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Abstract Gain modulation, in which the sensitivity of a
neural response to one input is modified by a second input,
is studied at single-neuron and network levels. At the single
neuron level, gain modulation can arise if the two inputs are
subject to a direct multiplicative interaction. Alternatively,
these inputs can be summed in a linear manner by the
neuron and gain modulation can arise, instead, from a
nonlinear input–output relationship. We derive a mathe-
matical constraint that can distinguish these two mecha-
nisms even though they can look very similar, provided
sufficient data of the appropriate type are available.
Previously, it has been shown in coordinate transformation
studies that artificial neurons with sigmoid transfer func-
tions can acquire a nonlinear additive form of gain
modulation through learning-driven adjustment of synaptic
weights. We use the constraint derived for single-neuron
studies to compare responses in this network with those of
another network model based on a biologically inspired
transfer function that can support approximately multipli-
cative interactions.

Keywords Gain modulation . Neural noise . Tuning curves .

Power law

1 Introduction

Gain modulation is defined as a change in the sensitivity of a
neuronal response to one set of inputs that depends on the
activity of a second set of inputs. It was first observed in
neurons of the parietal cortex of the macaque monkey that
combine retinal and gaze signals in a multiplicative manner
(Andersen and Mountcastle 1983; Andersen 1985). Since
then, gain modulation has been seen in other cortical areas
(Galletti and Battaglini 1989; Bremmer et al. 1997; Salinas
and Sejnowski 2001) and found to involve not only sensory
but also cognitive inputs such as those representing states of
attention (Salinas and Abbott 1997; Treue and Martinez-
Trujillo 1999; McAdams and Maunsell 2000). Furthermore,
gain modulation has come to be viewed as a major
computation principle of nonlinear neuronal processing
(Salinas and Thier 2000).

A number of cellular mechanisms have been proposed
that allow neurons to combine two sets of inputs in a
directly multiplicative manner (Mel 1993; Doiron et al.
2001; Chance et al. 2002; Gabbiani et al. 2002; Mitchell
and Silver 2003; Prescott and De Konick 2003). However,
as Murphy and Miller (2003) have pointed out, gain
modulation can also arise from a nonlinear dependence of
the input current on stimulus parameters followed by a
nonlinear f–I curve describing the relationship between
neuronal firing rate and input current. We call this second
form of gain modulation nonlinear additive. Normalization,
which has been used in models of visual cortex (Heeger
1992; Schwartz and Simoncelli 2001), might be considered
another form of gain modulation, but we lump it together
with the directly multiplicative forms we study.

Gain modulation can be studied at both the single-
neuron and network levels. We begin our investigation at
the single neuron level where distinguishing nonlinear
additive and directly multiplicative mechanisms of gain
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modulation on the basis of extracellular recordings can be
difficult (Murphy and Miller 2003), especially if f–I curves
are described by power-law functions (Murthy et al. 1988;
Albrecht and Geisler 1991; Carandini et al. 1997; Gardner
et al. 1999; Carandini and Ferster 2000). To address this
issue, we derive a mathematical constraint satisfied by
directly multiplicative gain modulation and look to see
when a nonlinear additive mechanism might come close to
satisfying this constraint. This is followed by an examina-
tion of how experimental data can be analyzed to
distinguish between directly multiplicative and nonlinear
additive mechanisms by determining if the constraint is
satisfied. For brevity, we sometimes refer to the nonlinear
additive and directly multiplicative cases as NA and DM,
respectively.

We next address gain modulation at the network level. In
previous studies, gain modulation has simply been imposed
upon a network by fiat (Pouget and Sejnowski 1995; Salinas
and Abbott 1996), or it has arisen in network models as a
consequence of learning rules that adjust the strengths of
synaptic connections in order to make the network perform a
particular task (Zipser and Andersen 1988; Xing and
Andersen 2000; Smith and Crawford 2005). In the latter
case, the individual neurons had transfer functions, the neural
network analog of f–I curves, that were sigmoidal and
allowed nonlinear additive, but not directly multiplicative,
gain modulation to arise. In addition to this classical sigmoid
transfer function, we consider a biologically inspired f–I
curve (Abbott and Chance 2005) that can support an
approximation of direct multiplication. However, this alter-
native model is not purely multiplicative and, as we will see,
it supports a nonlinear additive form of gain modulation as
well. Both models are studied in the context of a coordinate
transformation network. We apply the mathematical con-
straint derived for the single-neuron computation to these two
biophysical models to determine whether they are imple-
menting distinct additive and multiplicative mechanisms.

2 Methods

To study nonlinear additive and directly multiplicative gain
modulation mechanisms, we construct both single-neuron
and network models, which are described in the following
two subsections. A third subsection describes the analysis
methods we use.

