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Abstract

In this paper we describe a set of algorithms and a novel miniature
device that together can autonomously position electrodes in neural
tissue to obtain high-quality extracellular recordings. This robotic
system moves each electrode to detect the signals of individual neu-
rons, optimize the signal quality of a target neuron, and then maintain
this signal over time. Such neuronal signals provide the key inputs
for emerging neuroprosthetic medical devices and serve as the foun-
dation of basic neuroscientific and medical research. Experimental
results from extensive use of the robotic electrodes in macaque pari-
etal cortex are presented to validate the method and to quantify its
effectiveness.
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1. Introduction

In this paper we present a robotic system that can au-
tonomously position electrodes in cortical tissue to find, op-
timize, and track the extracellular signals generated by indi-
vidual neurons. Such signals provide control inputs for emerg-
ing neuroprosthetic1 medical devices that promise to aid the
severely handicapped (Wessberg et al. 2000� Serruya et al.
2002� Taylor et al. 2002� Andersen et al. 2004) and are also
the targets of a large body of electrophysiological experiments
aimed at basic understanding of the nervous system.

The goal of the extracellular recording process (more fully
described in Section 2) is to detect and localize in time the oc-
currence of a neuron’s electrical impulses, termed action po-
tentials or spikes, which are the basis for neural communica-
tion and information processing. It is widely accepted that the
information output of a neuron is encoded not in the shape of

1. A neuroprosthesis is a brain–machine interface that enables a human, via the
use of surgically implanted electrode arrays and associated computer decod-
ing algorithms, to control external electromechanical devices by pure thought
alone. In this manner, some useful functions that have been lost through dis-
ease or accident can be partially restored. Patients who might benefit from
such a prosthesis would include those with late stage amyotrophic lateral scle-
rosis (ALS), severe spinal cord lesions or trauma, and stroke to the motor
pathways.
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Fig. 1. Extracellular recording environment and example signals: cross-sectional diagrams of (A) acute and (B) chronic recording
setups� (C) detail drawing of recording site at electrode tip� (D) 10-second filtered signal sample from an electrode, with (E) the
action potential (spike) waveforms extracted from the recording and aligned by their minimum.

its spikes, which are highly stereotyped (see, e.g., Figure 1E
in Section 2), but in their timing. A successful extracellular
recording, then, is one in which the firing of spikes of an indi-
vidual neuron can be reliably detected above background noise
and distinguished from signals arising from nearby neurons�
the neuron is then considered as “isolated”. The timing of these
spikes may then be analyzed for scientific studies or for control
of a neuroprosthesis, decoding the intentions of a paralyzed
user.

Whether a cell is successfully isolated, however, relies al-
most entirely on the effective placement of the uninsulated
electrode tip with respect to that cell body. The robotic system
described below can autonomously position electrodes so as to
initially optimize and then maintain the quality of the recorded
signal over long periods of time. Our approach and contribu-
tions consists of two parts. First, we present a hierarchical con-
trol algorithm that can determine appropriate electrode move-
ment commands to optimize the quality of the recorded sig-
nal. This control system can be used with a wide variety of
different hardware configurations. Second, we present a novel
miniature robotic electrode microdrive2 , which takes advan-
tage of the proposed control algorithms. The robotic electrode
paradigm described in this paper can increase the quality and
efficiency of neuroscientific research techniques by eliminat-
ing the tedious manual process by which electrophysiologists
have traditionally optimized electrode placement. In addition,
future miniaturized versions of such a system may overcome
some of the difficulties inherent in establishing effective, long-
lasting neural interfaces that are required for practical neuro-
prostheses.

2. A microdrive is an electromechanical device that can position an electrode
along a linear track with micrometer-scale precision. The device itself may be
quite large.

Section 2 provides additional further background on the
techniques and challenges of extracellular recording in order to
motivate the potential contributions of autonomous electrode
positioning. Section 3 describes the hierarchical control algo-
rithm that governs the electrode positioning process. Not only
can this algorithm be used with the novel robotic microdrive
described in Section 4, but it can also be employed to auto-
mate or “robotize” existing commercial microdrives. Section 5
provides experimental results obtained by applying the control
system, in tandem with the robotic microdrive of Section 4 as
well as commercial microdrives, to autonomously record ex-
tracellular signals in macaque parietal cortex.

While microdrives have long been used for basic research
in neurobiology, our robotic microdrive is novel in its combi-
nation of size and autonomy. Few attempts have been made
to automate the delicate process of electrode positioning. Fee
(2000) has previously demonstrated a method to stabilize in-
tracellular recording electrodes for a period of a few minutes.
Also, Baker et al. (1999) have demonstrated a control architec-
ture for an acute microdrive that autonomously advances elec-
trodes until target cells are detected, at which point a human
operator must optimize the recorded signal.

A first generation of our robotic microdrive prototype was
previously reported by Branchaud et al. (2005) and Cham et
al. (2005). The advances in the robot described in this paper
provide substantial improvements in terms of signal quality,
robustness to biological environments, experimental ease of
use, and manufacturability. A preliminary variant of the cur-
rent microdrive was presented by Cham et al. (2006). An early
version of our control system can be found in Branchaud et
al. (2006)� Nenadic and Burdick (2006). We have developed
a significantly more sophisticated electrode positioning algo-
rithm, capable of coping with the many challenges of realistic
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recording environments and able to track the signals of a given
neuron with greater reliability. Moreover, efforts are underway
to develop miniaturized implantable versions of this technol-
ogy based on micro-fabrication techniques (Pang et al. 2006)�
the progress reported here supports the development of these
devices. Finally, we present the first quantitative analysis of the
performance of our approach from many days of use, having
logged over a thousand hours of autonomous electrode control
in multiple animal subjects.

2. Background: The Extracellular Recording
Process

Extracellular recordings of action potentials are made by in-
serting electrodes into neural tissue. The electrodes are typi-
cally sharpened metal wires insulated along their length and
exposed at the tip3. The tip of a recording electrode must gen-
erally lie within about 50 �m of the neuron’s soma to pro-
vide a useful signal that can be discriminated above the back-
ground noise (defining a “listening sphere” around the neu-
ron� see Figure 1C), and a closer proximity may be required to
sufficiently distinguish the signals of different neurons (Gray
et al. 1995). As summarized below, extracellular recordings
can be carried out in an acute or in a chronic manner. The
autonomous electrode positioning algorithm described in this
paper can benefit both types of extracellular recordings.

2.1. Acute Recordings

In acute recordings, which are primarily used for scientific re-
search, electrodes are inserted and removed from the neural
tissue during each recording session (which typically lasts a
few hours). To enable these recordings in cortex, a portion of
the skull over the brain region of interest is typically removed
and replaced with a sealable cranial recording chamber (see
Figure 1A)� for example, a 16-mm inner-diameter cylindri-
cal recording chamber is a standard used in the neuroscience
community. During an acute recording session, a microdrive4,
affixed to the opened chamber, is used to lower one or more
electrodes into cortical tissue and then subsequently finely po-
sition the electrodes. Electrodes are advanced through neural
tissue along a straight line, with the position of each electrode
described by its depth along this linear track.

