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SI Text

Peak Mutual Information as a Function of Optimal Lag Time. Fig. S1
A and B plots the peak mutual information that each cell
encoded for movement angle at its OLT, for both the center-out
and obstacle tasks. First, notice that the center-of-mass values,
—6 ms and 15 ms, for the center-out and obstacle distributions,
respectively, were consistent with the median OLTs reported in
Fig. 3B. This was, of course, due largely to the higher proportion
of cells’ having OLTs near 0 ms as illustrated in Fig. 3B but also
to the larger amount of information encoded by neurons with
OLTs close to zero lag, as mentioned in the main text. Specif-
ically, during the center-out task, clearly forward-estimating
neurons’ (0 ms = OLT = 60 ms) mutual information was 0.043 =
0.04 compared with 0.036 * 0.03 for movement-angle neurons
with other OLTs (OLT = —30 ms, or, OLT = 90 ms). Similarly,
for the obstacle task, the average peak information of clearly
forward-estimating neurons was 0.043 = 0.03, whereas it was
0.034 = 0.03 for movement-angle neurons with other OLTs.

Example STTFs and TEFs. Several additional example movement-
angle STTFs and TEFs containing a variety of tuning strengths
and OLTs are shown in Fig. S2.

Residual Tuning Significance Testing. To test for significance of
tuning for angle (movement or goal), we subtracted the boot-
strap distribution of surrogate TEFs from the bootstrap distri-
bution of actual TEFs. A cell was initially considered signifi-
cantly tuned and selected for further analysis if, at any lag time,
95% of these difference values were significantly >0. However,
as mentioned in the main text, movement angle and goal angle
may be correlated to various degrees depending on trajectory
curvature (i.e., center-out task vs. obstacle task). Therefore, to
control for the possibility that a cell’s tuning for one angle is due
entirely to tuning for the other angle, we performed an addi-
tional analysis to calculate the residual information encoded
about the movement angle independent of the goal angle, and
vice versa, as follows:

For each lag time, to test for significant tuning for movement
angle, independent of goal angle, we randomly shuffled firing-
rate samples that belonged to the same angle bin of a goal-angle
tuning curve, effectively re-pairing firing rate samples with other
goal angles from the same angle bin. Clearly, such a permutation
would not affect the tuning for goal angle because firing rates
were merely re-paired with their original corresponding goal
angle. However, shuffling the firing-rate indices according to
goal angle could affect the movement-angle tuning. In fact,
movement-angle tuning would not be affected by permutation if
and only if the goal angle and movement angle were identical
during our tasks (i.e., perfect correlation). Alternatively, if
movement angle and goal angle were completely uncorrelated
(i.e., zero correlation), then permutation should corrupt the
tuning for movement angle entirely. However, because goal and
movement angles were partially correlated in our tasks, we
observed instead that tuning strength for movement angle
decreased after permutation of the firing-rate samples. There-
fore, any decrease in the movement-angle mutual information
that resulted from shuffling represented information that the
cell encoded about movement angle and not the goal angle. If
this difference, which we refer to as the residual movement-angle
information, was significantly larger than its null hypothesis
(generated in an analogous manner, but using surrogate spike
trains) for any lag time, then the cell was considered to signif-
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icantly encode movement angle, independent of its tuning for
goal angle. If not, then it was unclear whether the cell encoded
movement angle, and it was excluded from the movement angle
population. Fig. S3 shows two different examples of cells’
residual TEFs, one which was significantly larger than its residual
null hypothesis (Fig. S34) and another which was not (Fig. S3B).
An analogous procedure was used to assess residual tuning for
goal angle. Note, we computed the residual TEF only to ensure
that movement-angle tuning could not be trivially explained by
its correlation with goal angle. Importantly however, for OLT
analysis, we did not use the residual TEF but instead used the full
TEF described initially because it is possible that movement-
angle tuning could be a function of an interaction between
movement angle and goal angle, which the residual tuning
measure does not reflect.

Neural Stationarity. It is important to show that the neural activity
we measured was stationary over the time period for which we
calculated mutual information. Therefore, we evaluated the
stationarity of a neuron’s firing rate during a trial and over an
experimental session, similar to the approach taken by Paninski
and colleagues (1).

