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Theprospect of assisting disabledpatientsby translating neural ac-
tivity from thebrain into control signals for prosthetic devices, has
£ourished in recent years.Current systems rely on neural activity
present during natural arm movements. We propose here that
neural activity present before or even without natural armmove-
ments can provide an important, and potentially advantageous,
source of control signals. To demonstrate how control signals can

be derived from such plan activity we performed a computational
study with neural activity previously recorded from the posterior
parietal cortex of rhesus monkeys planning arm movements.We
employedmaximumlikelihooddecoders to estimatemovementdi-
rection and to drive ¢nite statemachines governingwhen tomove.
Performance exceeded 90% with as few as 40 neurons. NeuroRe-
port12:000^000�c 2003 LippincottWilliams &Wilkins.
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INTRODUCTION
The parietal reach region (PRR) of the posterior parietal
cortex (PPC) is located at an early stage in the sensory-motor
pathway. It is closely related to sensory areas, particularly
visual areas, and projects to limb movement areas within the
frontal lobe [1,2]. Many properties of PRR make it an
attractive source of plan activity to derive control signals for
prosthetic systems [3,4]. First, PRR plan activity is selective
for arm movements, as opposed to eye movements, and
persists until a reach is initiated [5]. The persistence of
activity during planning does not require an actual move-
ment; in essence this area codes the ‘thoughts’ to move.
Second, PRR plan activity is abstract, being represented in
visual (eye-centered) coordinates and the activity within the
spatial representation shifts with each eye movement to
remain spatially invariant [6]. Moreover, cells in this area
also carry eye position information in the form of a
modulation of the eye-centered response fields and thus
the goals of movements can be read out in other coordinate
frames as well [7]. Finally, during sequential reaching to two
memorized locations, PRR plan activity codes just the next
intended reach [8]. This simplifies the interpretation of
activity in this region for prosthetic control since plan
activity reflects the upcoming movement, not any or all
planned movements. These properties suggest that intended
movement activity from PRR may be well suited for
generating high-level, cognitive control signals for prosthe-
tic applications.

We report here the results of a computational investiga-
tion, using a database of PRR action-potential responses, to
explore how high-level, cognitive control signals can be
estimated from plan activity using maximum likelihood
decoders and finite state machines. The resulting control
signals are well suited for use with external devices such as
robotic limbs or computer interfaces [9–13].

MATERIALS AND METHODS
Single neuron recordings: PRR spike data were obtained
from a previous study from our laboratory [6], and surgical
and recording techniques for acquiring single-neuron action
potentials have been described previously [5,6]. All proto-
cols were approved by the Caltech Institutional Animal
Care and Use Committee.

Data analysis: We used maximum likelihood estimation,
which is equivalent to Bayesian estimation with a uniform
prior probability distribution, to estimate reach parameters.
Our assumptions were Poisson spike statistics and statistical
independence between cells, but explicit models of tuning to
the various parameters were not assumed [14]. To recon-
struct the planned reach direction, we defined the scalar
x¼ (1,2,y,8) to be the reach direction and the vector
n¼ (n1,n2, y,nN) to be the spike count from each neuron
(ni) during a time interval (t). Combining the expression for
the conditional probability for the number of spikes n to
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occur given a plan to reach direction x with Bayes;’ rule
yields the following expression for the conditional prob-
ability of x given n: P(x|n)¼C(t,n)P(x)(pN

i¼ 1fi

(x)n)iexp(�tsn
i¼ 1fi (x)). The normalization factor C(t,n)

ensures that the sum of the probabilities equals one. P(x)
is the prior probability for reaches in each direction, and is
uniform by experimental design, and the mean firing rate of
the ith neuron while planning a reach to direction x is fi (x).
The estimated reach direction, , was taken to be the one with
the highest probability: ¼ argmax(P(x|n)) x¼ [1,2,y8].