While the electrode movement is typically motorized, the
electrode’s motion is at present manually determined by the
experimenter. The process of determining the exact position of

3. Silicon shafts with electrically active recording sites along their shanks may
also be used.
4. For example, commercial microdrives from Thomas Recording GmbH, Ger-
many, FHC Inc., USA, Narishige Inc., Japan, NAN Instruments Ltd, Israel, etc.
A photo of several microdrives is shown in Figure 5.

each electrode is commonly guided by the use of visual (os-
cilloscope) and auditory (loudspeaker) representations of the
voltage signal, and the experimenter relies on experience and
intuition to determine proper electrode placement. The elec-
trode must be placed where signals of disparate neurons are
distinguishable (Lewicki 1998) and close enough to a neu-
ron for a high-quality recording, yet far enough away to avoid
damaging it. During the course of a typical experiment, the ex-
perimenter must monitor the electrode and often reposition it,
as the signal can change due to tissue decompression effects
(Emondi et al. 2004). The process of isolating and maintain-
ing high-quality neuronal signals thus consumes a significant
amount of the experimenter’s time and focus.

Simultaneous recordings with many electrodes are becom-
ing an increasingly important technique for understanding how
local networks of neurons process information, as well as
how computations are coordinated across multiple brain ar-
eas (Buzsaki 2004). Commercial microdrives with 16 or more
electrodes are now available (Baker et al. 1999). As the num-
ber of electrodes increases, the manual task of positioning each
electrode to maintain a high-quality neuronal signal becomes
intractable for a single experimenter. Data collection in these
experiments is essentially limited by how many channels an
experimenter can effectively monitor� in our experience, about
three or four electrodes is the maximum that can be juggled
effectively by an experienced electrophysiologist. Thus, by
continually monitoring the signal and automating the process
of placing and repositioning electrodes, our system can sig-
nificantly improve the efficiency and quality of acute multi-
electrode studies.

2.2. Chronic Recordings

In chronic recordings, multi-electrode assemblies, which typi-
cally consist of fixed geometry bundles of thin wires or arrays
of silicon probes, are surgically implanted in the region of in-
terest (Rousche and Normann 1998� Williams et al. 1999� Po-
rada et al. 2000) (see Figure 1B) and remain in place for weeks,
months, or possibly years at a time. Such chronic implants en-
able longer-term scientific studies of larger populations of neu-
rons or can be used as the front end of a neuroprosthesis.

Current chronic recording technology suffers from a num-
ber of limitations. The implant’s yield (the percentage of the
array’s electrodes that can record a useful signal) depends
largely upon the luck of the initial surgical placement, as many
electrodes will likely fall outside the “listening sphere” of any
active neuron. Moreover, blood pressure variations, breathing,
and mechanical shocks can cause migration of the electrodes
in the tissue, leading to further signal degradation (Avezaat
and van Eijndhoven 1986� Fee 2000). Finally, reactive gliosis
can encapsulate the electrode, diminishing signal quality over
time (Turner et al. 1999). All of these effects conspire to limit
the usefulness and practical longevity of chronically implanted
electrode arrays.
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A chronic array whose electrodes can be continually repo-
sitioned after implantation can overcome some of these limita-
tions. With such an implant, the overall signal yield can be im-
proved by moving the electrodes to optimal neuronal recording
sites, even seeking out neurons whose activity is well corre-
lated with the objectives of the neuroprosthesis. While some
implantable microdrives have been developed (deCharms et
al. 1999� Venkatachalam et al. 1999� Vos et al. 1999� Fee and
Leonardo 2001� Kralik et al. 2001), these devices require man-
ual repositioning of the electrodes, such as by turning lead
screws. Muthuswamy et al. (2005) have demonstrated a pro-
totype actuated electrode in an acute rat experiment� however,
it is unclear whether the high power consumption and limited
actuator range of their device will be appropriate for chronic
use in primates. Also, an accompanying control algorithm such
as ours would still be necessary, as it is not practical to require
constant human supervision to adjust the electrodes to achieve
optimal signals.

Although the experimental results in this paper focus on
acute recordings, our algorithms and demonstrations provide
a foundation for future chronic “smart” implantable multi-
electrode systems. Chronic tests of autonomous electrode po-
sitioning will require new miniaturized actuator technologies:
Pang et al. (2006) documents initial attempts at developing
miniaturized, biocompatible, actuated electrodes that would
enable an implantable device. The microdrive described in
Section 4 serves as a testbed for the autonomous electrode ap-
proach that will be extended to longer time frames in future
trials.

3. Autonomous Electrode Positioning Control
Algorithm

Our algorithm utilizes a hierarchical closed-loop approach to
determine, based on the recorded signal and the electrode’s po-
sition history, the best depth for each electrode. The goal is to
place each electrode so that the spikes from an isolated neuron
can be unambiguously detected in the noisy voltage record-
ing and discriminated from the signals of other nearby neu-
rons. We first review the overall control system structure and
then describe its individual components. To make this paper
self-contained, we summarize components that have been de-
veloped in previous work, while more thoroughly highlighting
new contributions. As each electrode is moved independently,
we focus on the processing steps for a single electrode� these
steps are run in parallel for each electrode in a multi-electrode
microdrive.

The control algorithm operates on a cycle (see Figure 2).
Let these cycles be indexed by the integer k, k � 1� 2� � � �. The
cycle begins with recording the electrode signal over a short
sampling interval (denoted by Tk , which is typically of dura-
tion 10–20 seconds) while the electrode is stationary, followed
by analysis of this signal to determine whether and how the

Fig. 2. Diagram of the control algorithm cycle, depicting the
key data involved in each step of the cycle. During the kth
cycle: (1) a short data sample is recorded during interval Tk ,
from which (2) spike waveforms are detected, extracted, and
aligned. (3) Using their PCA representations, these waveforms
are clustered by their generating neurons and associated with
the neurons recorded on the previous cycle. (4) SNR and IQM
metrics are computed and then (5) used to determine the elec-
trode motion commands to optimize the SNR curve. (6) The
electrode is moved to its commanded position.

electrode should be repositioned, and ending with the move-
ment of the electrode to a new position (if necessary).

