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 Abstract – Intense activity in neural prosthetic research 
has recently demonstrated the possibility of robotic interfaces 
that respond directly to the nervous system. The question 
remains of how the flow of information between the patient and 
the prosthetic device should be designed to provide a safe, 
effective system that maximizes the patient’s access to the 
outside world. Much recent work by other investigators has 
focused on using decoded neural signals as low-level commands 
to directly control the trajectory of screen cursors or robotic 
end-effectors. Here we review results that show that high-level, 
or cognitive, signals can be decoded during reaching arm 
movements. These results, coupled with fundamental 
limitations in signal recording technology, motivate an 
approach in which cognitive neural signals play a larger role in 
the neural interface. This proposed paradigm predicates that 
neural signals should be used to instruct external devices, 
rather than control their detailed movement. This approach 
will reduce the effort required of the patient and will take 
advantage of established and on-going robotics research in 
intelligent systems and human-robot interfaces. 
 Index Terms – Neural prosthetics, brain-machine interfaces. 

I.  INTRODUCTION 

Recent advances in neural prosthetics research have 
demonstrated the possibility of computer interfaces and 
robot arms that interact directly with the nervous system [1]-
[6]. The development of neural prosthetic systems can one 
day allow persons with lost motor function due to spinal 
cord injury, stroke or neurodegenerative disorders to regain 
the ability to communicate and interact with their 
surroundings. Such systems will arguably represent the 
ultimate human-robot interface, with the robotic device 
literally becoming an extension of the patient’s conscious 
sense of self. 

Despite recent breakthroughs, many challenges still 
remain [7]. The development of neural prosthetics requires 
advances across many disciplines, including neuroscience, 
engineering, neurosurgery and neural informatics. An 
underlying challenge is to improve technology for acquiring 
neural signals and maintaining signal quality for long 
periods of time. Long-term tracking of neural signals is 
difficult due to the invasive nature of prevalent recording 
techniques. Another challenge is to understand how the brain 
encodes movements such as reaches, and how to use these 
signals for neural prosthetic applications. The question 
remains of how the flow of information between the patient 
and the prosthetic device should be designed to maximize 
the safety and effectiveness of neural prosthetic systems. 

Given these challenges, in this paper we review and 
elaborate upon a framework for neural prosthetics that 

emphasizes the use of cognitive signals in interacting with 
external devices [8][15]. Most recent successes in neural 
prosthetics have used signals primarily from the motor and 
pre-motor cortices (see Figure 1) to directly control the 
trajectory (position and velocity) of a screen cursor or robot 
arm. This approach, though proven successful, has its 
limitations. Using neural signals to directly control a robot 
arm for a wide variety of movements, manipulations and 
postures will likely place higher demands on the number and 
quality of signals that need to be recorded. We believe that 
neural prosthetics should acquire signals to instruct external 
devices, rather than to control every detail of their 
movement. Recent work by some of the authors, reviewed 
here, shows that it is possible to capture the intention, or 
goal, of reaching movements, and also the expected reward, 
or motivation, of the subject before the reach is made. 
Utilizing such cognitive variables may decrease the effort 
required of the user and reduce the informational burden 
placed on the neural recording interface. 

Future neural prosthetic devices will likely require an 
integration of both higher-level (cognitive) and lower-level 
(motor) brain activity. This approach can take advantage of 
established and on-going robotics research in intelligent and 
supervisory systems and human-robot interfaces in order to 
develop new paradigms that can adapt to the needs and 
cognitive states of the user while maintaining safety. 
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Figure 1. Signals used for neural prosthetic applications. In patients with 

lost motor function, microelectrodes can be used to record the neural 
activity (spiking or field potentials) from brain areas that encode 

movements such as reaching and grasping to drive external devices such as 
robot arms. 