2.1 Single-neuron models

The single-neuron models we study are descriptions of the
neural responses rather than biophysical models. The
models are constructed from response functions and noise,
as discussed in the follow two subsections.

Response functions Figure 1 shows responses of model
neurons that illustrate the similarities and differences
between nonlinear additive and directly multiplicative gain
modulation. For Fig. 1(a) and (b), which is an NA example,
the neuronal response plotted is given by R x; yð Þ ¼ c fð
xð Þ þ g yð ÞÞ3:4, with f xð Þ ¼ a1 exp �x2

�
a22

� �
, g yð Þ ¼ b1yþ

b2; and c ¼ 0:02; a1 ¼ 4; a2 ¼ 1:5; b1 ¼ �1; and b2 ¼
2. Figure 1(c) and (d) shows a DM neuron with the firing
rate calculated as R x; yð Þ ¼ f xð Þg yð Þ, with f (x) and g ( y)
given as above, except that a1 ¼ 10; a2 ¼ 0:9; b1 ¼
�0:5; and b2 ¼ 1. Figure 1(e) and (f) shows an NA neuron
that, once again, has a response given by R x; yð Þ ¼ c f xð Þþð
g yð ÞÞ3:4, but with f xð Þ ¼ a1 tanh xð Þ þ a2; g yð Þ ¼ b1yþ
b2, and a1 ¼ 1; a2 ¼ 1; b1 ¼ 0:5; and b2 ¼ 0. The DM
neuron for Fig. 1(g) and (h) has Rðx; yÞ ¼ f ðxÞgðyÞ, with
these same f(x) and g(y) except that b2 ¼ 1.

Neural noise To generate more realistic neuronal responses
than the smooth mathematical functions from Fig. 1, we used
three noise sources. The first noise model used the tuning
curves from Fig. 1 as firing rates for a Poisson process, 1=
R(x,y). The response field was generated a number of times,
and the average response was used as simulated data. The
second model used a normal noise distribution with mean
μ(x,y)=R(x,y) and standard deviation s x; yð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

R x; yð Þp
.

Because the firing rates we used were fairly large, this
second model was practically indistinguishable from the
Poisson process (except at the boundaries of the tuning
curves). A third model used a lower variance normal
distribution with σ x; yð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R x; yð Þ=2p
.

2.2 Network models

The networks we construct perform a simple coordinate
transformation. We consider a case were the position of an
auditory target is initially encoded in head-centered
coordinates and needs to be converted to an eye-centered
reference frame (Grunewald et al. 1999; Cohen and
Andersen, 2000; Groh et al. 2001). In this task, x
corresponds to an angle that defines the location of the
auditory target relative to the head, and y is an angle that
represents the gaze direction of the eyes relative to the
head. We model neuronal responses in such a task using a
feedforward network (Bishop 1995) that consists of three
layers of processing units: an input layer with responses
that separately represent x and y, a hidden layer that
generates a combined representation of these two inputs,
and an output layer that represents the result of the
coordinate transformation which, in this case, is the
difference of the two input angles, x–y.

Input and output layers The input layer represents x and y
in two separate maps producing the outputs fi(x) and gj( y)
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in neurons i and j, respectively. The map for x consists of
eight units that encode the location of the auditory target
relative to the head. The response of each unit is modeled
as a Gaussian with a width of 15°. The angle that produces

the maximum response in these Gaussian units is assigned
to one of eight uniformly distributed locations between
−35° and +35°. This network is based on average tuning
curves, so it does not include noise. The second map
represents y, the eye position in head-centered coordinates
(the gaze direction). This map is constructed from units
with responses that are sigmoid functions of y, eight units
with positive slopes and eight with negative slopes. Each
set of eight sigmoids spans the space from −35° to +35°, in
increments of 10°. The slope parameter for the sigmoids is
8°. The outputs from these input layer units are then fed to
a variable number (usually 20) of hidden layer units and
from there to the 8 output units.

Network architecture Neurons in the first network we
consider incorporate a nonlinear additive mechanism, and
the responses of hidden layer (R) and output layer (T)
neurons are determined by the following equations:

Rk ¼ F Ikð Þ; Ik ¼ w1
ik fi xð Þ þP

j
w 2
jkgj yð Þ

Tm ¼ F Imð Þ; Im ¼ P
k
w3
kmRk Ikð Þ ð1Þ

where Ik and Im involve weighted sums over all presynaptic
units, w1

ik and w2
jk are weight matrices that determine how

much the input unit responses fi(x) and gj( y) contribute to
the activation of hidden unit k, Rk (Ik). The sum involving
w3
km determines the activation of output unit m, Tm(Im). F

denotes the sigmoidal nonlinearity, FðIÞ ¼ 1=ð1þ exp
ð�IÞÞ, used as the input–output transfer function.