A hierarchical control algorithm determines the electrode
movement commands. The inner-most loop of this algorithm
(Section 3.3) attempts to isolate an individual neuron by opti-
mizing the quality of the recorded signal via small local move-
ments of the electrode tip, assuming that the tip is close enough
to a neuron for the isolation process to be possible. The outer
control structure consists of a finite state machine supervisory
controller (Section 3.4) which has several purposes. First, it
manages the neuron isolation process: it moves the electrode
until a region of sufficiently strong neuronal signal sources
is found and then further searches this region to acquire the
information needed to initiate the isolation procedure. In ad-
dition, the supervisory system (which is a novel contribution
of this paper) handles several of the complicating realities of
the extracellular recording process. Of course, to provide the
neuronal signal metrics that are needed by these control al-
gorithms, several signal processing steps are required to iden-
tify and sort the spike waveforms from the raw electrode sig-
nal (Section 3.1). Most of these preprocessing tasks have tra-
ditionally been performed manually in electrophysiology ex-
periments� producing automated and unsupervised methods
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Fig. 3. The clustering process. Clusters identified on the pre-
vious recording interval Tk�1 are used to construct priors on
the locations (i.e. means) of clusters on the current record-
ing interval Tk . The current data are clustered via maximum
a posteriori (MAP) optimization of a Gaussian mixture model
via expectation–maximization (EM), and the new clusters are
matched to previous clusters to “track” neurons.

presents significant challenges in their own right and has been
a contribution of this research program.

3.1. Signal Preprocessing Steps

The first step of unsupervised signal processing on the elec-
trode’s recorded signal is spike detection, which identifies the
action potential events in the raw electrode signal of interval
Tk . We employ a wavelet-based method developed by Nenadic
and Burdick (2005) specifically designed for this application.
By projecting the electrode signal onto a specially designed
wavelet basis, spike-like waveforms can be detected in the raw
signal, and short intervals (�1�1 ms in length) of the signal
centered on the putative spike occurrence are extracted (see
Figure 1D and E). Let si�k denote the i th spike waveform de-
tected and extracted during the interval Tk . All of the spike-
like waveforms found during Tk are temporally aligned by their
waveform minima in preparation for the next steps.

A single electrode’s signal may contain action potentials
generated by multiple neurons lying near the electrode tip, and
the detected spikes must be grouped by their generating neu-
rons: a process known as spike sorting. Spike sorting is a crit-
ical task, as the metrics calculated from the signals of each

distinct neuron are vital to both the electrode positioning al-
gorithm, which is trying to maximize signal quality (defined
in Section 3.2), and to the scientific or prosthetic uses of the
recorded data, which generally rely on neuronal firing rates. If
spikes are incorrectly classified, these metrics may be severely
corrupted. In addition, we must track the signals of particu-
lar neurons over sequential recording intervals by matching
current signal clusters (identified in Tk) with previous clusters
(identified in Tk�1).

To more efficiently discriminate between the signals of dif-
ferent neurons, the extracted, aligned spike waveforms are first
projected onto a two-dimensional principal component analy-
sis (PCA) basis. We assume that the distribution of each neu-
ron’s spikes may be modeled as Gaussian in this feature space
(although the center, orientation, and size of each distribution
is a priori unknown). The use of both a two-dimensional PCA
basis and a Gaussian distribution are common practice in spike
sorting (Lewicki 1998), although our method accepts any fea-
ture space in which the Gaussian assumption may reasonably
hold (and it may be adapted for non-Gaussian spike feature
distributions).

Let xi�k denote the projection of spike waveform si�k onto
the PCA basis. Our unsupervised spike sorting procedure
(Wolf and Burdick 2007) is based on the optimization of a
Gaussian mixture model, in which each Gaussian component
models the probability that the spike xi�k is generated from
a particular neuron, represented by component (or cluster)5

Cg, g � 1� � � � �Gk . Assuming that the measurements of the
spike waveforms detected during Tk are independent, the like-
lihood function for the ensemble of waveforms detected in Tk ,
Xk � �xi�k�N

i�1, takes the form

p �Xk � �k� �
N�

i�1

Gk�
g�1

� g�k f�
�
xi�k � �g�k� �g�k

�
� (1)

where �k � �� g�k� �g�k� �g�k�Gk
g�1 represents the mixture

model’s parameters6 . The multivariate Gaussian distribution
f� �xi�k � �g�k� �g�k� of the spikes associated to the gth gener-
ating neuron during Tk is defined by its mean �g�k and covari-
ance matrix �g�k . The mixture weight � g�k of component Cg

describes the probability that the observed spike is generated
by the gth neuron.

Traditionally, the model parameters of the Gaussian
mixture are found by optimizing the likelihood (1) via
expectation–maximization (EM) (Fraley and Raftery 1998).
As a byproduct, the EM solution associates spikes to a specific

5. The total number of generating neurons active in interval Tk , Gk , is assumed
to be unknown. We implement the common practice of fitting models for a
range of Gk (typically up to Gk � 5) and selecting the best resulting model
(in a way that penalizes over-fitting).
6. In practice, we also include an additional “background” mixture component
of uniform density to capture “outliers”: detected events that do not fit well
into the Gaussian components.
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neuron, i.e., the spikes are “clustered”. This method has proven
effective for many spike sorting applications (Lewicki 1998).
However, when the recording application involves repeated
sampling and clustering over time, our experience has shown
that the inconsistency of the output of conventional clustering
methods prevents accurate tracking of the neurons’ identities
across sampling intervals. If a neuron cannot be tracked, it is
very difficult to predict how electrode movement will affect its
recorded signal quality. Thus, producing more consistent, ac-
curate clusters is essential for downstream processing in our
control system. Consequently, we employ a Bayesian cluster-
ing approach, which optimizes the posterior density

p ��k � X1:k� � p �Xk � �k� p ��k � X1:k�1�

instead of the likelihood (1), where X1:k denotes all data
recorded during cycles 1 through k. As the cluster of signals
associated to the gth neuron in interval Tk is apt to be similar
in location to the signal cluster generated by the same neuron
in interval Tk�1, an informative prior is placed on the means
�g�k of the Gaussian mixture components found in Tk based

on the previous time step’s 	Gk�1 cluster locations:

p ��k � X1:k�1� �
G�

g�1

p
�
�g�k � X1:k�1

�

�
G�

g�1

�
� 	Gk�1�

j�1

1
	Gk�1

f�
�
�g�k � 	� j�k�1� Sj�k�k�1

��� �

where Sj�k�k�1 is the covariance matrix associated with the pre-
diction that the mean �g�k will lie at location 	� j�k�1. This
maximum a posteriori (MAP) approach also associates clus-
ters found in Tk to the clusters found in Tk�1. In addition, we
use the clusters found in Tk�1 as the “seed clusters” needed
to initialize the EM algorithm and the model selection process
in interval Tk . For more details on these techniques, includ-
ing methods to properly account for newly appearing and dis-
appearing neurons in Tk , see Wolf and Burdick (2007). This
method provides significantly more consistent clusters than
traditional methods, while also solving the data association
problem of spike clusters across recording intervals, thus ef-
fectively tracking the signals of persisting neurons throughout
the recording session.