 

 

II.  RECENT ADVANCES IN NEURAL PROSTHETICS 

Several investigators have demonstrated systems in which 
neural signals from non-human primates were used to 
control the motion of an end effector (a screen cursor or a 
robotic arm) [2][3][4]. In these studies, the activity of 
populations of neurons was recorded using arrays of 
microelectrodes implanted primarily in motor and pre-motor 
cortex (see Figure 1). The electrode arrays recorded the 
electrical or “spike” activity of individual or groups of 
neurons while the subjects performed arm movement tasks. 
This activity was then used to calibrate models, usually 
linear regression models, that relate the firing rate of the 
neurons to the observed movements. The subjects were then 
shown capable of moving the end-effector in “brain control” 
tasks in which current neural activity and the calibrated 
models were used to predict the end-effector trajectory 
without actual movement of the subject’s arm. 

In addition, similar progress has been made in using 
EEG-based signals to derive neuroprosthetic commands 
from motor related areas [6]. Though EEG methods are less 
invasive, their poor spatial resolution may limit the amount 
of information that can be obtained with them. 

These groups showed performance well above the 
chance level, and, more interestingly, reported that the 
performance of the subjects in the brain control task 
improved over time, giving evidence that the neural system 
learned to use the prosthetic device by adapting its output. In 
fact, [2] showed that the subjects learned to compensate for 
the dynamics of the robotic arm used. This is an encouraging 
result that allows a certain margin of error in the acquisition 
and decoding of neural signals, as the system can be relied 
upon to adapt to these errors. 
 While these studies have shown the possibility of 
neural-controlled prosthetic devices, and have sparked 
renewed interest in the field, the question arises of what 
other types of signals could be used in a neural interface. 
These studies used neuronal populations located primarily in 
motor and pre-motor cortex, which tend to encode the 
specific commands sent to our muscles for the control of 
limb movements. More important than the particular brain 

region the signals are derive from, however, is the type of 
information that is decoded from them. 

In the current approaches, the neural activity is used as a 
control signal to directly specify where the location of the 
end-effector needs to be at any instant in time. In many 
cases, the primary signal decoded from the neural activity 
was the velocity of the end-effector. Thus, the trajectories of 
the brain-controlled end-effector were the result of velocity 
control on the part of the subject, who had to continually 
command online corrections based only on visual feedback 
of the task (see Figure 2). Here the neural activity is used for 
low-level control commands, and the effectiveness of the 
neural prosthetic is limited to the subject’s ability to perform 
the closed-loop task. 

It could be argued that motor cortex neurons should be 
used exclusively for interfacing to external devices, given 
their demonstrated ability to adapt to different tasks. In this 
approach, the motor cortex is used as a generic source of 
neural signals that can be adapted to communicate cognitive 
states and/or control movements of robot arms. However, 
there are at least two reasons not to depend solely on motor 
cortex areas. The first is that this dependence creates an 
informational bottleneck that will reduce the number of 
cognitive variables that can be read out at any one time. For 
example, a patient’s mood could be determined by asking 
him or her to move a cursor on a computer interface to 
answer sets of questions about their emotional status. 
However, this would preclude the patient from performing 
other tasks at the same time. It would be more efficient to 
decode this signal directly from an area that processes the 
mood of the subject. 

The second reason is that the normal functional 
architecture of motor cortex is for generating commands for 
movement trajectories. While it may be possible for motor 
cortex to be treated like an undifferentiated neural network 
and trained to perform any task, it has been shown that 
neural networks trained to do a large number of different 
tasks tend to do each one poorly compared to being trained 
to perform a small number of tasks [9]. 

Can higher-level, or cognitive, signals be used to 
interface to an assistive neural prosthetic device? In the next 
section, we review current work that shows that cognitive 
signals such as reach goals and reach motivation can be used 
in a neural prosthetic system. 

