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Abstract—Algorithmically and energetically efficient computa-
tional architectures that operate in real time are essential for
clinically useful neural prosthetic devices. Such devices decode
raw neural data to obtain direct control signals for external
devices. They can also perform data compression and vastly
reduce the bandwidth and consequently power expended in wire-
less transmission of raw data from implantable brain-machine
interfaces. We describe a biomimetic algorithm and micropower
analog circuit architecture for decoding neural cell ensemble
signals. The decoding algorithm implements a continuous-time
artificial neural network, using a bank of adaptive linear filters
with kernels that emulate synaptic dynamics. The filters trans-
form neural signal inputs into control-parameter outputs, and
can be tuned automatically in an on-line learning process. We
provide experimental validation of our system using neural data
from thalamic head-direction cells in an awake behaving rat.

Index Terms—Brain-machine interface, Neural decoding,
Biomimetic, Adaptive algorithms, Analog, Low-power

I. INTRODUCTION

BRAIN-MACHINE interfaces have proven capable of

decoding neuronal population activity in real-time to

derive instantaneous control signals for prosthetics and other

devices. All of the decoding systems demonstrated to date have

operated by analyzing digitized neural data [1]–[7]. Clinically

viable neural prosthetics are an eagerly anticipated advance

in the field of rehabilitation medicine, and development of

brain-machine interfaces that wirelessly transmit neural data

to external devices will represent an important step toward

clinical viability. The general model for such devices has two

components: a brain-implanted unit directly connected to a

multielectrode array collecting raw neural data; and a unit out-

side the body for data processing, decoding, and control. Data

transmission between the two units is wireless. A 100-channel,

12-bit-precise digitization of raw neural waveforms sampled

at 30 kHz generates 36 Mbs−1 of data; the power costs in

digitization, wireless communication, and population signal

decoding all scale with this high data rate. Consequences of
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this scaling, as seen for example in cochlear-implant systems,

include unwanted heat dissipation in the brain, decreased

longevity of batteries, and increased size of the implanted unit.

Recent designs for system components have addressed these

issues in several ways. However, almost no work has been
done in the area of power-efficient neural decoding.

In this work we describe an approach to neural decoding

using low-power analog preprocessing methods that can han-

dle large quantities of high-bandwidth analog data, processing

neural input signals in a slow-and-parallel fashion to generate

low-bandwidth control outputs.

Multiple approaches to neural signal decoding have been

demonstrated by a number of research groups employing

highly programmable, discrete-time, digital algorithms, im-

plemented in software or microprocessors located outside the

brain. We are unaware of any work on continuous-time analog

decoders or analog circuit architectures for neural decoding.

The neural signal decoder we present here is designed to

complement and integrate with existing approaches. Optimized

for implementation in micropower analog circuitry, it sacrifices

some algorithmic programmability to reduce the power con-

sumption and physical size of the neural decoder, facilitating

use as a component of a unit implanted within the brain.

Trading off the flexibility of a general-purpose digital system

for the efficiency of a special-purpose analog system may be

undesirable in some neural prosthetic devices. Therefore, our

proposed decoder is meant to be used not as a substitute for

digital signal processors but rather as an adjunct to digital

hardware, in ways that combine the efficiency of embedded

analog preprocessing options with the flexibility of a general-

purpose external digital processor.

For clinical neural prosthetic devices, the necessity of highly

sophisticated decoding algorithms remains an open question,

since both animal [3], [4], [8], [9] and human [5] users of even

first-generation neural prosthetic systems have proven capable

of rapidly adapting to the particular rules governing the control

of their brain-machine interfaces. In the present work we focus

on an architecture to implement a simple, continuous-time ana-

log linear (convolutional) decoding algorithm. The approach

we present here can be generalized to implement analog-

circuit architectures of general Bayesian algorithms; examples

of related systems include analog probabilistic decoding circuit

architectures used in speech recognition and error correcting

codes [10], [11]. Such architectures can be extended through

our mathematical approach to design circuit architectures for

Bayesian decoding.
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II. A BIOMIMETIC ADAPTIVE ALGORITHM FOR

DECODING NEURAL CELL ENSEMBLE SIGNALS

In convolutional decoding of neural cell ensemble signals,

the decoding operation takes the form

�M(t) = W(t) ◦ �N(t) (1)

Mi(t) =
n∑

j=1

Wij(t) ◦ Nj(t); i ∈ {1, . . . , m}, (2)

where �N(t) is an n-dimensional vector containing the neural

signal (n input channels of neuronal firing rates, analog signal

values, or local field potentials, for example) at time t; �M(t) is

a corresponding m-dimensional vector containing the decoder

output signal (which in the examples presented here corre-

sponds to motor control parameters, but could correspond as

well to limb or joint kinematic parameters or to characteristics

or states of nonmotor cognitive processes); W is a matrix of

convolution kernels Wij(t) (formally analogous to a matrix of

dynamic synaptic weights), each of which depends on a set of

p modifiable parameters, W k
ij , k ∈ {1, . . . , p}; and ◦ indicates

convolution. Accurate decoding requires first choosing an

appropriate functional form for the kernels and then optimizing

the kernel parameters to achieve maximal decoding accuracy.