3.2. Signal Quality and Isolation Metrics

From the preprocessed data, two signal metrics are calculated
in interval Tk .


 A signal quality metric (SQM) determines the general
quality of the extracellular signals associated with a par-
ticular neuron.


 An isolation quality metric (IQM) measures the sepa-
ration of one neuron’s waveforms from those of other
neuronal signals that appear in the same recording inter-
val.

The SQM is the algorithm’s main target, and the dominant
neuron is chosen as that whose signals have the highest average
SQM over a recent time period. This is the neuron whose sig-
nal is to be optimized by the electrode’s movements. Although
other choices of SQM are possible (see Branchaud (2006) for
examples), we hereafter use the signal-to-noise ratio (SNR) as
the signal quality metric. In this application, it is defined as
the mean peak-to-peak amplitude of the neuron’s waveforms
detected in Tk divided by the RMS amplitude of a spike-free
noise sample taken during interval Tk .

As a neuronal signal is only valuable if it can be distin-
guished from those of nearby neurons, the IQM measures the
“isolation” of the dominant neuron’s waveforms from other de-
tected spikes. The IQM is based on the isolation distance (ID)
(Harris et al. 2001), which, for cluster Cg containing Ng spike
samples, is defined as the Mahalanobis distance between its
center �g and the Ngth closest spike not in cluster Cg (denoted
by x j ):

IDg �
	
�x j � �g�

T��1
g �x j � �g��

The ID is the radius of the smallest ellipse (with shape defined
by �g) containing all of the spikes in cluster Cg and an equal
number of spikes not in cluster Cg (in effect, a measure of the
“moat” around cluster Cg). Note that the SQM is calculated
from the spike waveforms, while the IQM is computed in fea-
ture space (PCA basis).

3.3. The Isolation Control Loop

Based on the processed neural data and the quality metrics just
defined, the isolation control loop determines whether reposi-
tioning the electrode can improve the dominant neuron’s signal
quality. In the idealized, but unrealistic, scenario where only
one neuronal signal source is ever present, the algorithm com-
mands the electrode motion solely to increase the dominant
neuron’s SNR, as outlined below.

Detailed computational models (Nenadic and Burdick
2006) of the extracellular field generated around a typical cor-
tical pyramidal neuron show that when the electrode tip is
within the neuron’s “listening sphere”, the variation of the neu-
ronal signal’s SNR with respect to electrode position traces out
a unimodal curve which we dub the SNR curve (see Figure 2
(step 5) or the data in Figure 8(b)). Let u denote the position
of the electrode tip along its linear track. Let Y �u� denote the
SNR curve. The goal is to find the peak of this curve and then
maintain the electrode position sufficiently close to this peak.
As neural signals are highly noisy, the metric Y should be con-
sidered a random variable with an associated regression func-
tion M�u� � E�Y � u�, where E�� � �� denotes conditional ex-
pectation. This regression function is a priori unknown, except
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that it has a unimodal shape. Only noisy observations of the
SNR, obtained via the preprocessing steps summarized above,
are available. In order to optimize the SNR using only noisy
samples, the isolation process adaptively estimates the regres-
sion function (the smoothed SNR curve), and the electrode’s
movements are chosen to seek the extremal point of the adap-
tively evolving SNR curve.

The regression function model M�u� is assumed to be
a linear combination of basis functions: M�u� nk� Bk� �
nk

i�1 bi�k	 i �u�, where nk is the number of basis functions em-
ployed during cycle k, and Bk � [b1�k� b2�k� � � � � bnk �k]T are the
corresponding expansion coefficients. The model parameters
Bk and model complexity nk must be estimated from SNR ob-
servations and adaptively updated as new data become avail-
able. For a given model estimate, the electrode’s next position,
uk�1, is determined as

uk�1 � uk � C �Hk ��1 
 k� (2)

where C � 0 is an appropriately chosen scale factor, and

 k and Hk are the estimates of the first and second deriva-
tives, respectively, of M�u� at the electrode’s current position,
uk . Note that (2) represents a stochastic version of Newton’s
method. Convergence of the electrode position to the max-
ima of the SNR curve is considered attained at iteration k
 if
C�Hk
 ��1
 k
 � 
, where 
 is a tolerance chosen by the user.
The position uk
 is then declared the optimal electrode place-
ment, whereupon the finite state machine supervisory con-
troller transitions to a “maintain” mode (see Section 3.4). The
regression function M�u� is estimated as follows.

While many basis function choices are possible, we have
found that polynomial bases can sufficiently capture the geom-
etry of unimodal SNR curves (see Nenadic and Burdick
(2006)) and greatly simplify the estimation process. For poly-
nomial bases, the regression function after k iterations is

	M�u� nk� Bk� �
nk�

i�1

bi�ku�i�1��

Let �u1� u2� � � � � uk� be a sequence of (electrode) positions
with the corresponding SNR samples denoted by �1:k �
�y�u1�� y�u2�� � � � � y�uk��. At each electrode location u j � j �
1� 2� � � � � k�, multiple observations of SNR have been taken
(one for each isolated neuronal waveform), i.e. y�u j � ��
y1�u j �� y2�u j �� � � � � yN j �u j �

�T
, where N j is the total number

of observations at u j (this number may vary across sampling
intervals).

Determining the “correct” number of modes, nk , amounts to
a model selection problem. Given a family of candidate models
� 	M�u� nk� Bk� : nk � 1� 2� � � � � Nmax�, the goal is to select the
order of the model that is most probable in view of the data�1:k

and any prior information, I . The probability of the model 	Mnk

given �1:k and I follows from Bayes’ theorem

P� 	Mnk � �1:k� I � � p��1:k � 	Mnk � I �P� 	Mnk � I �

p��1:k � I �
�

nk � 1� 2� � � � � Nmax� (3)

where 	Mnk is short for 	M�u� nk� Bk� with fixed nk . Here, I
represents the model selection result obtained in the previous
interval Tk�1: the posterior P� 	Mnk�1 � �1:k�1� I � calculated
at iteration k � 1 can be used as the prior at iteration k in
(3). The recursion is initialized with a uniform prior density
P� 	Mnk0

� I � � 1�Nmax, where k0 denotes the smallest admis-
sible number of iterations, below which there is an insufficient
amount of data to reliably model the regression function (see
Section 3.4.1). The model order is chosen to maximize the pos-
terior probability (3), i.e.

n
k � arg max
1�nk�Nmax

P� 	Mnk � �1:k� I �� k � k0� k0 � 1� � � � �

To perform this maximization, the posterior P� 	Mnk � �1:k� I �
of each candidate model 	Mnk must be evaluated by marginal-
izing the unknown parameters Bk . With a Gaussian noise as-
sumption and polynomial bases, the marginalization of Bk can
be performed analytically (Nenadic and Burdick 2006).