First, we analyzed trends in the firing rate over the course of
a session. The average firing rate was computed for each trial in
a session, and the resulting trend in firing rate over the course
of that session was fit by a line. The slope of the line and the
percentage change in the firing rate across the session (from
beginning to end) were derived from this fit. For consistency
with the literature, we used the criteria of Paninski and col-
leagues to determine neural stationarity: if a cell’s firing rate
changed by <20% during the session “or” if the slope of the line
fit was not significantly different from zero, the cell was deemed
stationary. If both criteria failed to be met, an additional tuning
analysis was performed to determine whether the actual STTF
of the neuron changed significantly over the course of the
session. To do this, we divided the experiment into two parts and
constructed the STTF and pseudo-STTFs for both the first (A)
and second (B) halves of the session. Bootstrap Monte Carlo
resampling methods were used to generate a distribution of
STTFs in the same manner as before. To quantify a change in
tuning, we calculated the sum of squared differences between the
bin values in STTFg and STTFA matrices as well as for the
surrogate matrices, S.STTFg and S_STTF4. If the sum of the
squared difference between the actual STTFs was >95% of the
surrogate sum of squared differences, the cell was considered
nonstationary and was excluded from the population. Using the
above criteria, we found that the population was largely station-
ary; 220 of 221 and 168 of 170 movement-angle cells had
stationary firing properties over the course of a session.

To analyze the intratrial stationarity of the firing rate, we
aligned each trial to the reaction time and then computed the
trial-averaged firing rate as a function of elapsed time. A line was
fit to this trend, and the slope of the line and the percentage
change in the firing rate were computed. To assess statistical
significance of the mean trial slope, 100 bootstrap reshufflings
were performed in which the firing rate time series was randomly
shuffled, corrupting any trend in the firing rate over time but
preserving its mean value. If the absolute value of the slope of
the firing-rate trend was >95% of the bootstrap absolute-value
slopes and the percentage change in the firing rate trend changed
by >20%, the cell could be considered nonstationary. We found
that 104 of 220 (47%) and 73 of 168 (44%) movement-angle
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neurons, in the center-out and obstacle tasks, respectively, could
be considered nonstationary based on this criteria. However, it
unlikely that these intratrial firing-rate trends reflected any
change that was related to the kinematics of the movement. First,
any nonstationarity observed in the firing rate was not due to
nonstationarity in the movement angle itself because the move-
ment angle was almost always stationary over the course of the
trial. Specifically, for 216 of 220 and 167 of 168 of the recorded
sessions, the movement angle was determined to be stationary
over the course of the trial based on the same criteria used above
to assess intratrial neural stationarity. Moreover, we consistently
observed cells that exhibited firing rate trends that increased for
some trials and decreased for other trials under identical target
conditions. Furthermore, simultaneously recorded cells fre-
quently had opposite slopes for the same trial, also suggesting
that any nonstationarity in the movement kinematics was not the
cause of these trends in firing rate. Although it is possible that
some of the cells we report on may also encode variables that we
are not measuring or that are unrelated to the kinematics in our
task, this does not limit the conclusions being drawn about
correlations between neural activity and the movement angle.

Optimal Lag-Time Statistical Analysis. We performed an additional
analysis to determine whether the mutual information encoded
for movement angle at a cell’s OLT was significantly larger than
at all other lag times. Our null hypothesis was that the difference
between the mutual information at the OLT and the mutual
information at other lag times was not significantly different
from zero. Bootstrapped values of mutual information at each
lag time were subtracted from the mutual information at a cells’
OLT. For each lag-time comparison, if 95% of these differences
were >0, then the null hypothesis was rejected, and the mutual
information at the OLT was concluded to be significantly larger
than the mutual information encoded at the compared lag time.
The outcome of all of these comparisons is summarized graph-
ically in the 95% confidence OLT plots of Fig. S4, where
horizontal error bars delineate the lag time range (30, 60, 90. . .
ms) within which the OLT could be claimed to reside with at least
95% confidence. One hundred sixty of 220 (73%) and 154 of 168
(92%) of movement-angle neurons, for the center-out and
obstacle tasks, respectively, have OLT confidence intervals <90
ms wide, suggesting that most neurons typically encode a strong
dynamic estimate of the state of the movement angle. Note that
we would not expect the temporal resolution of state-estimating
neurons to consistently approach very small values due to
implicit autocorrelation in the movement angle itself (move-
ment-angle time constant <140 ms). Importantly however, over
a variety of confidence-interval sizes (i.e., temporal resolutions),
these plots show that the central tendency of the population was
to consistently encode the recent, current, or upcoming state of
the movement angle.