Action potentials from 23 PRR neurons from monkey
CKY, and 41 PRR neurons from monkey DNT, were
analyzed. All analyses yielded similar results for both
animals. We used cross-validation techniques to assess the
performance of this estimation process. For each repetition
of the simulation, and in each of the eight possible reach
directions, a random subset of the total number of cells was
selected to avoid a cell sampling bias. One trial was selected
randomly, from each of the selected cells, and set aside for
use as test data. With the remaining trials from the selected
cells, we calculated the average firing rates for each cell
while planning to reach to each target. This mean was used
as the rate parameter l in Poisson distributions. The
probability that a particular selection of test data belonged
to each of the multidimensional distributions from each
direction was assessed, and thus the most probable (i.e.,
decoded or predicted) reach direction was selected for each
repetition in the given direction. This process was repeated
1000 times in each of the eight reach directions and then
normalized.

A similar procedure was used to estimate the response
distributions for the time-course analyses, but with the
following variations. After selection of the random subset of
cells and the exclusion of a single random trial from each
cell, the remaining trials were divided into 3 epochs:
baseline, plan period, and pre-movement period (�600 to
0, 300 to 1000, and 1100 to 1350 ms, respectively, where 0 ms
is the onset of the reach target and reaches began directly
after the pre-movement period ends). The trials from each
direction, for each cell, and in each epoch were concate-
nated, and the data were sampled with 250 ms long moving
windows with 50 ms time steps. The baseline epoch was
concatenated across all directions. Additionally the plan
epoch was also sampled using 500 ms windows rather than
250 ms windows. The mean of each epoch was used as the
parameter for the single multidimensional Poisson distribu-
tion for the baseline period, and for each of the eight
multidimensional distributions for each direction in the
three other epochs (the 250 ms sampled memory epoch, the
500 ms sampled memory epoch and the pre-execution
period).

Test-data firing rates were measured in 250 ms windows,
advanced 50 ms at each time step, through the duration of
the test trial. The most probable condition (baseline, one of
eigth plan directions, or one of eight execution directions)
was estimated independently in each time step as above.

RESULTS
Data were analyzed from a previous study in which action
potentials, eye movements and push-button state were
recorded while two rhesus monkeys performed a delayed

center-out (eight push-button targets) reaching task [6].
Figure 1 plots the response of a PRR neuron during repeated
reaches to the memorized location of a flashed visual target.
Three periods of neural activity are of particular interest: a
baseline period preceding target presentation, a plan period
following target presentation but preceding the reach cue,
and a pre-movement or go period following the reach cue
but preceding the onset of the arm movement. Plan and go
period activity levels vary with the location of the flashed
visual target, which specifies the goal of the arm movement.
Most neurons are tuned for a particular goal direction, with
other directions eliciting weaker plan period activity.

The estimation and control algorithms for determining
from neural measurements (1) when PRR is planning a
reach, (2) when the animal intends to execute the planned
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Fig. 1. Parietal reach region (PRR) neural activity during the delayed,
center-out reaching task. The behavioral task consists of four stimulus/
behavior periods (baseline, target presentation, plan and go). Icons depict
eye (black semicircle and dashed lines) and hand positions (gray semicir-
cles and arm), potential target locations (open circles), theneuron’s region
of maximum response or response ¢eld (large shaded region), and the lo-
cation of the £ashed target specifying the reach goal (black circle with
emanating lines). The vertical line labeled reach cue indicates when the
central eye and hand LEDs are extinguished. Spike times are indicated as
vertical lines in the trial-by-trial rasters (¢ve rows at top of data) and the
peri-stimulus time histogram (PSTH) represents the average response.
Horizontal bars indicate when push buttons were depressed, with reach
onset in a particular trial corresponding to when the bar vanishes. Eye
position traces are shown at thebottom.Data are aligned to target onset
(vertical line separating baseline and target presentation periods), which
is when the reach goal ¢rst becomes known. This neuron from monkey
DNT preferred downward reaches; the response ¢eld is illustrated to
the left in the icon for illustrative convenience.
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movement and (3) in which direction the reach is being
planned are illustrated in Fig. 2. Figure 2a illustrates the
neural response from each neuron in the population
throughout a representative (but simulated) delayed cen-
ter-out reaching task. The vertical line labeled t represents
the current time, which would also indicate the time of the
most recent data if the prosthetic system were running in
real time. Figure 2b is termed the classifier and has two
parts. The direction classifier uses neural data from the past

500 ms to estimate the probability that a reach is being
planned to each of the eight directions, and the most
probable reach direction is then selected. The period
classifier uses neural data from the past 250 ms to estimate
the probability that PRR is currently in a baseline, plan or go
period (see Fig. 1), and the most probable class is then
selected. Figure 2c is termed the interpreter. The interpreter
must take in the series of baseline, plan and go classifica-
tions, generated by the period classifier as time evolves, and
determine when a reach should be executed. It must also
take in where the reach should be directed from the
direction classifier and finally issue the high-level control
signal stating: reach here, reach now.

