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Recent studies using neuroprobes indicate that it is highly desirable for the probes to have moving (both 
forward and backward) capability so that it can track a specific neuron in the brain, because live neurons do 
move around. However, for brain use, the movable neuroprobes need to be powerful (to penetrate brain 
tissue), high density, low power, bidirectional and latchable (without power). We have since proposed to 
develop electrolysis-based actuators for the movable probes. This work presents our initial work on a large-
force bidirectional electrolysis actuator fabricated with MEMS technology. Up to 100µm (comparable to the 
averaged neuron-to-neuron distance) of movement was achieved by a 3-mm diaphragm. The bidirectional 
movement can be linearly controlled by small currents. The actuator is proved latchable. Overall the results 
support the promising aspects of electrolysis-based movable neuroprobes. 
 
The actuator schematic is in Figure 1, where two neighboring chambers are etched in the silicon chip using 
DRIE. The central chamber is for hydrogen (generated by electrolysis), and the outside for oxygen. The 
chamber volume ratio is 2:1 assuming stoichiometric electrolysis. These two chambers are separated by a 
high-aspect-ratio ring-shaped wall. On the outside, two channels are used to fill electrolyte into the chambers. 
Electrolysis electrodes are made on a separate glass chip, which is later bonded to the silicon top using 
polymers. The central silicon membrane (with a thickness of 40µm) deflects under the pressure generated by 
electrolysis. Separating oxygen and hydrogen in different chambers prevents the recombination of them; 
therefore, the diaphragm can maintain its position even the electrolysis is off, hence latchable. To achieve 
bidirectional movement, we can reverse the electrolysis polarity. If the electrolysis is reversed, the newly 
generated gases will mix and the oxygen and hydrogen recombine (in the presence of platinum catalyst), but 
only to the controlled amount defined by the reversed electrolysis.  
 
The process for the silicon top chip (Figure 2a) has a two-level DRIE etching. The deep etching is for the gas 
chambers. The shallow etching is to make conduction and electrolyte injection channels. A variety of actuator 
sizes have been made ranging from 400 to 3000µm (Figure 3). A Ti/Au layer is for the electrode on the glass 
chip (Figure 2b). Figure 4 shows the electrolysis performed by the electrode chips. Bonding polymer (either 
parylene or photoresist) is applied to bond the silicon top and the glass bottom chips (Figure 2c). The cross 
section of a completed device is showed in Figure 5. Filling the chambers with electrolyte is done by 
immersing them into the fluid under vacuum. This process works well as demonstrated by the fluorescence 
photogragh (Figure 6). A small amount of epoxy is then used to seal the electrolyte filling hole. Electrolysis 
tests are then performed on the actuators (Figure 7a). Figure 7b shows the deflections of diaphragm with 
different diameter under 5V voltage. The curves of electrolysis voltage vs. current for the devices with 
different sizes are shown in Figure 8a.  Note that actuator movement can be linearly controlled by a current 
(Figure 8b). The latchable and reversible movement is also demonstrated in Figure 8c-d. It is important to see 
that the diaphragm can hold the position without power (Figure 8c). Figure 8d then shows several cycles of 
bidirectional movements, proving our concept feasible. 
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Figure 3. SEM pictures of the actuator chambers.

Figure 6. Fluorescent microscope 
image of the liquid-filled chamber 

Figure 8.(a) Electrolysis voltage vs. current curve for the devices with 
different geometries. (b) Diaphragm deflection under different driving 
current. (c) Actuator’s latching capability. (d) Actuator’s reversing 
capability.
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Figure 4. (a) Electrodes of the actuator. (b) 
Electrolysis generated by the electrodes.
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Figure 5. SEM pictures of the cross section of 
the device. 
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Figure 1. Schematic view of the 
electrolysis-based actuator.
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Figure 2. Fabrication Flow.
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Figure 7. (a) Electrolysis in the actuator’s chamber. (b) 
The deflection of  different size actuators under 5V 
voltage. 
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