The second network we study is built from units that
compute not only on the basis of the total presynaptic input
I (defined as in Eq. (1)), but also depend on the input
variance σ,

Rk ¼ F Ik ;σkð Þ; σ2
k ¼

P
i

w1
ik fi xð Þ� �2þP

j
w2
jkgj yð Þ

� �2

Tm ¼ F Im;σmð Þ; σ2
m ¼ P

m
w3
kmRk Ikð Þ� �2

ð2Þ
where the transfer function (Abbott and Chance 2005) is

F I ;σð Þ ¼ I � σ� c1
1� exp �c2 I � σ� c1ð Þ= σþ c1ð Þð Þ ð3Þ

with c1 and c2 constants. These units allow for both
nonlinear additive and directly multiplicative interactions,
at least over some part of their response range. The
equations on the right side of Eq. (2) define what we mean
by the term input variance. Our equation for the variance
assumes non-Poissonian contributions.

(a) (b)

(c)

(e)

(g) (h)

(f)

(d)

Fig. 1 Comparison of nonlinear additive and directly multiplicative
neural responses, with R in arbitrary units. The two input functions are
a Gaussian (a–d) or a sigmoidal (e–h) f(x) encoding the position of a
stimulus (e.g. retinal position) and a linear g(y) encoding a modulatory
parameter (e.g. gaze angle). (a) Response field of a neuron that
performs input addition followed by a nonlinear transfer function. The
transfer function is a power law (the 3.4 power). (b) Tuning curves
from (a) for three different values of the modulatory parameter y. Solid
lines show a scaled Gaussian fit. (c) Response field of a neuron that
performs direct multiplication of its two input functions. (d) Tuning
curves from (c) for different values of the parameter y. Solid lines
show f(x) scaled by g(y). (e) Response field of a neuron that performs
input addition followed by a power law transfer function, but for a
sigmoid rather than Gaussian f(x). The transfer function is again a
power law (the 3.4 power). (f) Tuning curves from (e) for three
different values of y. (g) Response field of a neuron that performs
direct multiplication of the two input functions. (h) Tuning curves
from (g) for different values of the parameter y. The solid lines in (f)
and (h) show f(x) scaled by g(y)
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Network training Both networks were trained by applying
standard backpropagation (Rumelhart et al. 1986) with a
gradient descent algorithm (Bishop 1995) to their weights
(calculating Δw). The weights were adjusted in increments
determined by a learning rate 1 w ! wþ 1$wð Þ. The
network with sigmoid nonlinearity was trained with 1=
0.05, while the network with the nonlinearity defined by
Eq. (3) had 1=0.005.

The goal of training was to make the eight output units
of the network match the responses given by eight Gaussian
functions of the difference of the input variables (x–y). The
centers of these target Gaussians spanned the eye-centered
space from −35° to +35°. The width of the Gaussians was
15°. Performance was judged by computing the sum of the
squared errors between the network responses and the
target responses given by the Gaussian functions. We
considered a network well trained when the error dropped
to 0.0040. This corresponds to a 3% error on the amplitude
of the Gaussians, a 0.6° error on the position of the
maximum of the Gaussians, or a 0.7° error on the width of
the Gaussians.

Training consisted of presenting 100 combinations of the
two input variables: the location of an auditory target with
respect to the head and the gaze angle. The input space
from −45° to +45° was randomly sampled in steps of 2°.
This resulted in a large number of input combinations for
target and eye positions. The training set was optimized by
keeping only the input combinations that produced an
output variable (Sound in Eye=Sound in Head−Eye in
Head) in the range between −45° and +45°. The weights
between the layers were initially set to small (positive and
negative) random values. As the network trained, the
weights were adjusted to minimize the error by stochastic
gradient descent.

2.3 Analysis methods

Central difference equation To calculate the first numerical
derivative of a neuron’s response function R(x,y) at point
xþ $ x

2 ; y
� �

we used the central difference formula:

R
0
x ¼

dR
dx

xþ Δx

2
; y

� 	

¼ R xþ Δx; yð Þ � R x; yð Þ
Δx

þ O Δxð Þ2
� �

;

ð4aÞ

where Δx is the size of the grid, and O is the error term
which is proportional to Δxð Þ2. An equivalent formula may

be written for the derivative over y. The second derivative at
point xþ Δx

2 ; yþ Δy
2

� �
is then:

R
0 0
xy ¼

d2R

dxdy
xþ Δx

2
; yþ Δy

2

� 	

�
dR
dx xþ Δx

2 ; yþ Δy
� �� dR

dx xþ Δx
2 ; y

� �
Δy

ð4bÞ
Wilcoxon signed ranks test To quantify result from our test
using noisy “data” of whether a response field comes from
a nonlinear additive or directly multiplicative mechanism,
we make use of a Wilcoxon signed ranks test. This
nonparametric method was used to determine if the median
of the normalized distance between the firing rate and the
constraint we used (defined in Section 3) differs signifi-
cantly from 0. The test gives the probability r of observing
a result equal to or larger than that obtained from the data.
Values of r<0.05 led to rejection of the null hypothesis that
the interaction was directly multiplicative.