The interpreter starts in the baseline state and, as shown
in Fig. 2c, can transition to the plan state or return to the
baseline state each time the period classifier issues another
period classification. A baseline or go period classification
keeps the interpreter in the baseline state, while a plan
period classification advances the interpreter to the plan
state. Once in the plan state, a baseline- or go-period
classification will return the interpreter to the baseline state.
The reason for this operating logic will become clear when
we discuss below the possible rules for transitioning the
interpreter from the plan state to the reach state. Once the
reach state is achieved the interpreter automatically transi-
tions back to the baseline state, and simultaneously issues a
high-level, cognitive control signal commanding an im-
mediate reach to the location given by the goal classifier
(Fig. 2c, *).

The question of when to transition the interpreter from
the plan state to the reach state, and subsequently triggering
an arm movement, can be answered by considering the
behavioral task instructions and go period classifications.
We now summarize the logic and performance of three
different transition rules to illustrate how increasingly
sophisticated rules improve performance.

Time transition rule: If the behavioral task instruction to
the subject is simply to plan a reach to a particular location
for half a second, then a prosthetic system can safely execute
an arm movement after detecting 500 ms of plan activity. In
other words, the interpreter can transition from the plan
state to the reach state when the period classifier issues
500 ms of contiguous plan classifications. The time transi-
tion rule is essential because the visual-cue onset response is
similar to the movement onset response and could, without
a rule enforcing a minimum plan duration, result in a pre-
mature and erroneous go period classification. Figure 3a
shows the percentage of trials achieving the reach state, and
thus executing a reach, for a range of population sizes.
Figure 3b indicates the percentage of these trials that
executed reaches in the correct direction for a range of
population sizes. Ideally all trials would execute reaches, as
all of our experimental data are from successful reach trials,
and all trials would reach in the correct direction. Although
this transition rule successfully executes reaches for most
trials (Fig. 3a), many of the reaches go in the wrong direction
(Fig. 3b). These errors are due to direction classifier
misclassifications, and are probably caused by low signal
to noise ratios. If errors were caused by drifts in plan or
volition then the prediction accuracy would not be expected
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Fig. 2. Computational architecture for generating control signals from
PRR plan activity. (a) Spike rasters from one trial for each of 41PRR neu-
rons. The goal visual target occurs at 0ms. The onset of arm movement
occurs after 1100ms (not shown). (b) Classi¢ers use neural activity from
¢xed-width sliding analysis windows to estimate the direction of arm
movement (direction classi¢er) and the current neural/behavioral period
(period classi¢er). (c) The interpreter receives the stream of period clas-
si¢cations (i.e., baseline, plan or go) from the period classi¢er and the
stream of movement direction classi¢cations (e.g. downward reach) from
the direction classi¢er.The interpreter consists of a ¢nite state machine
that transitions among three states (baseline, plan and reach) according
to the period classi¢cation at each time step.
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to increase dramatically by adding more neurons to the
estimate, as is seen in Fig. 3b.

Time-consistency transition rule: A simple extension of
the prior transition rule can address these concerns by
adopting the conservative view that it is better not to
execute a reach at all than to reach in the wrong direction.
By adding the constraint that the period classifier’s plan
classifications must also specify a given goal direction
throughout the required 500 ms plan period (i.e. cannot
switch between reach goals during this period) we
effectively impose a plan-stability requirement. Importantly,
the period classifier, which employs a 250 ms sliding
window, can also estimate goal location using response
models and estimation methods analogous to those in the
familiar direction classifier. Figure 3 also summarizes the
performance of this transition rule. As expected, fewer trials
now execute reaches (Fig. 3a) but those that do tend to reach
in the correct direction more often (Fig. 3b).