III.  COGNITIVE NEURAL SIGNALS 

In theory, cognitive control signals appropriate for 
reaching tasks could be derived from many higher cortical 
areas related to sensory-motor integration in the parietal and 
frontal lobes. Here we focus on the posterior parietal reach 
region (PRR) and the dorsal premotor cortex (PMd). Again, 
the primary distinction is not the specific brain area where 
the signals are obtained, but rather the type of information 
that is being decoded, and how that information is used. 
Similar approaches to the one presented can be used for 
interpreting cognitive signals from other brain areas. It is 
likely that some areas will yield better results than others 
depending on the cognitive signals to be decoded and the 
parts of the brain that are damaged. 
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Figure 2. In current studies, non-human primates learned to control an end-
effector using brain signals alone. Signals recorded during normal arm 

movement tasks were used to build a decode model that could predict the 
desired trajectory (primarily the instantaneous velocity of the end-effector). 



 

 

PRR in non-human primates lies within a broader area 
of cortex called the posterior parietal cortex (PPC) [10][11] 
(see Figure 1). The PPC is located functionally at a 
transition between sensory and motor areas and is involved 
in sensory-motor integration, that is, it helps transform 
sensory inputs into plans for action. PRR is known to be 
primarily active when a subject is preparing and executing a 
movement [11][13]. However, the region receives direct 
visual projections and vision is perhaps its primary sensory 
input. 

Neural activity in PRR has been found to encode the 
targets for a reach in visual coordinates relative to the 
current direction of gaze (also called retinal or eye-centered 
coordinates) [13]. In other words, this area contains 
information about where in the subject’s field of view the 
subject is planning on reaching towards. This coding of 
planning information in visual coordinates underscores the 
cognitive nature of the signal within PRR. It is coding the 
desired goal of a movement, rather than the intrinsic limb 
variables required to reach to the target. The human 
homologue of PRR has recently been identified in fMRI 
experiments [14]. 

Recent experiments with monkeys have demonstrated 
that reach goals decoded from PRR can be used to drive a 
neural prosthetic computer interface to position a cursor on a 
screen [15]. These experiments are described in more detail 
in the following section. 

 
A.  Decoding the goal of a reach 

In the experiments, arrays of electrodes were placed in 
the medial intraparietal area (MIP), a portion of PRR, area 5 
(also in the posterior parietal cortex), and the PMd. These 
electrodes record the electrical activity of neurons in the 
vicinity of the electrode tips. Each experimental session 
began with the monkeys performing a series of reaches to 
touch different locations on a computer screen (Figure 3a). 
As shown in the figure, the reaching task consisted of four 
phases. First, the monkey is instructed to fixate on the center 
cue. Next, a target location is presented for a brief period of 
time. The target then disappears followed by a delay period. 
Finally, the monkey is given a “go” signal instructing him to 
reach to the location where the target was. 

The neural activity recorded during the delay period, in 
which the monkey presumably plans the reach movement, 
was used to build a database that relates the firing rate of the 
neurons to the target location. For example, as illustrated in 
Figure 3a, the database would store which location in the eye 
field a particular neuron exhibited higher firing rates when 
movements were planned to that location. 

After enough trials were performed to build an 
acceptable database, the monkey was switched to the “brain 
control” task. Here, the monkeys were instructed with a 
briefly flashed cue to plan to reach to different locations but 
without making a reach movement (Figure 3b). The activity 
during the delay period was then compared to that in the 
database and, using a Bayesian decode algorithm, the 
location where the monkeys were planning the reach was 
predicted. If the predicted reach direction corresponded to 
the cued location, then the animals received a drop of fluid 
reward and visual feedback was provided by re-illuminating 

the cued location. If the animals moved their arm, the trial 
was cancelled and no reward was given. This approach was 
necessary because the monkeys cannot simply be instructed 
to “think about reaching to the target without actually 
reaching to it.” 

