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In this issue of Neuron, Zhang et al. (2017) demonstrate that neurons in human parietal cortex represent
effector responses functionally segregated, while other movement variables are associated in a subordi-
nated fashion. Such partially mixed selectivity facilitates efficient motor control in various behavioral
contexts.
The brain combines a multitude of sen-

sory and cognitive signals to accurately

control and guide our movements in

an ever-changing complex world. This

computation is distributed across many

brain areas that are specialized for spe-

cific functions or movement features.

To better understand the neuronal cod-

ing of particular brain areas, traditional

neurophysiology went at great length to

explore the properties of individual single

neurons while animals performed specific

motor behaviors. This classical work led

to fundamental insights into the coding

pattern of brain areas with respect to

specific movement parameters, like the

movement direction of hand movements

or the applied force (Evarts, 1968; Geor-

gopoulos et al., 1982).

Together with lesion and inactivation

studies, specific brain areas of the

fronto-parietal network have been identi-

fied to be causally relevant for sensory,

motor, or cognitive functions, and

corresponding single-unit studies have

ascribed specific functional properties to

individual neurons and neuronal popula-

tions. Such characterizations of cortical

areas and subareas have been further

supplemented by anatomical investiga-

tions demonstrating the specific connec-

tivity patterns between these networks

(Rizzolatti and Luppino, 2001).

Investigating the representations of

sensory and motor signals in specific

brain areas has been tremendously help-

ful for understanding the underlying cod-

ing schemes. In many of these studies,

individual neurons represent not only

one sensory or motor feature, but a multi-

tude of them. For example, neurons in the
anterior intraparietal cortex (area AIP) of

macaque monkeys encode not only spe-

cific features of the object that the animal

intends to grasp, including its shape, size,

and orientation, but also the spatial posi-

tion of the object or the subject’s gaze po-

sition (Janssen and Scherberger, 2015).

Such multiple or mixed selectivity for sen-

sory and motor features is surprising

at the level of individual neurons, since

it makes neural coding complicated

and hard to interpret. Nevertheless, such

mixed selectivity seems necessary to

fulfill the computational requirements of

the brain.

How does a brain area achieve its com-

putations? Clearly, many individual neu-

rons are simultaneously selective for a

multitude of distinct features. However,

the activity patterns across individual

neurons are highly variable, leading to a

large variety of mixed selectivity in the

neuronal population. This makes clear-

cut neuronal classifications in a popula-

tion rather difficult (e.g., visual, visuo-

motor, or motor neurons in AIP). However,

neuronal diversity and heterogeneity

might provide an important computa-

tional advantage. Recent theoretical and

modeling considerations have led to the

conclusion that mixed selectivity, i.e.,

the combined representation of multiple

features in individual neurons of the

network, is most flexible and supportive

to perform easy, i.e., linear, computations

at subsequent processing stages (Fusi

et al., 2016). Therefore, the question

of to what extent this computational

concept is generally implemented in the

neuronal populations of humans and ani-

mals is important.
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In the present issue of Neuron, Zhang

et al. (2017) investigate the coding of

several types of motor variables in the

neuronal population of human AIP of a tet-

raplegic patient 7 years after injury. This

investigation provides a unique opportu-

nity to examine single neuron activity in

a human subject and to compare these

results, in particular, with previous non-

human primate studies.

The patient is instructed to imagine or

attempt either a left or a right arm move-

ment, which is either a shoulder shrug or

hand squeeze. While paralyzed patients

are clearly handicapped in executing spe-

cific movements, they can still imagine or

attempt suchmovements. All three move-

ment features—body part (hand or shoul-

der), effector side (left or right arm), and

cognitive strategy (imagined or attemp-

ted)—are co-varied, which leads to eight

distinct movement conditions that are

instructed in random order. Then, while

the patient executes this task, popula-

tions of single neurons are recorded

from a small patch (4 3 4 mm) of human

AIP using a chronically implanted 10 3

10 array of recording electrodes.

An important first observation is that

significant fractions of neurons recorded

from this small, circumscribed area are

selective for each of the eight task condi-

tions, therefore demonstrating that hu-

man AIP represents these movement

features in a combined fashion, similar

to previous findings demonstrating the

combined representation of reaching

and grasping movements in monkey AIP

(Lehmann and Scherberger, 2013).