Once the optimal model order n
k at iteration k is known,
the parameters of the model 	M�u� n
k � Bk� are estimated by a
linear least-squares method:

B
k � arg min
Bk


�
�

k�
j�1

�� j�k Bk � y�u j ��2

��
� �

k � k0� k0 � 1� � � � �

where the matrix � j�k � �N j�n
k consists of N j identical rows

given by [1� u j � � � � � u
�n
k�1�
j ]. Once the optimal parameters B
k

are estimated, the optimal model 	M

k �u� � 	M�u� n
k � B
k � at

iteration k is fully specified. From this result the gradient and
Hessian of the optimal model are then used in (2) to determine
the electrode movement.

As sudden large electrode movements are unacceptable, the
maximum step size is limited by a constant �max, chosen by
the experimenter. This is especially useful for iterations where
the optimal model is found to be a straight line (n
k � 2), which
results in Hk � 0 and infinitely large step size in (2). Likewise,
if for some k � k0 we obtain 	Mk�u� � b
1�k , i.e. n
k � 1, then

 k � 0 and the recursion (2) breaks down. In this case we use
a simple control strategy:

uk�1 � uk ��sample� (4)

where �sample is a constant Section 3.4 covers the choice of
step size parameters and the search for admissible gradients in
more detail.
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Fig. 4. Diagram of the supervisory finite state machine (SFSM) with transition criteria noted. States are grouped into three modes
(isolate, isolated, and re-isolate) for convenience, as referenced in Section 5.2. Transitions with WAIT must meet transition criteria
in R consecutive cycles, reducing sensitivity to transients. Transitions on the right may be made from any state.

To implement this algorithm on an actual hardware device,
a low-level electrode positioning feedback control algorithm is
needed to execute the commanded change in electrode position
from uk to uk�1. In practice, the low-level controller need not
perfectly move the electrode by the distance�uk � uk�1�uk .
The isolation feedback loop described in this section will work
as long as the actual electrode displacement proportionally in-
creases the signal quality with each command. While the con-
vergence of the algorithm is reasonably tolerant to errors in
electrode positioning, such errors can slow the rate of conver-
gence.

The isolation process described above assumed only one
neuron’s signal is present during each recording interval Tk

(k � 1� 2� � � �). The realistic presence of multiple neuronal
signal sources is partially addressed through the spike sort-
ing and neuron tracking procedure of Section 3.1, after which
this process uses the signals of just the dominant neuron. Ad-
ditional complications that arise in the presence of multiple
signal sources are addressed through the use of a finite state
machine for supervisory control, a contribution of this paper.

3.4. Finite State Machine Supervisory Controller

To manage the basic neuron isolation process, while also ac-
counting for many additional challenges of practical extracel-
lular recording, we use a finite state machine architecture to
guide the overall electrode movement process. This system
is termed the supervisory finite state machine (SFSM). Dur-
ing each algorithm cycle, the electrode movement decision de-
pends on the current state of the SFSM, with individual states
and state transitions crafted to guide behavior appropriate to
seeking and isolating neurons. A prototypical pathway of state

transitions is described below to describe the most common
issues and SFSM operation, and later sections provide insight
into how the SFSM supervisory controller copes with numer-
ous recording challenges.

3.4.1. Prototypical Execution Pathway of the SFSM

When electrodes are first lowered into neural tissue, the elec-
trode tip may not lie in electrically active tissue. The SFSM
starts in the spike search state (see numbered states in Fig-
ure 4), whose goal is to find an electrically active tissue re-
gion. In this state, the electrode moves in increments of�search

(�20 �m) until a sufficient number of spikes are detected in
the interval Tk (according to a minimum firing rate set before
the experiment), at which point the SFSM transitions to the
gradient search state. The gradient search state seeks to de-
termine whether a viable SNR curve can be constructed. Ob-
servations of the SNR are made at regular intervals of �sample

(�10 �m) until k0 observations are completed (we use k0 � 3
in our experimental studies), at which point the optimization
procedure of Section 3.3 determines the most likely order n
k
that fits the SNR observations. As described above, if n
k � 1
the electrode continues in steps of �sample (the SFSM stays
in the gradient search state). If n
k � 1, a potentially viable
SNR curve has been found (i.e. a nearby neuron can proba-
bly be isolated), the SFSM transitions to the isolate neuron
state.

As long as the SFSM remains in the isolate neuron state,
the algorithm described in Section 3.3 operates, updating the
SNR curve with new observations and moving the electrode
toward the estimated maximum. When the maximum of the
SNR curve is reached, the SFSM state transitions to the neuron
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Table 1. Key Intervals of the IQM.

Interval Definition Description

�3 � 3 � IQM Neuron is well isolated� immediately stop and declare isolation as further movement may
damage neuron.

�2 � 2 � IQM � � 3 Neuron is acceptably isolated, if maximum of SNR curve is reached.

�1 � 1 � IQM � � 2 Isolation quality is high enough to follow gradient, but not high enough for acceptable
isolation.

�0 IQM � � 1 Isolation quality is too low for reliable measurements� do not follow gradient for stochastic
optimization.

isolated state, but only if certain IQM conditions are also met
(see Section 3.4.2).

In the neuron isolated state, the electrode generally remains
stationary while the SNR is continually monitored over succes-
sive sampling intervals. Often, the dominant neuron will drift
away from the electrode (see Section 3.4.3), causing a decrease
in SNR. When the SNR drops below a percentage (typically
85%) of its value at the original isolation, the SFSM transi-
tions to the re-estimate gradient state in an attempt to reposi-
tion the electrode to maintain the high-quality isolation. The
re-estimate gradient state moves the electrode in increments
of �resample (�5 �m) to find a new gradient. In this state, the
electrode is first retracted, as neurons most commonly drift up
toward the electrode due to tissue decompression. Once a new
gradient is found, a transition is made to the re-isolate neuron
state, where the optimization procedure is again used to iso-
late the neuron. If, at any time in the re-estimate gradient or
re-isolate neuron states, the SNR reaches or exceeds the SNR
value obtained during the original isolation, the neuron iso-
lated state is triggered.

3.4.2. Role of the IQM

The IQM strongly affects the SFSM state transitions. First, to
transition from isolate neuron to neuron isolated state (when
the SNR curve maximum is reached), the IQM value must be
sufficiently high (above a threshold � 2) to consider the domi-
nant neuron’s signals distinguishable from those of other neu-
rons. Otherwise, the dominant neuron’s cell body is likely too
far from the electrode’s path to provide a good isolation, and
thus the SFSM transitions to the gradient search state in or-
der to find another suitable neuron. Second, a transition to the
neuron isolated state will occur from any SFSM state when the
IQM is very high (above � 3), even if the SNR curve peak has
not been reached. In this case, the neuron probably lies close
to or on the electrode’s path, and continued advancement to
possibly improve the SNR is not worth the risk of damaging
the neuron.