3 Results

The results are divided into two parts. In the first part, we
address the shapes of the response fields and gain properties
of single neurons. In the second part, we study how two
different transfer functions give rise to approximate gain
modulation in the hidden-layer units of a network model.

3.1 Gain modulation at the single-neuron level

Consider a neuron that receives input from two sources that
are characterized by two stimulus parameters x and y (e.g. the
auditory target position and gaze direction of the eyes). These
inputs are represented by afferent firing rates that are
functions of these parameters, f (x) for the afferents carrying
information about the parameter x and g( y) for the afferents
responding to y. In general, the firing rate of a postsynaptic
neuron driven by these inputs, labeled by R, will be some
function of f (x) and g( y). Directly multiplicative gain
modulation occurs when the postsynaptic firing rate is a
product of two factors, R(x,y)=f (x)g( y). We denote these two
factors by f (x) and g( y), but these denote generic functions
that do not have to be identical to the function used to
describe the inputs. In the multiplicative case, the “tuning
curve” of the neuronal firing rate (R plotted as a function
of x) is multiplicatively scaled by the value of g( y), which is
how gain modulation was originally defined. Nonlinear
additive gain modulation occurs when R(x,y)=F( f (x)+
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g(y)). Given that the functions f (x), g( y) and F are, at this
point, arbitrary, how can we distinguish these two cases?

Before addressing this question, we show, following
(Murphy and Miller 2003), that these two computationally
different expressions can produce very similar response
fields and similar gain modulation. Figure 1 shows two-
dimensional (R(x,y) plotted as a function of x and y) and
one-dimensional (R(x,y) plotted as a function of x for three
different y values) response fields for the nonlinear additive
[Fig. 1(a,b,e,f)] and directly multiplicative [Fig. 1(c,d,g,h)]
cases. The neurons in Fig. 1(a–d) have a Gaussian function
for f (x) whereas f (x) is sigmoidal in Fig. 1(e–h), and both
have linear functions for g( y) and F(z)=z3.4 (as in Murphy
and Miller 2003). Panels b, d, f, and h show that similar
response fields can be obtained whether the neuron is
performing nonlinear addition (panels b and f) or direct
multiplication (panels d and h) of its two inputs (provided
that the parameters defining these response functions are
chosen appropriately).

Mathematical constraint Although they can be hard to
distinguish, the directly multiplicative (R(x,y)= f (x)g ( y))
and nonlinear additive Rðx; yÞ ¼ Fð f ðxÞ þ gð yÞÞð Þ cases
are mathematically distinct. A useful way to reveal this
distinction is to compare the product of the x and y
derivatives of R(x,y) with the mixed second-derivative
through the ratio:

G ¼ @R

@x

� 	
@R

@y

� 	

@R

@x@y

� 	
: ð5Þ

A bit of algebra reveals that, in the directly multiplica-
tive case, G is constrained to be equal to R (G=R). In the
nonlinear additive case, G ¼ F

0� �
2

�
F

0 0
, where the primes

denote derivatives with respect to f (x) and g( y). Because
the firing rate is given by R=F, the nonlinear additive firing
rate will look like the directly multiplicative rate if G ¼
F

0� �2�
F

0 0 � R ¼ F or, equivalently, if F
0� �2�

F
0 0 � F.

There is a firing-rate dependence that satisfies the condition
F

0� �2�
F

0 0 ¼ F exactly, the exponential. This is obviously a
function that makes it impossible to distinguish the two cases
because the exponential of a sum is the product of the
exponentials. If F is a power-law function, F=z p, then
F

0� �2�
F

0 0 ¼ p2F
�
p p� 1ð Þð Þ. Thus, the power-law additive

mechanism will look similar to the multiplicative case if
p2 � p p� 1ð Þ, which is satisfied if p is sufficiently large.
For this reason, we consider a power-law form for F in our
analysis of single-neuron responses, even though the
analogous F in our network model is sigmoidal. Portions
of the sigmoidal curve can be approximated by a power-law
function but, more importantly, using a power-law for our

single-neuron studies allows us to consider what amounts to
a worst-case situation.

The constraintG=R that we consider is, of course, not the
only way of distinguishing the directly multiplicative and
nonlinear additive cases. We use it because it has the
advantage of providing a test that only requires us to plot and
evaluate a function of one variable, R, and test whether or
not G=R. In other words, rather than having to examine
three-dimensional plots of a constrained quantity as a
function of x and y, we can simply examine two-dimensional
plots of G vs R. In the multiplicative case, the function R(x,y)
evaluated over a grid of points is a matrix of rank 1, and tests
of this feature can be used as a indicator of a multiplicative
form. However, in realistic examples, we only expect a
multiplicative form to apply over a range of R values, and
the rank test provides only a global measure. The constraint
we use, allows us to evaluate the nature of the input
interaction as a function of firing rate.