But how are the three movement fea-

tures (body part, side, and strategy)
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Figure 1. Schematic Illustration of Partially Mixed Selectivity in
Human AIP
(A) Neuronal population receives input of movement features (type, side, and
strategy) and outputs a motor plan.
(B) In the neuronal population, movement type (shoulder or hand) is repre-
sented in distinct subspaces (gray surfaces). Other movement features
(movement side and strategy) are encoded separately in each subspace
(small coordinate frames). Population space is shown only for three di-
mensions (neurons 1–3); however, full dimensionality equals the number of
neurons in the population.
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encoded in human AIP? For

this, Zhang et al. (2017)

develop and subsequently

test four distinct hypotheses:

(1) the resulting eight move-

ment conditions could be

functionally segregated, i.e.,

represented in distinct, non-

overlapping subnetworks of

AIP; (2) each of the three

movement features could

be encoded in anatomically

segregated networks; (3)

movement features could be

encoded in a mixed selec-

tivity, i.e., with individual neu-

rons being tuned to various

combinations of the encoded

movement parameters; and

(4) finally, the neural network

could be organized in a

partially mixed fashion, with

some movement features

being segregated and others

being mixed in a subordi-

nate fashion. Results from

this study confirm a partially

mixed selectivity of human

AIP (hypothesis 4) with a

segregated encoding of body

part (shoulder versus hand)

and a subordinate, mixed

encoding of body side and

cognitive strategy (Figure 1).

More specifically, the

segregated encoding of
body part is neither spatially nor otherwise

topographically segregated in human AIP,

not even between separate classes of AIP

neurons. Instead, many neurons respond-

ing to shoulder movements also respond,

to some extent, to hand movements, and

vice versa. Computation of a specificity

index between the two movement types

reveals a continuum of neurons, ranging

from favoring one or the other movement

type to responding equally well to both.

This continuum of neural preference at

the level of individual neurons is also

observed for the other movement fea-

tures: body side and movement strategy.

However, movement features appear

strikingly different at the population level.

Pairwise correlations of neuronal activity

reveal a hierarchical structure that sepa-

rates shoulder from hand movement en-

coding in the population. In contrast, cor-

relations associated with differing body
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side or movement strategy are signifi-

cantly higher. Furthermore, a generaliza-

tion analysis confirms these results, in

which a decoder of motor features is first

trained on a subset of conditions and then

tested on the remaining ones. Zhang et al.

(2017) find that such decoders generalize

well across body side and movement

strategy, but not across body part,

thus further emphasizing the functional

segregation for body part, but not of

body side and movement strategy, in hu-

man AIP.

These results are remarkable for

several reasons. First, from a motor con-

trol point of view, one might expect that

body side (left versus right) might be

the most distinctive feature, perhaps

followed by movement type (shoulder

versus hand) and strategy (attempted

versus imagined movement). However,

this was not the case. Movement type
was most distinctive, fol-

lowed by side and strategy.

This emphasizes the role of

AIP and the parietal associa-

tion cortex as a higher-order

planning area that is remote

to the details of motor execu-

tion but linked to more ab-

stract motor plans and object

affordances (Schaffelhofer

and Scherberger, 2016).

Second, the presence of

shoulder movement signals

in human AIP, in addition

to hand movement signals,

does not imply that AIP

is causally involved in the

execution of shoulder move-

ments. In fact, a previous

inactivation study of monkey

AIP produced only deficits

in hand grasping, but not in

arm reaching (Gallese et al.,

1994). This suggests a more

complex role of these segre-

gated shoulder movement

signals in AIP. More research

is needed to resolve this

question.

Third, the finding of func-

tionally, not anatomically,

segregated representations

of motor actions suggests

that human AIP encodes

these movements in distinct

neuronal subspaces within
the neuronal population space (Figure 1).

Such specialized neuronal subspaces

have recently been postulated in ma-

caque motor cortex, e.g., for the distinct

encoding of movement preparation and

execution (Kaufman et al., 2014) and for

describing the neural constraints on mo-

tor learning (Sadtler et al., 2014). At this

point, it remains an open, but testable, hy-

pothesis, whether the functional segrega-

tion and subordinate mixed selectivity of

movement features in human AIP can

also be regarded as an instance of sub-

space coding. If so, such unified concepts

might help better understand the building

blocks of neural movement control and

neural computation in general.

Finally, Zhang et al. (2017) provide

first evidence on the neuronal population

structure of human posterior parietal cor-

tex. It is reassuring that these findings are

in rather good agreement with previous
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findings in monkeys (Andersen and Bu-

neo, 2002; Janssen and Scherberger,

2015). This congruence allows us to gain

fundamental insights about human brain

functions already from very few patient

studies, which will considerably ease the

development of future clinical applica-

tions, like neural prosthetics.
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