
Supplemental Material 

Ridge Shrinkage and the Effective Degrees of Freedom 

Here we give a more thorough description of how ridge regression shrinks the model 

coefficients and recount a rough derivation of the effective degrees of freedom, Ndf, based 

largely on a discussion originally presented in (Hastie et al., 2001). 

The singular value decomposition (SVD) of the centered neural input matrix is 

given by 

TUSVR = ,                     (S1) 

where U and V are orthogonal matrices containing the singular vectors and S is a diagonal 

matrix containing the nonzero singular values of R, where s1 ≥ s 2≥ … ≥ s n≥ 0. Using 

Equation S1, the least squares fitted estimate, LSX̂ , can also be expressed as a projection 

of X onto the orthonormal basis U, that is 
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Similarly the ridge fitted estimate, ridgeX̂ , can be re-expressed: 
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where uj are the columns of U. Therefore, in addition to performing the orthogonal 

projection as the least squares estimate does, ridge shrinks each coordinate of the 

orthogonal projection of X by the factor 
λ+2
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. Thus, the basis vectors that have the 



smallest 2
jd receive the largest amount of shrinkage, which notably correspond to 

principal component directions that have the smallest sample variance. Hastie and 

colleagues then define the effective degrees of freedom, Ndf, as the trace of the projection 

matrix, that is 
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This measure provided us with a convenient way to quantify the effective 

complexity of the ridge model for each neural ensemble. In general, it provides a simple, 

but mathematically sound method for determining a relevant (in a linear sense) set of 

neural inputs to be used for training a variety of decoding algorithms for a neural 

prosthetic application. 

 

Discrete G-Kalman Filter Two-step Estimation 

Estimation using the Kalman filter follows a well-known two-step recursive process, 

consisting of an a priori time prediction followed by an a posterior measurement update. 

This iterative prediction (Equation S5) and update process (Equation S6) is summarized 

below: 

1ˆˆ −
− = kk xAx      (a priori estimate)   
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1    (a priori error covariance)      (S5) 

 
( ) 1−−− += QHHPHPK T

k
T

kk   (Kalman gain update) 
( )−− −+= kkkkk xHRKxx ˆˆˆ   (a posterior estimate) 

( ) −−= kkk PHKIP     (a posterior error covariance),    (S6) 



where W and Q are covariance matrices for the zero-mean Gaussian noise processes 

belonging to the process and observation models (i.e. Equations 6 and 7), respectively. 

−
kP and kP are covariance matrices for the a priori and a posterior estimate errors, −

ke and

ke , and are defined as: 
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The Kalman gain matrix of Equation S6, Kk, is optimal in the sense that it minimizes the 

a posterior error covariance kP . A derivation of the Kalman gain is not provided here but 

can be obtained by minimizing the trace of kP (which is equivalent to the MSE of the a 

posterior estimate) (Maybeck, 1979). Intuitively, the magnitude of the Kalman gain 

depends proportionally on the a priori error covariance −
kP  (i.e. the uncertainty in the a 

priori estimate) and inversely proportionally on the measurement noise Q (Gelb, 1974). 

Two limiting cases give insight into how the Kalman gain is adjusted at each time step to 

optimally combine the contributions of the process and observation equations. When 

uncertainty in the a priori estimate is very low, −
kP  and consequently Kk will approach 

zero, and therefore the a posterior estimate will rely entirely on the a priori process 

estimate, ignoring any measurement innovation ( −− kk xHR ˆ ) altogether. Conversely, when 

the measurement error, Q, is very small, Kk approaches 1−H , and as a result the a 

posterior estimate relies more heavily on the measurement innovation (Welch and 

Bishop, 2006).  

 

Discrete G-Kalman Filter Stability 



Figure S1A-B illustrates that both the Kalman gain, Kk, and the covariance matrix, Pk, 

quickly converge (via an exponential decrease) toward a stable asymptote by changing 

progressively less from one time step to the next (k to k+1) over the course of a trial. In 

Figure S1C, we plotted all of the coefficients in the Kalman gain matrix associated with 

position or velocity as function of time in the trial, again illustrating how Kk stabilizes 

quickly to steady-state values, in less than 1 second. A similar plot for the acceleration 

and target gain coefficients is illustrated in Figure S1D. 

Note that during the early phases of a trajectory, it is probable that the G-Kalman 

filter does not optimally balance the contributions of the process and observation models, 

potentially resulting in somewhat unstable estimates. However, based on our cross-

validated reconstruction results, we did not observe any substantial decrease in 

performance during these periods in the trajectory, and instead found these early 

estimates to be comparably reliable to those in later periods. In future experiments, we 

expect that a continuous pursuit task (in which multiple trajectories are executed in series 

to a sequence of randomly presented targets) will result in longer periods of continuous 

movement, (Wu et al., 2002; Pistohl et al., 2008) and undoubtedly enable the Kalman 

gain and covariance to operate at their steady-state values for a larger percentage of the 

time. 



 

Figure S1.  Stability analysis for G-Kalman filter. A, Plot of Frobenius norm of 

difference between consecutive Kalman gain matrices, illustrating that the Kalman gain 

changes exponentially less with elapsed time in the trajectory. B, Similarly, the 

covariance matrix also changes exponentially less with time (same format as A). C-D, 

Temporal evolution of Kalman gain coefficients for position and velocity (C) and target 

position and acceleration (D), showing that these coefficients rapidly toward their steady-

state values (denoted as ‘ss’). 
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