Finally, below and IQM threshold � 1, the isolation of the
dominant neuron is of such poor quality that estimates of its

SNR cannot be trusted. In such cases, the SFSM transitions to
the gradient search state, starting a search for a new neuron.
In summary, the thresholds described above divide the IQM
range into four distinct intervals ��l�3l�1, listed in Table 1.

3.4.3. Other Challenges and Related SFSM Transitions

In addition to the challenges described above, several other
practical difficulties commonly arise in extracellular recording
experiments. Most of these issues are well known to practicing
electrophysiologists but have not been systematically reported
or studied. The appendix provides interested readers with the
details of such challenges and the SFSM components that ad-
dress them.

4. A Robotic Multi-electrode Microdrive
Prototype

This section presents a mesoscale robotic microdrive mecha-
nism that can finely position electrodes in neural tissue using
the control algorithm described above, a preliminary version
of which was described by Cham et al. (2006). While the con-
trol algorithm described above has been used to automate other
microdrive mechanisms, the mechanism presented in this sec-
tion has been specifically designed as a testbed for this ap-
proach, and as a means to develop the specifications for fu-
ture miniaturized implantable devices. The current design is
also immediately useful for neuroscience experiments where a
small microdrive is desired (e.g., allowing fewer restraints on
the subject’s head).

4.1. Goals and Challenges

Our design is driven primarily by the desire to use a micro-
drive in both acute and semi-chronic (that is, lasting for days
or weeks at a time) experiments, although only acute results
are presented in this paper. In order to more easily integrate
into current electrophysiological experiments, the microdrive
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Fig. 5. Photograph of (D) our robotic microdrive prototype
alongside three commercial microdrives that have been auto-
mated by our control system (see Section 3): (A) FHC� (B)
Thomas Recording� (C) NAN Instruments. A pencil (�18 cm)
is included for scale.

should affix to a standard cranial recording chamber used in
non-human primate research, but still allow the animal subject
free movement and comfort without significant risk of injury.
These requirements imply a smaller size and mass than can
be obtained from commercial microdrives (see Figure 5). The
necessary compactness of the electrical pathways can increase
noise and interference in the recorded signal, and the size limi-
tations also restrict the number of actuators, and hence record-
ing electrodes, that can be packaged in the device. The device
must be biocompatible and secure against leaks and impacts.
The interior of the cranial chamber must be sealed from debris
(and the fingers of the animal subject). To enable a variety of
research objectives, it must be possible to insert the electrodes
over a range of locations within the recording chamber in order
to explore multiple brain areas and perhaps to avoid damaging
an area by repeatedly piercing the same tissue.

4.2. Design

Figure 6 shows a schematic diagram of the robotic microdrive
mechanism. The microdrive’s main body encases three piezo-
electric linear actuators and provides mountings for an elec-
trode guide tube and a circuit board. The actuators and their
associated controllers (Klocke Nanotechnik, Germany) oper-
ate on an impulse drive principle that provides both high preci-
sion (sub-micrometer position steps) and long range of motion
(about 5.6 mm). This range of motion is sufficient to reach the
target cortical regions of many acute electrophysiology exper-
iments.

Each linear actuator moves a carrier, to which the elec-
trodes are attached both electrically and mechanically. The
platinum–iridium electrode wires (Alpha Omega Co., USA)

Fig. 6. Exploded view of the electrode microdrive structure.

Fig. 7. (a), (b) Photos of the robotic microdrive� (c) detail of
the guide tube with electrodes.

are insulated with glass along their length (except at the record-
ing tip and the back end). Each electrode is loaded tail-first
through the guide tube and corresponding carrier, and then
screwed to the carrier. The electrode signals are routed to the
circuit board (and subsequently by a connector to an off-board
amplifier and digitizing computer) via flexible polyimide-
coated copper strips. Hall-effect sensors mounted on the circuit
board measure electrode depth with 1 �m precision.

The body assembly is held to a recording chamber adapter
via a shaft. Rotation of the body assembly around the main
shaft axis, combined with rotation of the chamber adapter on
the chamber rim, places the guide tubes over any location
within a 12-mm diameter circular area inside the chamber. Af-
ter setting the transverse guide tube position within the cham-
ber, the microdrive is lowered via the vertical screw until the
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Fig. 8. Prototypical path to neuron isolation [NAN drive]. (a) The SFSM state, dominant neuron SNR and IQM, and electrode
depth over time, with detail on three selected time steps. Each step’s detail shows spike waveforms and their PCA representations
(using the same axis scales). 2-sigma ellipses in PCA basis designate spike clusters, which are labeled by the generating neuron�
the cluster with the bold letter is considered the dominant neuron, for which the SNR and IQM are shown above. (b) SNR curve
for the same time period: SNR versus electrode position, with algorithm time step (k) labels.

guide tube pierces the dura. The stainless steel guide tube pro-
tects the fragile electrodes (see Figure 7) during this process.
Dura penetration is a delicate manual procedure, as advanc-
ing the guide tube too far can damage brain tissue. A verti-
cal flange with millimeter rulings aids the experimenter, as
well as tactile feedback through the lead screw. Teflon bear-
ings on each shaft reduce friction and provide device stability.
Once the guide tube has pierced the dura, the electrodes are
deployed with their position determined by the algorithms de-
scribed above.

4.3. Manufacturing

The microdrive was manufactured using stereolithography
(SLA). As processes such as SLA enable complex geometries
to be made as one solid piece, this fabrication approach min-
imized the number of parts needing to be fastened and sealed
to assemble the system. Other advantages include the ability
to custom-modify each device to fit a particular animal sub-
ject. However, the polymers used in standard SLA processes

are not biocompatible. To provide biocompatibility, the fabri-
cated parts are coated with a 20 �m layer of Parylene, a US
Pharmacy class-VI implantable material that can be deposited
using room-temperature low-pressure chemical vapor deposi-
tion. The final assembled prototype weighs 26.1 g.

The microdrive presented in this paper offers significant
improvements over a first-generation prototype (Cham et al.
2005). The newer prototype’s design reduces (by more than
half) the time needed for electrode loading and device cleanup.
Second, the design increases ease and reliability of dura pen-
etration owing to improved visual and tactile feedback. Third,
the use of SLA parts increased robustness to breakage and
leakage of biological fluids, and made the microdrive compo-
nents easier to repair, replace, and also revise. Finally, the new
design reduced total device weight by nearly one-half, primar-
ily owing to the elimination of metal parts. Taken together,
these solutions to practical challenges have enabled our minia-
ture electrode microdrive to overcome issues of usability and
flexibility, which are key barriers to adoption of such technol-
ogy within the electrophysiology community.
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Fig. 9. Alternative transitions to neuron isolated [CIT drive]: (a) isolation by IQM� (b) a re-isolation process. See plot conventions
in Figure 8(a).