Thus, the reach goals were decoded from activity 
present when the monkeys were planning the reach 
movements, but otherwise were sitting motionless in the 
dark and were not making eye movements. Figure 4a shows 
a typical result, which shows the cumulative accuracy of the 
brain control system for four target locations, as the 
experimental session progresses. As shown in Figure 4b, 
only a small number of cells were required for successful 
performance of the task, with performance increasing with 
the number of neurons. Figure 4c shows neural activity in 
both the reaching and brain control tasks from a recording 
site in PRR, demonstrating that the cognitive signals in the 
brain control task were free of any sensory or motor related 
activity. 

In addition, the animals showed considerable learning in 
the brain control task, as evidenced by a significant increase 
in their performance over the course of one to two months 
[15]. This behaviour is consistent with a number of studies 
of cortical plasticity [16], and the time scale for learning is 
similar to that seen in motor cortex for trajectory decoding in 
previous studies [2][4]. In this case, the improvement in 
performance was found to be related to an increase in the 
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Figure 3. Normal reaching and brain control tasks used in decoding reach 
goal and expected reward cognitive signals. Adapted from [19]. 



 

 

amount of information encoded by the neurons in the brain 
control task [15], which was calculated using a mutual 
information measure. This measure quantifies the degree to 
which a neuron’s firing rate encodes a particular direction. 
In essence, the neurons tuned themselves to increase 
performance in the task. Plastic behaviour such as this will 
be important in enabling patients to optimize neural 
prosthetic systems with training. 

 
B.  Decoding expectation 

It has also been shown possible to decode neural activity 
that foretells a subject’s expectation of a reward when 
performing a task. Signals related to reward prediction are 

found in a number of brain areas [17]. In area LIP of the 
PPC, which is involved in planning and executing eye 
movements, it was found that cells code the expected value 
of rewards [18]. Using an eye motion task, it was found that 
the neurons increased their activity when the animal 
expected a larger reward or the instructed eye movement 
was more likely to be in the cells’ preferred locations. 
Similar effects have recently been found for PRR neurons 
for amount of reward in both the reaching and brain control 
task previously described [15]. PRR cells are also more 
active and better encode reach goals when the animal is cued 
to expect a higher probability of reward at the end of a 
successful trial. Remarkably, PRR cells also encode reward 
preference, with higher activity seen when the monkey 
expects delivery of a preferred citrus juice reward rather 
than water. 

This expectation signal tells us something about the 
cognitive state of the subject, possibly indicating the 
subject’s motivation or interest in the task’s outcome. 
Moreover, this expectation of reward could be read out 
simultaneously with the intended reach goal using offline 
analysis of the brain control trials [15], thus showing that 
multiple cognitive variables can be read from the brain at the 
same time. 

IV.  NEUROPROSTHETIC CONTROL SYSTEMS BASED ON 
INTELLIGENT DEVICES AND SUPERVISORY CONTROL 

A neural prosthetic system must be flexible and capable 
of adapting to the needs and cognitive states of the patient. It 
is not clear how the sole use of motor-based signals can 
provide enough information for such subtle and complex 
interaction. Given that it is possible to obtain cognitive 
signals, we have proposed a framework for the control of 
neural prosthetics that takes advantage of the high-level 
nature of these signals. In this approach, cognitive signals 
like the intended goal of a reach or the motivation or 
expected reward of a reach are used to instruct the neural 
prosthetic system, rather than control it directly, as 
illustrated in Figure 5. 

In this case, interaction between the patient and the 
mechanical device is monitored by an intelligent supervisory 
system [20]. This system monitors the cognitive state of the 
patient, and combines it with knowledge of the workspace 
and patient information such as gaze direction to assess the 
situation and calculate the most appropriate course of action. 
The cognitive neural signals can operate much like “body 
language” by providing, on-line and in parallel with readouts 
of other cognitive variables, the preferences, mood, and 
motivational level of the patient. Implants in emotional 
centers could also provide real time readouts of the patient’s 
emotional states, such as alarm, urgency or displeasure. This 
augmentation of the information channels derived from the 
patient is particularly important for locked-in patients that 
cannot move or speak. 