Go transition rule: While the previous two transition rules
perform well for certain applications, and importantly they
do not rely on neural signals associated with movement
execution, we would also like to be able to produce a larger
absolute number of correct reaches. We can achieve this by
replacing the previous stability constraint with a require-
ment that the period classifier issue a go period classifica-
tion, after plan period classifications have been issued

continuously for 500 ms, in order to transition from the plan
state to the reach state. Using a neural go signal could afford
the subject an additional opportunity to abort a planned
reach by withholding the go command, or the possibility of
reducing the length of the plan period on some trials. Figure
3 illustrates the performance. The period of time used by the
direction classifier to estimate the reach direction, which is
the 500 ms directly preceding the go period classification,
tends to be slightly later than with the previous two
transition rules. This is because the go period classification
can occur up to several hundred milliseconds after the plan
duration criterion has been met. This accounts for the
increased percentage of reaches to the correct location (Fig.
3b). This algorithm executes an intermediate number of
reaches, compared with the other two transition rules (Fig.
3a), with good performance arising from the readily
detected and classified go activity.

Besides the increase in spike activity, another potential
source of movement onset information is the local field
potential (LFP) [15–17]. To investigate this possibility we
recorded LFPs while a monkey looked and reached toward
eight peripheral visual targets from a central starting
position. In this additional (third) rhesus monkey a silicon
micro-machined Utah electrode array with 22 active
electrodes was implanted permanently within PRR for
chronic recording and the LFP signals were filtered (15–
25 Hz bandpass). The average power in this band is
moderate around the time the central fixation and touch
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targets are illuminated, builds just before the peripheral
targets specifying the saccade and reach goals become
visible, and declines rapidly around the time of movement
onset. Further examination revealed that power in this band
is modulated by both saccadic eye movements and reaching
arm movements, but that reaching arm movements tend to
modulate the power to a greater extent than do saccadic eye
movements, with power being reduced to nearly zero
directly after reach onsets. This suggests that the dramatic
reduction in low-frequency PRR LFP power at the time of
movement onset could also contribute to a neural go-signal
transition rule.

DISCUSSION
Inspired by the considerable success of cochlear implants,
tremor-control devices and other neural-prosthetic systems
aimed at delivering signals to the nervous system, research
aimed at reading out neural signals for prosthetics applica-
tions has intensified in recent years [3,4,9–13]. Despite these
advances, the field of prosthetic systems that interface with
the CNS is still in its infancy. It is important to introduce
new ideas about decoding movement parameters for
possible use as prosthetic control signals since the full range
of prosthetic applications is not yet known, and there does
not yet exist a neural-prosthetic architecture that is optimal
for all plausible prosthetic applications.

To explore the feasibility of using pre-movement neural
signals from PRR to generate high-level cognitive control
signals, we developed and tested the computational
architecture presented in Fig. 2. This part of an envisioned
neural prosthetic system estimates, from PRR neural
activity, when an arm movement is being planned (period
classifier), the direction of the planned movement (direction
classifier), and when the arm should move (interpreter). The
resulting computations issue a cognitive control signal with
two parts: reach here and reach now. Thus PRR contains
sufficient signals to operate a neural prosthetic system.

To our knowledge, this is the first application of a state
machine model to predict cognitive states using neural
activity; neural decoding algorithms typically use estimators
that do not explicitly model internal dynamical states or the
transitions between these states [12,13]. Importantly, we put
forth the architecture shown in Fig. 2 simply to demonstrate
the essential features of translating plan activity into control
signals. For instance, we have used a relatively long (500 ms)
analysis window for the direction classifier since averaging
over this period reduces estimation noise and does not
cause additional delay. Meanwhile, the period classifier
analysis window is relatively short (250 ms) since it is
important to track the period (state) reasonably quickly so
that the interpreter evolves in a timely fashion. Similarly, the
interpreter transition rules investigated here merely repre-
sent three simple possibilities. We do not claim that this is
the ideal estimation-control architecture or that any of the
parameters (e.g. analysis window widths) are optimal. In
fact, we fully expect architectures that propagate the full
probabilistic nature of the internal state transitions (e.g.,
with hidden Markov models), adapt along with neural
adaptation or plasticity, and incorporate truly optimal
parameter values will only perform better. Our goal here

is just to demonstrate the basic approach needed to produce
useful control signals from plan activity.