Finally, to control for the possibility that an autocorrelation
present in the movement angle itself might contribute to the
OLTSs we observed, we also subtracted each surrogate TEF from
its corresponding actual TEF and then recomputed the OLT for
each surrogate-subtracted TEF in the population. As expected,

1. Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning
of motor cortical neurons for hand position and velocity. J Neurophysiol 91:515-532.

2. Bessou P, Emonetde. F, Laporte Y (1965) Motor fibres innervating extrafusal and
intrafusal muscle fibres in cat. J Physiol 180:649-672.

3. Houk JC, Rymer WZ, Crago PE (1981) Dependence of dynamic-response of spindle
receptors on muscle length and velocity. J Neurophysiol 46:143-166.

4. Matthews PBC (1972) Mammalian Muscle Receptors and Their Central Actions (Arnold,
London).

Mulliken et al. pvww.pnas.org/cgi/content/short/0802602105|

because surrogate TEFs did not contain any temporal structure
(e.g., Fig. 2D and Fig. S1 B, D, F, H,J, and L) and because firing
rate and movement angle were stationary (see Neural Station-
arity), this subtraction did not have any significant effect on the
population OLT distributions. Indeed, a comparison of the OLT
distributions before and after surrogate subtraction revealed that
they were not statistically different (P = 0.97 and P = 0.98, for
the center-out and obstacle tasks, respectively, Wilcox rank-sum
test).

Last, note that OLT estimates for trajectories that contained
less curvature (e.g., center-out task) will be, on average, more
uncertain than OLTs reported for trajectories with more cur-
vature, which contained richer changes in the movement angle
(e.g., obstacle task). Therefore, the obstacle task may yield a
more precise estimate of the shape of the OLT distribution.
Consistent with this argument, we found that the variance of the
obstacle OLT distribution was significantly less than the center-
out OLT distribution (P < 0.01, median-subtracted Ansari—
Bradley test). This tighter dispersion, combined with a forward
shift in the median OLT for the obstacle task, resulted in an
increase in the percentage of clearly forward-estimating move-
ment-angle neurons for the obstacle task compared with the
center-out task. Specifically, 88 of 220 (40%) and 94 of 168
(56%) neurons were clearly forward estimating, for the center-
out and obstacle tasks, respectively.

Velocity Spatiotemporal-Encoding Analysis. To assess dynamic tun-
ing of the movement state of the cursor, we chose to analyze the
movement angle because (7) it could be fairly compared with the
goal angle and (ii) of its close relationship to the full velocity
vector (movement angle + speed), which has been reported to
correlate most strongly with the firing intensity of primary
muscle spindle afferents and has repeatedly been shown to
correlate with movement-related activity in motor cortices,
presumably involved in forming motor commands (1-7). As an
additional control and for a more direct comparison with
previous studies that have used velocity to represent the dynamic
state of the hand, we also assessed the correlation of PPC neural
activity with the state of the full velocity vector. When analyzing
velocity tuning, movement angle was binned as before, but speed
was discretized into five bins uniformly spaced across the full
range of cursor speeds measured in a given session. In addition,
when computing the mutual information between firing rate and
velocity in Eq. 5, the movement angle 6 was replaced with the
two-dimensional variable V, which consisted of both the direc-
tion and speed of the cursor. We found that the velocity OLT
distributions were very similar to the movement-angle OLT
distributions we reported. In particular, the distribution of OLTSs
for velocity was centered at 0 = 120 ms and 30 = 60 ms, for the
center-out and obstacles tasks, respectively, consistent with an
estimate of the current state of the arm. Note that, unlike for the
movement angle, a nonstationarity exists in the speed profile
(i.e., itis bell-shaped in time) for our task. Therefore, to generate
the velocity OLT distributions, we first subtracted the surrogate
TEFs from the actual velocity TEFs to control for any bias that
might arise from this nonstationarity before computing the
OLTs for velocity.
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Fig. S1. Population summary of peak mutual information encoded at a neuron’s OLT for the movement-angle population during center-out (A) and obstacle

(B) tasks. Error bars represent SD of points at each OLT.