Testing the constraint on response fields of single neurons We
do not believe that existing data can distinguish the directly
multiplicative and nonlinear additive cases, so we now
consider what type and amount of data would be needed for
this purpose. We consider two problems associated with
real data: finite stimulus resolution and variability.

We compare the computed G with the value of the firing
rate R, over a range of rates, to see if the constraint G=R is
satisfied, using the model results from Fig. 1 as surrogate
data. We consider x range from −2 to 2 and y range from 0 to
2, both in steps Δx=0.5 and Δy=0.5. The comparisons, for
the neural responses shown in Fig. 1, are shown in Fig. 2.
The directly multiplicative (panels b and d) and nonlinear
additive (panels a and c) cases can easily be distinguished.
Figure 2 illustrates that G values for the directly multiplica-
tive cases lie exactly on the diagonal, whereas those for the
nonlinear additive cases lie above the diagonal. This latter
feature is due to the fact that G=pF/( p−1) for that case, and
G=p/( p−1)>1 for positive p. The R vs G plot appears to
have half as many points for the Gaussian response fields as
for the sigmoidal field because Gaussian field is symmetric,
so half the points overlap.
The Wilcoxon test was applied to quantify the statistical
significance of the hypothesis that G=R. We removed parts
of the response field with low or no activity by imposing
the threshold condition . This removed part of the NA
region where multiplication is mimicked quite successfully
(in particular, the low firing region of the sigmoid NA). The
r values in Fig. 2 and subsequent figures give the
probabilities for accepting the null hypothesis of a
multiplicative interaction.

Calculating G over an 8×4 grid of points requires a total
of 9� 5þ 8� 5þ 9� 4þ 8� 4 ¼ 153 measurements of
the single response field. This can be done for a
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mathematical model, but would it be applicable in the real
experimental conditions with noisy measurement and much
lower data resolution? Figure 3(a) and (f) show two
Gaussian response fields from Fig. 1(a) and (c) as they
would look from a 9×5 grid of measurements. All the other
R values needed for the numerical calculation of derivatives
[Eqs. 4(a) and 4(b)] were obtained by triangle based linear
interpolation of the “measured” data (griddata function in
Matlab). Amplitudes were scaled 10 times to correspond to
a maximum firing rate of 89 Hz. Figure 3(b) and (g) shows
an 8×4 grid of G vs R (at points xþ Δx

2 ; yþ Δy
2 ) as would

be obtained from this limited data without noise.
We now explore the effects of simulated neuronal response

variability on the applicability of the derived constraints for
real data. Given a reasonable number of experimental trials
and a realizable x–y grid, is it still possible to distinguish
between direct multiplication and nonlinear addition?
Figure 3(c) and (h) show simulated data assuming a Poisson
process as described in the Methods. We had to average 15
trials for each point in a 9×5 grid of x and y stimuli for the
derived constraints to become consistently visible as off-
diagonal scattering (Wilcoxon, r<0.05). The same is true for
noisy data generated from a normal distribution [Fig. 3(d)
and (i)]. The last two plots [Fig. 3(e) and (j)] have variance
reduced by a factor of 2. In general, experiments could be
designed with multiple stimuli presented in a single trial, for
example, if three auditory targets were presented per single
eye fixation. This would require only 9×5×15/3≈225 trials,

an achievable goal. By comparison, (Murphy and Miller
2003) suggested that the distinction between the directly
multiplicative and nonlinear additive cases will require
experimental data precise enough so that increases or
decreases of tuning curve width on the order of 10–20%
can be detected.

In Fig. 4, we explore the effect of discrete grids and
noise on the sigmoidal response fields from Fig. 1(e) and
(g). Figure 4(a) and (f) shows the response fields obtained
from a limited number of measurements (9×5), scaled to a
maximum of 165 Hz. Again, we used linear interpolation
(griddata in Matlab) for other x,y locations. R vs G plots in
Fig. 4(b) and (g) clearly show the difference between the
NA and DM cases, as verified by the Wilcoxon r values. A
consistent (90%) detection of the off-diagonal behavior in
the noisy measurements required 100 trials per each of the
9×5 (x,y) points. Figure 4(c) and (h) show results for noisy
response fields corresponding to the Poisson noise model,
while Fig. 4(d) and (i) show the same for the normal
distribution. Figure 4(e) and (j) are the results for the
normal noise reduced by a factor of

ffiffiffi
2

p
.