Possible attributes of PRR for neural-prosthetic contro-
l: One open and central question is whether neural
representations that are present during natural arm move-
ments, and are employed in current prosthetic-arm research
systems, remain completely intact following injury and
disease or, alternatively, suffer at least some degeneration
that would complicate their use in prosthetic control [18].
Given that PRR is more closely linked to the visual system,
and more distant from motor areas effected by paralysis, it is
possible that it remains more intact following paralysis.
Shoham and colleagues [19] have reported residual topo-
graphy in motor cortex related to the will to move in
partially paralysed patients. No doubt the most direct
method of assessing the integrity of areas will come from
cell recordings in paralyzed patients receiving prosthetic
implants.

The parietal cortex is believed to participate naturally in
ongoing visuomotor coordination and adaptation [20]. Such
cortical plasticity could help improve prosthetic system
performance by continually, and quickly, adjusting for
visual-prosthetic misalignments and by countering neural
sampling biases, whether created by less than optimal
surgical placement of electrodes or by a representational
bias in cortex. A rapid and high degree of plasticity would
enable patients to control a variety of devices including
robotic devices that are very different from the human body,
computers for communication, and autonomous vehicles.
Plasticity will also be useful in allowing patients to
effortlessly adjust to changes in the recordings that result
from the usual small drifts of the electrodes in the brain.

In many forms of paralysis patients also lose somatosen-
sation. Somatosensory and proprioceptive feedback are
important for error correction for motor behavior, as is
vision. Since vision generally remains after injuries or
diseases resulting in paralysis, and PRR is strongly and
directly linked to visual cortex [1,21] it is likely that PRR will
still receive appropriate error signals for motor learning. We
have recently shown that PPC maintains appropriate spatial
register between proprioceptive and visual modalities, both
for visual-to-limb coordinate transformation and for taking
in retinal error signals [22].

The cognitive quality of PRR activity also has possible
advantages. The persistence of planning activity, which does
not require the execution of a movement, may be easily
tapped in paralyzed patients who may still be able to
activate this planning area, even though they cannot execute
movements. At least in motor cortex this planning-related
activity, which precedes movement-related activity, appears
not to be as robust in parietal cortex.

Finally, the use of cognitive signals may reduce the
number of neurons required for a given prosthetics
application. This reduction is possible if relatively few,
and high-level, parameters are estimated from the cognitive
activity and the signal to noise ratios are enhanced by
averaging over the movement planning period. That
performance reaches B90% with as few as 40 neurons with
this simple, non-optimized classifier-interpreter architecture
is already encouraging.

Vol 14 No 4 24 March 2003 5

PLANACTIVITYBASED CONTROL SIGNALS NEUROREPORT



Prosthetics system design using cognitive control signal-
s: In order to produce complex movements we envision
delivering high-level control signals to a reasonably
sophisticated prosthetic controller capable of generating
arm movement trajectories and capable of using inverse
models of the prosthetic or electrically stimulated arm to
achieve the desired movement dynamics. While the idea of
such an intelligent prosthetic controller might sound
daunting at first, industrial robotics combine state of the
art machine vision and learning to achieve impressive levels
of path planning, grip force control and safety. The patient
would have the ability to plan an arm movement to an
object, have the controller guide the arm to that location and
perhaps automatically grasp the object and, finally, the
person could plan a subsequent arm movement to the
desired location where the object could be released. Just as
cognitive control signals could potentially cooperate with
lower-level motor-cortical signals to further optimize con-
trol of arm movement prostheses, cognitive control signals
could also potentially contribute to existing communication
link systems [9,10] due to the expected versatility of
cognitive control signals as discussed above. Though using
cognitive control signals may require more sophisticated
prosthetic system engineering than is currently employed,
these control signals may offer important advantages and
reduce overall system complexity.

CONCLUSION
Despite the fact that numerous cortical regions and classes
of neural activity contribute during the planning and
execution of natural arm movements, neural prosthetic
systems research has focused almost exclusively on neural
activity present during natural arm movements (peri-
movement activity). We report here the first computational
demonstration that activity present before, or even without,
natural arm movements can be readily decoded to produce
useful control signals. Neural activity from the parietal

reach region, which represents the goal location of the
upcoming arm movement, may prove to be an ideal source
of prosthetic control signals by virtue of its relative isolation
from the motor periphery and direct involvement in
sensory-motor coordination and adaptation.
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