5. Experimental Results

This section demonstrates our approach in macaque pari-
etal cortex. These data sets were obtained in acute record-
ing sessions, with the microdrive affixed to a standard cra-
nial chamber (see Section 2) and autonomously controlled
by our electrode positioning algorithm. Signals, recorded by
glass-insulated metal electrodes of approximately 1.5 M� im-
pedance at 1 kHz, were amplified and filtered (Plexon, Inc.)
and then interfaced to the controlling computer via an analog-
to-digital data acquisition card (National Instruments).

As noted earlier, our algorithm has been designed to inter-
face with a variety of electrode microdrives, essentially robo-
tizing these devices. We include data obtained from a micro-
drive manufactured by NAN Instruments as well as from our
microdrive presented in Section 4 (corresponding figures are
respectively labeled [NAN drive] and [CIT drive]). We first
provide a detailed look at the “isolation” process, and then con-
sider algorithm performance over a broader time scale.

5.1. Neuron Isolation Process

Figure 8(a) summarizes algorithm behavior and recording
quality during transitions through the prototypical SFSM path

from spike search through neuron isolated, as the SNR curve is
adaptively estimated and maximized. This plot displays elec-
trode depth, the IQM and SNR metrics of the dominant neuron,
and the state of the SFSM for 12 consecutive algorithm cycles,
where each cycle consists of 10 seconds of recording, followed
by about 25 seconds for analysis and electrode movement.
Also, the recorded spike waveforms and their two-dimensional
PCA projections are shown for selected time steps. The corre-
sponding SNR curve is presented in Figure 8(b), where the
horizontal axis represents electrode depth u.

After spikes are found at step k � 2, a positive gradient is
found at step k � 4, and then the SNR curve is constructed,
with the maximum reached by k � 10. The SFSM waits one
cycle for confirmation before transitioning to neuron isolated
at k � 11. Note that the spike waveform amplitudes are clearly
improved by the electrode movement during steps k � 2 to
k � 11. Also, the algorithm has tracked neuron “A” in PCA
space. The algorithm continues to optimize the dominant neu-
ron’s signal quality, even though a sparsely firing neuron with
slightly higher SNR is later identified (as seen in the detail of
k � 11), since this is the neuron to which the SNR curve be-
longs and it is providing a strong signal.

Figure 9(a) shows data from a different representative ex-
periment to illustrate an alternative transition to neuron iso-
lated, as the signals of the dominant neuron invoke a jump in
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Fig. 10. SFSM mode, SNR, IQM, and electrode depth over
time on four simultaneously operated electrodes during an
acute recording session [NAN drive].

the IQM to interval �3 in Table 1 (at k � 7, confirmed at
k � 8). By viewing the spike waveforms, it is clear a strong
new neuronal signal appears at step k � 7. Note that this tran-
sition was not triggered during the maximization of a SNR
curve. The transition to neuron isolated bypassed the isolate
neuron state completely. This figure also presents an example
where gradient search does not identify a positive SNR slope
(from k � 2 to k � 6) and so does not transition to isolate neu-
ron. Figure 9(b) shows why a re-isolation pathway is necessary
in the SFSM. Here, a strong isolation has been achieved prior
to k � 1, and, although the electrode is held stationary, by step
k � 6 the dominant neuron’s SNR has drastically decreased,
presumably due to tissue relaxation. The algorithm detects this
drop and retracts the electrode to attempt re-isolation. During
the retraction process, the signal SNR reaches a level equiv-
alent to the original isolation and thus the SFSM returns to
neuron isolated, having retracted about 20 �m.

5.2. Maintaining Isolations over Time

In this section we consider algorithm performance over
broader time scales. For convenience of display and discus-
sion, the states of the SFSM are aggregated into three modes:

Table 2. Performance Metrics for One Month of Algorithm
Use.

Electrode-hours under autonomous control 153

Percentage of time with neuron isolated 56%

Percentage of time attempting to isolate 32%

Percentage of time attempting to re-isolate 12%

Number of isolations per electrode per day
lasting at least 30 minutes 1.2

Number of isolations per electrode per day
lasting at least 60 minutes 0.65

isolate, which includes spike search, gradient search, and iso-
late neuron� isolated, equivalent to neuron isolated� and re-
isolate, consisting of re-estimate gradient and re-isolate neu-
ron.

Figure 10 provides the SFSM mode, SNR, IQM, and elec-
trode depth for four simultaneously operated electrodes, rep-
resenting scientific recording sessions from a particular day.
Here, electrode A represents a nearly ideal case wherein a neu-
ron is deemed to be isolated throughout the recording. The
other electrodes show more typical cases: the algorithm first
seeks neuronal signals, builds the SNR curve, isolates a neu-
ron, and then intermittently readjusts electrode position to re-
isolate the neuron. While electrode B does not find a stable
isolation until about 80 minutes into the session, advancing
nearly 500 �m before achieving, it also holds an isolation for
the majority of the recording session.

Figure 11 summarizes the evolution of the algorithm’s op-
erating modes during 16 consecutive recording sessions, rep-
resenting all algorithms used in one particular calendar month
by a neurophysiologist. Each of the 16 sets of three or four bars
represents all electrodes used on that day, in a manner similar
to Figure 10, but without the line plots. Note that the recording
sessions lasted for varying lengths of time, and missing bars in-
dicate that the electrode was not used that day7. Some simple
performance metrics for this data set are provided in Table 2.
Of the trials that spend 75% or more time in “attempting to
isolate”, the time in this mode is broken down into: 64% in
spike search� 27% in gradient search� and 8% in isolate neu-
ron. This indicates that these sessions are unproductive pri-
marily due to a lack of activity along the electrode’s path (no
detected spikes), as the electrode was placed in electrically in-
active, or weakly active, neural tissue.

7. Days with missing bars typically indicate a broken electrode. Bars of vary-
ing length correspond to recording sessions where: (a) the electrode exhausted
its range (and thus it was stopped and withdrawn) without finding a useful
signal� (b) an electrode wire broke� or (c) the scientific goals of that recording
were met, and the recording was discontinued by the neurophysiologist.
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Fig. 11. SFSM mode for 16 consecutive recording sessions from one calendar month of algorithm use, typically operating four
electrodes per day [NAN drive]. Length of session varies by day.

