assumption
was inconsistent with the true statistical property of LFP
data, the maximum likelihood decoder would not produce
the best decoding performance. Therefore, it is possible that
decoders taking advantage of noise correlations might improve
the decoding accuracy for simultaneous multichannel data
with significant noise correlations (Abbott and Dayan 1999,
Averbeck et al 2006). For instance, it was previously shown
that support vector machine (SVM) decoders which implicitly
captured the characteristics of noise correlations among spike
units in the primary visual cortex produced a decoding
accuracy that was significantly enhanced in comparison to
decoders with independent noise models (Graf et al 2011).
However, we cannot test SVM decoders on the data in the
current study because of the small number of trials. An
intriguing future research direction is to test the possibility
that decoding algorithms incorporating the noise structure can
improve decoding performance from multichannel LFPs with
significant noise correlations.
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