Figure 5 shows the summary of potential number of trials
with respect to the type of noise in the data. The
measurement resolution grid is always 9×5, used to
interpolate and calculate R vs G at 8×4 points. Figure 5(a)
summarizes how the efficiency of detecting the off-diagonal
R vs G scattering (indicating NA) changes with respect to the
type of noise and number of trials at each of the 8×4 (x,y)
points. The circles indicate efficiencies for detecting true NA
[as in Fig. 3(a)]. The squares indicate misidentification of
DM responses [as in Fig. 3(f)] as NA. Each circle (and
square) was calculated based on 100 random initializations
for a particular type of noise (normal (n), normal reduced byffiffiffi
2

p
(n2) and Poisson (p)). Each initialization gave an R vs G

plot that was categorized with Wilcoxon criteria as on- or
off-diagonal (r<0.05) for R > 0:1Rmax. Different lines
follow how the efficiency changes for each type of noise with
respect to number of trials used. Obviously, the cases with the
smallest noise (n2) require the fewest number of trials to
correctly identify the true NA neuron. There were very few
false positives (squares) under all conditions because noise
symmetrically scatters points about the diagonal.

Figure 5(b) is equivalent to Fig. 5(a), but for the
sigmoidal responses from Fig. 4. This response field shape
requires higher number of trials to detect the off-diagonal
scattering, primarily because it departs slowly from the
diagonal, and it also has a well matched diagonal part.
This is enough to influence the Wilcoxon test. Seeing a
clear off-diagonal trend for detecting this type of NA
response field would require 9×5×100=4,500 trials per
RF, a formidable task, unless the number of trials is
reduced by multiple target presentations (4,500/3=
1,300 trials).

0 5 10
0

2

4

6

8

10

r=8.7e-05

R

G

0 5 10
0

2

4

6

8
10

r=1

R

G

0 2 4 6
0

2

4

6

r=2.0e-04

R

G

0 2 4 6
0

2

4

6

r=1

R

G

(a) (b)

(c) (d)

NA Gaussian 

NA sigmoid 

DM Gaussian 

DM sigmoid 

Fig. 2 Testing the mathematical constraint. The black circles are the
derivative ratios, G of Eq. (5) calculated at different points of the
response field and plotted as a function of the rate. (a) G vs R for
the response field of Fig. 1(a). (b) G vs R for the response field of
Fig. 1(c). (c) G vs R for the response field of Fig. 1(e). (d) G vs R for
the response field of Fig. 1(g). Wilcoxon r values give probabilities for
accepting the null hypothesis of a multiplicative interaction
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3.2 Gain modulation at the network level

As stated in the Introduction, gain modulation has been
studied in network models associated with coordinate trans-
formations. The most straightforward approach is to construct

a network from neurons that are simply postulated to perform
direct multiplication (Pouget and Sejnowski 1995; Salinas
and Abbott 1996). However, we are interested in the
multilayer feedforward networks (Zipser and Andersen
1988; Xing and Andersen 2000; Smith and Crawford

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3 (a) NA Gaussian neuron from Fig. 1(a), scaled 10 times
(maximum firing rate of 89 Hz) as seen on a 9×5 grid of measure-
ments. (b) G vs R plot shows 8×4 points computed from finite-
difference derivatives of the responses in a with no noise. (c) G vs R
plot for the response field in (a) obtained from 15 noisy measurements
generated by a Poisson ( p) process. (d) Same as (c), but the noisy
measurements were generated from a normal (n) distribution with a
standard deviation equal to the square of the firing rate calculated for
each point. (e) Same as (d), but with the noise reduced by

ffiffiffi
2

p
(n2).

(f ) DM Gaussian neuron from Fig. 1(c), scaled 10 times, as seen on a
9×5 grid of measurements. (g) G vs R plot has 8×4 points computed
from the response field of (f) as in (b). (h) G vs R plot obtained from
15 noisy (Poisson) measurements of the response field in (g). (i) G vs
R plot calculated from 15 noisy (normal distribution) measurements.
( j) G vs R plot based on average of 15 trials in reduced noise case
(normal distribution with the noise reduced by

ffiffiffi
2

p
. Wilcoxon r values

give probabilities for accepting the null hypothesis of a multiplicative
interaction

(a)

(f) (g) (h) (i) (j)

(b) (c) (d) (e)

Fig. 4 (a) Response field of NA sigmoidal neuron from Fig. 1(e),
scaled 40 times (maximum firing rate of 165 Hz) as seen on a 9×5 grid
of data. (b) G vs R plot for the response field results in 8×4 data points.
(c) G vs R plot calculated from the response field in (a), averaged over
100 noisy (Poisson (p)) measurements. (d) G vs R plot calculated from
the response field in (a) averaged over 100 noisy (normal distribution
(n)) measurements. (e) Same as in (d), but with the noise reduced by

ffiffiffi
2

p

(n2). (f) Response field of DM sigmoidal neuron from Fig. 1(g), scaled
40 times, as seen over a 9×5 grid. (g) Resulting 8×4 derivative data
points shown in a G vs R plot. (h) G vs R plot based on 100 trials with
Poisson noise. (i) G vs R plot based on 100 measurements with
normally distributed noise. (j) Same as in (i), but with reduced normal
noise and 100 trials. Wilcoxon r values give probabilities for accepting
the null hypothesis of a multiplicative interaction
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2005) where the (approximate) gain modulation arises as a
consequence of weight adjustment.