Since the optimization process is generalizable to any choice

of kernels that are differentiable functions of the tuning pa-

rameters, we discuss the general process first. We then explain

our biophysical motivations for selecting particular functional

forms for the decoding kernels; appropriately chosen kernels

enable the neural decoder to emulate the real-time encoding

and decoding processes performed by biological neurons.

Our algorithm for optimizing the decoding kernels uses

a gradient-descent approach to minimize decoding error in

a least-squares sense during a learning phase of decoder

operation. During this phase the correct output �̂M(t), and

hence the decoder error �e(t) = �M(t) − �̂M(t), is available

to the decoder for feedback-based learning. We design the

optimization algorithm to evolve W(t) in a manner that

reduces the squared decoder error on a timescale set by the

parameter τ , where the squared error is defined as

E(W(t), τ) =
∫ t

t−τ

|�e(u)|2du (3)

=
m∑

i=1

∫ t

t−τ

|�ei(u)|2du ≡
m∑

i=1

Ei, (4)

and the independence of each of the m terms in Equation

4 is due to the the independence of the m sets of np
parameters W k

ij , j ∈ {1, . . . , n} k ∈ {1, . . . , p} associated

with generating each component Mi(t) of the output. Our

strategy for optimizing the matrix of decoder kernels is to

modify each of the kernel parameters W k
ij continuously and in

parallel, on a timescale set by τ , in proportion to the negative

gradient of E(W(t), τ) with respect to that parameter:

−�∇k
ijE(W(t), τ) ≡ − ∂E

∂W k
ij

(5)

= −
m∑

l=1

∫ t

t−τ

du

⎧⎨
⎩2

⎛
⎝Ml(u) −

n∑
j=1

Wlj(u) ◦ Nj(u)

⎞
⎠

×
(
−∂Wij(u)

∂W k
ij

◦ Nj(u)

)}
(6)

=2
m∑

l=1

∫ t

t−τ

el(u)

(
∂Wij(u)

∂W k
ij

◦ Nj(u)

)
du. (7)

The learning algorithm refines W in a continuous-time fashion,

using −�∇E(t) as an error feedback signal to modify W(t),
and incrementing each of the parameters W k

ij(t) in continuous

time by a term proportional to −�∇k
ijE(W(t)) (the propor-

tionality constant, ε, must be large enough to ensure quick

learning but small enough to ensure learning stability). If W(t)
is viewed as an array of linear filters operating on the neural

input signal, the quantity −�∇k
ijE(W(t), τ) used to increment

each filter parameter can be described as the product, averaged

over a time interval of length τ , of the error in the filter output

and a secondarily filtered version of the filter input. The error

term is identical for the parameters of all filters contributing

to a given component of the output, Mi(t). The secondarily

filtered version of the input is generated by a secondary

convolution kernel,
∂Wij(u)

∂W k
ij

, which depends on the functional

form of each primary filter kernel and in general differs for

each filter parameter. Figure 1 shows a block diagram for an

analog circuit architecture that implements our decoding and

optimization algorithm.
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Fig. 1: Block diagram of a computational architecture for

linear convolutional decoding and learning.

Many functional forms for the convolution kernels are both

theoretically possible and practical to implement using low-

power analog circuitry. Our approach has been to emulate
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biological neural systems by choosing a biophysically inspired

kernel whose impulse response approximates the postsynaptic

currents biological neurons integrate when encoding and de-

coding neural signals in vivo [12]. Combining our decoding

architecture with the choice of a first-order low-pass decoder

kernel enables our low-power neural decoder to implement a

biomimetic, continuous-time artificial neural network. Numer-

ical experiments have also indicated that decoding using such

biomimetic kernels can yield results comparable to those ob-

tained using optimal linear decoders [13]. But in contrast with

our on-line optimization scheme, optimal linear decoders are

computed off-line after all training data have been collected.

We have found that this simple choice of kernel offers effective

performance in practice, and so we confine the present analysis

to that kernel.