6. Conclusion and Future Work

In this paper we have described a paradigm for autonomous
control of neural recording electrodes. The core of the con-
trol system consists of several algorithms within a hierarchical
structure to process neuronal signals, optimize signal quality,
and address practical recording challenges. This control sys-
tem has been used to automate several different existing micro-
drives. We also presented a novel microdrive design intended
as a mesoscale testbed for this control system. Experiments in
primate cortex have validated our approach in acute settings.
Beyond the results presented in Section 5.2, we note anecdo-
tally that our control system has been used to autonomously
control electrode movement for over 1,000 recording hours,
achieving and maintaining hundreds of cell isolations in four
different experimental facilities and multiple animal subjects.
As human performance in neuron isolation has not been well
characterized, a comparison between the algorithm and a hu-
man operator is not readily achieved, and would be compli-
cated by the variability in recording quality across electrodes,
areas of electrode insertion, recording hardware, and other fac-
tors.

We envision two primary future applications of this work.
First, our results to date support the use of this technology to
automate many aspects of the acute cortical recordings that
are routinely carried out by neurophysiologists. In practice, a
single neurophysiologist can at best manually control three to
five electrode positions simultaneously during an acute record-
ing experiment. However, multi-electrode recordings involv-
ing dozens of electrodes are of increasing scientific interest.
By automating many of the manually laborious neural record-
ing processes our algorithms could enable a single researcher
to simultaneously manage a significantly larger number of
electrodes during an acute recording, while still maintaining
acceptable recording quality. In this way, our algorithm can
potentially increase the productivity of acute neurophysiologi-
cal experiments.

Second, we believe that our algorithms might enable im-
provements in future implantable neural interfaces used for
neuroprostheses. The ability to continually and independently
reposition the electrodes of an implanted array would improve
the signal quality and yield of signals as compared with con-
ventional fixed geometry implanted arrays. Preliminary exper-
iments also suggest that the ability to continually reposition an
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electrode increases the neuroprosthetic “value” of the recorded
data, as compared with current fixed geometry arrays. In these
experiments, the “decoding efficiency” (roughly, the contri-
bution of each electrode’s signal to the task of decoding the
neuroprosthetic user’s intent) obtained with continually repo-
sitioned electrodes increased, relative to that of a fixed elec-
trode array, by a factor of two to three (Mulliken 2008). These
results imply that future chronic arrays with autonomous elec-
trodes may increase not only the number of electrodes record-
ing active neurons but also perhaps the “value” of the data ob-
tained by each electrode. Future improvements in the control
algorithm could even further increase this value by specifically
seeking out neurons whose activity is strongly correlated with
the objectives of the neuroprosthesis. However, further stud-
ies (which are feasible with the prototype presented in Sec-
tion 4) on the longer-term effects of electrodes’ frequent mo-
tion in cortical tissue are needed. In ongoing work we are de-
veloping new microelectromechanical system (MEMS) actu-
ators and fabrication methods to build implantable arrays of
many individually actuated recording micro-electrodes (Pang
et al. 2006).

Appendix: SFSM Mechanisms to Cope with
Additional Neural Recording Difficulties

Additional issues that typically arise in practical neural record-
ing situations, and the SFSM mechanisms that cope with each
issue, are described in this appendix.

Non-stationarity Owing to Tissue Decompression

At the start of an acute experiment, before the fragile elec-
trodes are advanced into the brain, protective “guide tubes”
(see Section 4) must puncture through the dura (the tough
protective layer between the brain and skull). This process
causes compression of brain tissue, and further compression
may occur as the electrodes travel to their desired depth. Once
the electrodes stop moving, the tissue decompresses over a
several-hour period. Smaller scale tissue drift can also oc-
cur following optimizing electrode movements: evidence of
such drift is observed after electrode movements of less than
100 �m. The SFSM accounts for this non-stationarity via the
“re-isolate” states and, in more drastic cases, by initiating a
search for a new neuron if necessary. Decompression effects
also factor into some of the issues described in the following.

Cell Death

The moving electrode can potentially impale a neuronal
cell body, causing its death. This possibility motivates the
definition of IQM interval �3 in Table 1. Alternatively, the

electrode must retract as tissue decompression may carry a
cell body towards a stationary electrode. As excessive SNR
is a good indication of this situation, the electrode is retracted
when the SNR value exceeds a maximum threshold, SNRmax.
The amount of retraction is proportional to the extent to which
the SNR exceeds SNRmax, thereby effecting a proportional
control loop. This BACK AWAY SFSM state may be invoked
at any time.

Discrete/Transient Events

The SFSM is designed to limit sensitivity to transient events
that may arise from a number of sources.


 Intermittent Neural Activity. Individual neurons may
lapse into brief periods of inactivity during which no
spikes are emitted. When the algorithm attempts to iso-
late (or has isolated) a neuron that becomes silent over
Tk , it may attempt to isolate a different neuron instead.
Often, the neuron will resume firing on subsequent in-
tervals.


 False Spikes. A variety of spurious noise artifacts may
lead to recorded signals that appear quite similar to
spikes. For example, abrupt movement of the subject can
cause the electrode to vibrate in its guide tube, yielding
transient artifacts. Electromagnetic fields emitted from
the electrode drive motors can also introduce spike-like
waveforms. These events may be falsely detected by the
spike detection module and clustered separately as a new
dominant target neuron, or clustered with the spikes of
the existing dominant neuron (grossly affecting the sig-
nal metrics for that sample).


 Uncommanded Electrode Shifts. Large subject move-
ments can induce sudden electrode displacement rela-
tive to the neural tissue, causing a well-isolated neuron
signal to disappear, or making it impossible to track neu-
rons across recording intervals.

Experience has shown that these and similar cases can be
handled via the use of a WAIT state (see Figure 4) that delays a
transition until the transition criteria is met for R consecutive
recording intervals (where R � 2 in our experiments). For
example, if a neuron were to cease spiking while the SFSM
is in isolate neuron, the SFSM will effectively hold the SNR
curve for �R � 1� additional cycles before transitioning back
to spike search.

Electrode–Tissue Mechanical Interactions

There is often a lag between electrode movements and the
ensuing changes in signal quality. Such hysteresis may arise
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from friction between the electrode tip and the surrounding
tissue, causing a stick–slip delay between an electrode move-
ment command and the actual displacement with respect to
nearby cell bodies. Hysteresis may also arise when the elec-
trode changes direction. It may be caused by the same fric-
tional effect, or the cell bodies of nearby neurons may be
shifted by the tissue displacement caused by the electrode’s
movement. For these and other sources of hysteresis and non-
stationarity, the signal quality is monitored as a function of
time as well as electrode depth. A consistent downward trend
in signal quality, regardless of the direction of electrode travel,
signifies that the signal quality estimates cannot be trusted.
In these cases, if the dominant neuron is acceptably isolated
(IQM � �2), then a transition to neuron isolated is invoked,
as the data trend suggests that further electrode movements
will not improve signal quality. If the signal quality trends
downward and the isolation is not acceptable (IQM � �1), the
SFSM triggers spike search in order to find a different neuron.
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