3.3 Transfer functions and their effects on gain modulation

We construct and compare two feedforward networks with
the general architecture described in the Methods. The
networks differ in the type of transfer functions used. For
the sigmoid transfer (ST) network, we used a sigmoidal
transfer function that supports additive nonlinear gain
modulation, as used in the standard Zipser–Andersen model
(1988). For the second case, we consider a more complex
nonlinear transfer function. It has been shown previously
that f–I curves can scale almost multiplicatively through the
effects of input variance (Doiron et al. 2001; Chance et al.
2002; Mitchell and Silver 2003; Prescott and De Konick
2003). More recent experiments have expanded this
understanding with a range of effects (Higgs et al. 2006;
Arsiero et al. 2007).

Data from both simulations and from real neurons can be
fit by an equation (see the Methods section) that involves a

combination of the mean synaptic input that appears in the
ST case and the input variance (Abbott and Chance 2005).
The features of this transfer function are illustrated in
Fig. 6, where we plot the output as a function of input I for
different values of input variance. The transfer function
becomes steeper as the variance decreases, indicating a gain
change. We incorporate this transfer function into a network
model that we call the variance dependent transfer (VDT)
network. Note that the computation mechanism in this
network is not simply nonlinear addition of f (x) and g( y),
nor is it entirely direct multiplication. We therefore use the
constraint we have derived to see whether the VDT
network actually implements a multiplicative scheme in
solving the coordinate transformation task.

 

 

(a) (b)Fig. 5 (a) Efficiency for
detecting off-diagonal behavior
of a Gaussian neuron for various
types of noise (normal (n),
reduced normal (n2) and
Poisson ( p)) and number of
trials. Circles denote efficiency
of detecting NA transfer
functions. Squares denote false
identification of DM Gaussian
neuron as NA neuron. (b) Same
as in (a) only for the sigmoidal
response field neurons. Firing
rates are in arbitrary units

Fig. 6 The response function of Eq. (3) plotted as a function of mean
input I for different values of input variance σ2. Multiplicative gain
modulation of the f–I is indicated by the varying slopes of the curves,
which increase as the variance is decreased. The input I had range
from −1 to 5 in increments of 0.01 and σ varied from 1 to 6 in unit
increments. Parameters C1=2 and C2=6 (see Section 2)

 

 

(a) (b)

(d)(c)

Fig. 7 (a) Response field of a typical unit in the hidden layer of the
VDT network. (b) The tuning curves of the same unit show
multiplicative scaling with respect to the different values of the input
parameter y (gaze angle). (c) The response of the hidden unit as a
function of net input. Baseline tuning curve is marked with squares,
while the curves corresponding to the modulated responses in (b) are
marked as circles and asterisks, respectively. (d) Three tuning curves
mapped for different y values are shown with respect to their range of
net inputs and input variances
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Figures 7 and 8 show the properties of the tuning curves
of two hidden units that develop in the network with VDT
units. The shapes of the response field in the x,y stimulus
plane is shown in panels a of both figures, while the scaling
of the tuning curve with respect to the stimulus y is shown
in panel (b). The lower two panels [(c and d)] indicate how
these approximately gain modulated properties develop
with respect to the transfer function. Each of the three
tuning curves shown in panel (b) is defined over a different

range of total input [Figs. 7(c) and 8(c)], while the range of
input variances tends to stay the same across the three
curves [Figs. 7(d) and 8(d)]. The tight spacing between the
tuning curves in Fig. 7(b) is due to a relatively small range
of input variances and tightly overlapping input ranges. On
the contrary, the larger gain shifts in Fig. 8(b) are due to
less overlapping input ranges and smaller variances
(therefore steeper transfer functions, as shown in Fig. 6).
The gain field in Fig. 7 is also less linear than that in Fig. 8.

Next we examine gain modulated in a network with ST
units. Figure 9 shows the properties of the two hidden units
(panels (a, b, c) and (d, e, f) respectively) in such a network.
The network with ST units produces more peripheral,
planar fields [Fig. 9(a) and (d)] compared to the VDT
network, which tends to produce more circular response
fields. The sigmoid transfer limits the activation of the
hidden units to the range from 0 to 1, as opposed to VDT
which has no upper bound. This limit on the activity allows
for two regions of variable slope that can be used to
produce gain modulation, but otherwise saturation does not
appear to play a large role in the network. Approximate
gain modulation arises from the use of different ranges of
the transfer function for different values of y [Fig. 9(e) and (f)].
The key component for the gain modulation is that the net
input keeps the activity away from either low- or high-
activity saturation [Fig. 9(b) and c)].