Two-parameter first-order low-pass filter kernels account for

trajectory continuity by exponentially weighting the history of

neural inputs:

Wij =
Aij

τij
e
− t

τij , (8)

where the two tunable kernel parameters are W k=1
ij = Aij ,

the low-pass filter gain, and W k=2
ij = τij , the decay time over

which past inputs �N(t′), t′ < t, influence the present output

estimate �M(t) = W ◦ �N(t). The filters used to tune the low-

pass filter kernel parameters can be implemented using simple

and compact analog circuitry. The gain parameters are tuned

using low-pass filter kernels of the form

∂Wij(t)
∂W k=1

ij

=
1
τij

e
− t

τij , (9)

while the time-constant parameters are tuned using band-pass

filter kernels:

∂Wij(t)
∂W k=2

ij

=
Aij

τ2
ij

e
− t

τij

(
t

τij
− 1
)

. (10)

When decoding discontinuous trajectories, such as se-

quences of discrete decisions, we can set the τij to zero,

yielding

Wij(t) = W k=1
ij δ(t) = Aijδ(t). (11)

Such a decoding system, in which each kernel is a zeroth-

order filter characterized by a single tunable constant, performs

instantaneous linear decoding, which has successfully been

used by others to decode neuronal population signals in the

context of neural prosthetics [5], [14]. With kernels of this

form, W(t) is analogous to matrices of synaptic weights

encountered in artificial neural networks, and our optimization

algorithm resembles a ‘delta-rule’ learning procedure [15].

III. RESULTS

Head direction was decoded from the activity of n = 6
isolated thalamic neurons according to the method described

in [16]. The adaptive filter parameters W
(p)
ij ∈ {Aij , τij} were

implemented as micropower analog circuits and simulated in

SPICE; they were optimized through gradient descent over

training intervals of length T during which the decoder error,

ei(t) = Mi(t)− M̂i(t) (where �M(t) = (cos (θ(t)), sin (θ(t)))
and θ denotes the head direction angle), was made available

to the adaptive filter in the feedback configuration described

in Section II for t ∈ [0, T ]. Following these training intervals

feedback was discontinued and the performance of the decoder

was assessed by comparing the decoder output �M(t) with

�̂M(t) for t > T .

Figure 2 compares the output of the decoder to the measured

head direction over a 240 s interval. The filter parameters were

trained over the interval t ∈ [0, T = 120] s. The figure shows

�M(t) (gray) tracking �̂M(t) (black) with increasing accuracy

as training progresses, illustrating that while initial predictions

are poor, they improve with feedback over the course of the

training interval. Feedback is discontinued at t = 120 s.

Qualitatively, the plots on the interval t ∈ [120, 240] s illustrate

that the output of the neural decoder reproduces the shape of

the correct waveform, predicting head direction on the basis

of neuronal spike rates.

IV. DISCUSSION

Simulations using basic circuit building-blocks for the mod-

ules shown in Figure 1 indicate that a single decoding module

(corresponding to an adaptive kernel Wij and associated

optimization circuitry, as diagrammed in Figure 1) should

consume approximately 54 nW from a 1 V supply in 0.18 μm

CMOS technology and require less than 3000 μm2. Low

power consumption is achieved through the use of subthresh-

old bias currents for transistors in the analog filters and

other components. Analog preprocessing of raw neural input

waveforms is accomplished by dual thresholding to detect

action potentials on each input channel and then smoothing the

resulting spike trains to generate mean firing rate input signals.

SPICE simulations indicate that each analog preprocessing

module should consume approximately 241 nW from a 1 V

supply in 0.18 μm CMOS technology. A full-scale system with

n = 100 neuronal inputs comprising �N(t)) and m = 3 control

parameters comprising �M(t) would require m × n = 300
decoding modules and consume less than 17 μW in the

decoder and less than 25 μW in the preprocessing stages.

Direct and power-efficient analysis and decoding of analog

neural data within the implanted unit of a brain-machine

interface could also facilitate extremely high data compression

ratios. For example, the 36 Mbs−1 required to transmit raw

neural data from 100 channels could be compressed more

than 100, 000-fold to 300 bs−1 of 3-channel motor-output

information updated with 10-bit precision at 10 Hz. Such dra-

matic compression brings concomitant reductions in the power

required for communication and digitization of neural data.

Ultra-low-power analog preprocessing prior to digitization of

neural signals could thus be beneficial in some applications.

V. CONCLUSIONS

The algorithm and architecture presented here offer a

practical approach to computationally efficient neural sig-

nal decoding, independent of the hardware used for their
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Fig. 2: Continuous decoding of head direction from neuronal spiking activity.

implementation. While the system is suitable for analog or

digital implementation, we suggest that a micropower analog

implementation trades some algorithmic programmability for

reductions in power consumption that could facilitate implan-

tation of a neural decoder within the brain. In particular, circuit

simulations of our analog architecture indicate that a 100-

channel, 3-motor-output neural decoder can be built with a

total power budget of approximately 43 μW. Our work could

also enable a 100, 000-fold reduction in the bandwidth needed

for wireless transmission of neural data, thereby reducing to

nanowatt levels the power potentially required for wireless

data telemetry from a brain implant. Our work suggests

that highly power-efficient and area-efficient analog neural

decoders that operate in real time can be useful components

of brain-implantable neural prostheses, with potential applica-

tions in neural rehabilitation and experimental neuroscience.

Through front-end preprocessing to perform neural decoding

and data compression, algorithms and architectures such as

those presented here can complement digital signal processing

and wireless data transmission systems, offering significant

increases in power and area efficiency at little cost.
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