Given this information, combined with readings of the 
patient’s intended reaching goals from regions such as  
PRR, the intelligent system can then compute the 
appropriate trajectory and posture of the robotic arm. For 
example, given the Cartesian coordinates of an intended 
object for grasping and knowledge of the environment, a 
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Figure 4. Results of brain control tasks in which cognitive signals (reach 
goals) were used to drive a cursor to target positions on a screen. a) Task 

performance as a function of time for an eight-target brain control task. b) 
Performance as a function of the number of neurons used in the decode 

model. c) Comparison of neural activity during normal reaching and brain 
control tasks (b and c adapted from [15]). 



 

 

robotic motion planner [21] can determine the detailed joint 
trajectories that will transport a prosthetic hand to the 
desired location in the safest, most efficient way. 

This trajectory can then be sent to the robot arm’s low-
level joint controller for execution. Sensors embedded in the 
mechanical arm ensure that it follows the commanded 
trajectories, thereby replacing the function of proprioceptive 
feedback that is often lost in paralysis. Other sensors can 
allow the artificial arm and gripper to avoid sudden 
obstacles and regulate the interaction forces with its 
surroundings, including grasping forces, thereby replacing 
somatosensory feedback. 

If available, motor signals can augment low level plans 
to help “guide” the end-effector to the appropriate action by 
providing cues or corrections to the trajectory planned by the 
supervisory controller. Thus, future applications are likely to 
involve recordings from many areas to read out a substantial 
number of cognitive and motor variables. Results from 
cognitive-based and motor-based approaches will likely be 
combined in single prosthetic systems to capitalize on the 
benefits of both. 

IV.  CONCLUSIONS AND FUTURE WORK 

 We have reviewed a cognitive based framework for the 
control of neural prosthetic systems, based on evidence that 

such cognitive signals can be directly read from the nervous 
system. In this approach, neural signals are used to instruct 
an intelligent supervisory system, rather than directly control 
an external device such as a robot arm. The proposed 
supervisory system in turn manages the interaction between 
the user and the external device. This approach has many 
potential benefits for both the neuroprosthetic user and for 
the implementation of the prosthetic system. 

The proposed framework would reduce the effort 
required of the user in executing tasks such as reaching, 
since they are not continually involved in the task of 
controlling the position and trajectory of the robot arm. 
What we are proposing is to use the intrinsic organization of 
the nervous system to provide multiple hierarchical channels 
of communication and control. Task execution will more 
closely resemble normal function, in which low-level control 
of limb movements often occurs without conscious attention. 
Similarly, the hierarchical nature of supervisory control 
should allow patients to learn much more quickly how to 
command a new device. 

For the systems engineer, this approach has the benefit 
that to adapt the neural interface to different 
electromechanical devices (e.g. different types of robotic 
arms or communication devices), only the lowest level of the 
control hierarchy need be re-engineered for the specific 
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Figure 5. The proposed framework emphasizes parallel decoding of high-level cognitive variables (reach 
goals, motivation) and low-level motor variables under the supervision of an intelligent system, which 

manages the interaction between the patient and the robot arm. 



 

 

mechanical device. In addition, the approach may possibly 
reduce the number of signals needed to be extracted from the 
nervous system, since lower numbers of variables may be 
needed to specify cognitive states such as goals and 
intentions in comparison to those needed to control a wide 
set of movements of an articulated robot arm. This in turn 
can alleviate the informational burden placed on the neural 
recording device, making them more practical. 

Finally, this approach can take advantage of the long 
history and on-going research in robotics that focuses on 
intelligent systems, autonomous navigation and path 
planning, and human-robot interaction. In turn, this 
application will present exciting new challenges for these 
areas of robotics research. 

Future neural prosthetic devices will likely require an 
integration of both higher-level (cognitive) and lower-level 
(motor) brain activity. By using activity from several 
different parts of the brain and decoding a number of 
cognitive variables, a neural prosthetic can provide a patient 
with maximum access to the outside world. 
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