Mulliken et al. pvww.pnas.org/cgi/content/short/0802602105]

30f6


http://www.pnas.org/cgi/content/short/0802602105

Izﬁ

|15

10
‘ 5

8

12

888888

28

5] i3 = dm3d 53 md w21 3nd Smi4 3m2 T4

k; e .
"2 Imd m Smd 3p2 TmM

NS
&
Lag time (ms)
= 8 3 zF
___—‘
E]
Lag time (ms)
888888830
Lag time {ms) m
angraha?Hz) N

Movement angle (radians) Movement angle (radians) Maovement angle (radians)
B D F
0.08
= 016 ——Movement angle c = Movement angle g | = Movemeni angle |
= S = oozl
= "g E
0.0
S o E E
T T 3
2 2004 5
g 0ee g E 01
z £
0.04 T 0.02 ]
- S T W S, O E .....
z | Y — PR AT e e tr I
0 0 . , 0 .
90 60 30 [ 30 60 50 150 -120 90 60 -30 © 30 60 90 120 150 -150 -120 80 60 -30 O 30 60 90 120 150
Lag time (ms) | Lag time (ms) Lag time (ms)
K
120 25 150, . — 18
a0 | | .l '
20 / |
_ 60 / ] 14 ‘,,G‘
E E ) E | e T
= o 15 = o
E E O g 0 B
= = Gl B 2
3 g v g s
60 - 5
.80 5 i
120 H 2
o w2 4 m Swd w2 Tmd 2n w2 w4 ® Sw4 w2 Tmd I
Movement angle (radians) Movement angle (radians)
H d L
5008 = Mavement angle & — Movemenl angle So06 — Movement angle
= = 0.08 %
o o £
; ; 5
gooe £ cos E
= = = 0.04
3 3 3
= 2
E00 E 004 E
E § §002
W 0.02 W g, =
E E (i LEEE SEEES GO, SERY SRR CETR TEE A E
I 15 SO SRR EEE TEL I TED TEE TEE SO B A TA B oo SEE T CU CE TEF (EEE SOR)
o 1]
150 120 90 60 30 0 30 60 90 120 150 % 90 s 30 o @0 60 80 120 -150 -120 90 60 -30 O 30 60 90 120 150
Lag time (ms) Lag time (ms) Lag time (ms)

Fig.S2. Example STTFs and TEFs for neurons recorded during the obstacle task. Six STTF-TEF pairs (A-B, C-D, E-F, G-H, I-J, K-L) for neurons significantly tuned
for movement angle.
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Fig. $3. Example residual movement-angle TEF plots. (A) The residual information is lower than the full movement-angle information but is still significantly
above its residual noise level. Therefore, this cell significantly encoded the movement angle, independent of the goal angle. (B) A second example showing a
cell that was no longer significantly tuned for movement angle after calculating the residual information.
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Fig. S4. Shown are 95% confidence intervals for OLT distribution. (A-C) Center-out OLT 95% confidence intervals are shown for cells for which the OLT is
defined with 30 ms (A), 60 ms (B), and 90 ms (C) temporal precision. Extent of horizontal lines denotes the 95% confidence interval of the OLT. Filled dots represent
the mean OLT for a given confidence interval. Text in the upper right-hand corner notes the median = interquartile range OLT for each temporal precision plot.
(D-F) Obstacle OLT confidence intervals plotted in the same format as A-C. Together, these plots suggest that the population best encodes the current state of
cursor with varying degrees of temporal precision. (G-H) Seventy-eight percent and 93% of movement angle neurons had an OLT precision of 90 ms or less, using
the 95% confidence criteria, for the center-out and obstacle tasks, respectively. The average temporal precision of OLT confidence intervals was smaller for the
obstacle task (60 = 60 ms, median = IQR) than for the center-out task (90 = 60 ms).
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