0

1

2

R
(x

,y
)

 

 

0 2 4 6
0

1

Input sum

R
(x

,y
)

0 2 4 6
0

1

2

Input sum

In
pu

t v
ar

ia
nc

e

-20 0 20
x

-20 0 20
x

-20

0  

20 
y

VDTVDT

y=10
y=-5
y=-20

(a) (b)

(c) (d)

Fig. 8 Another example of a response field in the hidden layer of the
VDT network. Panels are as in Fig. 7

 

 

 

 

(a) (b) (c)

(d) (e) (f)

Fig. 9 (a) Response field of a
typical unit in the hidden layer
of the ST network. (b) The
tuning curves show shifts in-
stead of gain changes. (c) Tun-
ing curves mapped plotted as a
function of input to the sigmoid
transfer function. (d) Another
example of a unit from the ST
network. (e) and (f) are similar
to (c) and (d)
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3.4 Testing the constraint on response fields of network
neurons

We now investigate the G vs R properties of the units
shown in Figs. 7, 8 and 9. Figure 10(a) and (b) shows (and
the Wilcoxon test verifies) that both VDT and ST units look
multiplicative at low firing rates, although for the unit
shown in Fig. 10(b) this range was quite limited. The
failure of the VDT units to be multiplicative at high rate
follows from the fact that gain modulation through input
variance, the mechanism being used here, fails at high
firing rates (Chance et al. 2002). The departure from direct
multiplication for the two ST units shown in Fig. 10(c) and
(d) is even more dramatic. To check whether the VDT
network was taking advantage of its multiplicative capabil-
ity in a significant way, we tested networks of VDT units
solving the task while holding their variances fixed. The
results were not very different than those shown in
Fig. 10(a) and (b), indicating that direct multiplication is
not playing a large role, consistent with the deviations from
multiplicative behavior seen in these figures.

4 Discussion

We have addressed the question of how to distinguish
between directly multiplicative and nonlinear additive

mechanisms of gain modulation on the basis of response
fields or tuning curves. We showed how the ambiguity
between the two mechanisms of gain modulation might be
resolved by examining a constraint satisfied by the response
fields in the DM case where data lies along the diagonal in
the G vs R plot [Fig. 2(b) and (d)] for all ranges of the input
parameters. On the contrary, NA functions (F) only
approximate this in cases for which ðF 0 Þ2

.
F

00 � F. In
most cases, numerical calculation of the ratio of derivatives
of the response fields distinguishes between these two
forms of the neuronal computation. The applicability of this
method was tested using noisy simulated data and limited
numbers of response field measurements. Provided that a
high firing-rate neuron and multi-target task design is used,
the resolution necessary to investigate direct multiplication
is within experimental reach.

In networks with ST functions (Smith and Crawford 2005;
Xing and Andersen 2000; Zipser and Andersen 1988), gain
modulation arises from a nonlinear additive mechanism,
similar to our discussion of the single power-law transfer
neuron. Gain changes in these networks are produced by
shifting the point around which the neuron operates to a
portion of the f–I curve with a different slope. Gain
modulation thus arises because the learning rule or network
architecture is able to perform the appropriate operating-
point shifts. The second network we studied, the VDT
network, has an f–I transfer function that depends on the
variance of the input to a neuron (Tuckwell 1988; Mel 1993;
Doiron et al. 2001; Chance et al. 2002; Gabbiani et al. 2002;
Mitchell and Silver 2003; Prescott and De Konick 2003).
Approximate gain modulation between f (x) and g ( y) could
arise here from a transfer function which in itself contains
multiplicative interaction between the net input and its
variance. However, the VDT network appears to have solved
the coordinate transformation task without making substan-
tial use of this capacity. As a result, both the ST and VDT
mechanisms show deviations from directly multiplicative
interactions, as indicated by the G vs R plots in Fig. 10.
Thus, in tests applied to real data, the mathematical
constraint we have derived can only provide an indication
that a multiplicative mechanism is present if it is actually
being used. In such cases, it should provide a useful probe
into how networks compute.
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(a)

(c) (d)

(b)

Fig. 10 (a) G vs R plot for the VDT network unit from Fig. 7
measure on a 15×9 grid. (b) G vs R plot for the VDT network unit
from Fig. 8 (15×9 grid). (c) G vs R plot for the ST unit from Fig. 9(a)
(15×9 grid). (d) G vs R plot for the ST unit from Fig. 9(d) (15×9
grid). The firing rates R are still expressed in generic scale as obtained
from the neural networks
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