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Abstract

The cognitive neural prosthetic (CNP) is a very versatile method for
assisting paralyzed patients and patients with amputations. The CNP
records the cognitive state of the subject, rather than signals strictly re-
lated to motor execution or sensation. We review a number of high-level
cortical signals and their application for CNPs, including intention, mo-
tor imagery, decision making, forward estimation, executive function,
attention, learning, and multi-effector movement planning. CNPs are
defined by the cognitive function they extract, not the cortical region
from which the signals are recorded. However, some cortical areas may
be better than others for particular applications. Signals can also be ex-
tracted in parallel from multiple cortical areas using multiple implants,
which in many circumstances can increase the range of applications of
CNPs. The CNP approach relies on scientific understanding of the
neural processes involved in cognition, and many of the decoding algo-
rithms it uses also have parallels to underlying neural circuit functions.
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The number of patients suffering from some
form of paralysis in the United States alone has
been estimated to be from 1.7 million (U.S.
Dept. Health Human Serv. 1995) to 5.6 mil-
lion (Christopher & Dana Reeve Found. 2009).
Paralysis can result from spinal cord lesion
and other traumatic accidents, peripheral neu-
ropathies, amyotrophic lateral sclerosis, multi-
ple sclerosis, and stroke. Another 1.4 million
patients have motor disabilities due to limb
amputation (U.S. Dept. Health Human Serv.
1995). A majority of these patients still have suf-
ficiently intact cortex to plan movements, but
they are unable to execute them. Thus they are
candidates for assistance using cortical neural
prosthetics.
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Figure 1 shows the concept of cortical neu-
ral prosthetics generally, and cognitive neural
prosthetics (CNPs) more specifically. In this
particular case, the patient is shown to have a
spinal cord lesion, but a similar logic applies to
other forms of paralysis or to amputation. The
patient can still plan movements but cannot ex-
ecute them. Recordings can be made from mi-
croelectrode arrays in cortex. The implants not
only record the activity of populations of nerve
cells but also transmit these signals wirelessly
to external assistive devices. Implants can be
placed in a variety of areas, and they record the
intent or other cognitive variables of the sub-
ject. Decoding algorithms interpret the mean-
ing of the recorded signals. These algorithms
can be incorporated into hardware in the im-
plant or in the external devices. The decoded
neural signals are further transformed to pro-
vide control signals to operate assistive devices.
In the example in Figure 1, these devices can in-
clude robotic limbs, functional electrical stim-
ulation of otherwise paralyzed limbs for reani-
mation, wheelchair navigation, Internet access,
email, telephone and other forms of computer-
assisted communication, and the control of
the patient’s environment including television,
temperature control, and calls for assistance.
Elements of a cortical neural prosthetic, includ-
ing the electrodes, decoding algorithms, and as-
sociated electronics, are often referred to col-
lectively as a brain-machine interface (BMI).

In research applications, healthy monkeys
are used to test cortical prosthetics. Typically,
the animals have a permanently implanted ar-
ray of electrodes, similar to the case for hu-
man patients. The animals control an output
device with their thoughts and can do this with-
out eliciting movements. This process is of-
ten referred to as a brain-control task. It is
also called a closed-loop task since the ani-
mals receive feedback about their performance,
for instance, the movement of a cursor on
a computer screen controlled by their neural
activity.

Many studies have involved extracting
motor execution signals from motor cortex
(Carmena et al. 2003, Fetz 1969, Serruya et al.
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2002, Taylor et al. 2002). It was often observed
that the monkeys did not need to actually move
the limb to bring a cursor under brain control.
In terms of the current topic, this would con-
stitute cognitive control, in which brain signals
not directly related to executing a movement
can nonetheless be harnessed for the task. This
control can be derived from motor imagery,
planning, attention, decision making, or exec-
utive control, to name just a few of the cogni-
tive signals that are potentially useful for neu-
roprosthetics. The distinction is not the brain
location of the recording but rather the type of
signal that is being extracted (Andersen et al.
2004a). This being said, some brain areas will
no doubt be better sources of signals for partic-
ular neuroprosthetic applications. The special-
ization of different cortical areas is an advan-
tage for CNPs. For example, for mute patients
speech can potentially be decoded directly from
speech areas rather than using a letter board
and controlling a cursor from motor cortex.
CNPs can also take advantage of parallel de-
coding, in which implants are placed in multi-
ple cortical areas and different signals are de-
coded simultaneously. A prime example of this
parallel decoding is the application of CNPs to
complex, multi-effector movements, discussed
below.

Science as a Guide for Cognitive
Neural Prosthetics

One central element of neuroprosthetics is
engineering. Advanced statistical and signal-
processing techniques are commonly used to
optimize decoding algorithms as well as develop
algorithms that are adaptive. Such approaches
are essential to CNPs. However, CNPs also
benefit from the additional component of a
scientific understanding of the brain processes
being performed by the region(s) of record-
ing. This understanding extends to functional
neuroanatomy and network/circuit properties
that can guide the selection of recording sites
and the design and implementation of decod-
ing algorithms. The following sections high-
light examples that match cortical function, and

in some cases decoding algorithms, to particu-
lar cognitive neuroprosthetic applications.

INTENDED GOALS

Neural prosthetic applications have often used
trajectory signals to bring a cursor or a robotic
hand to a goal (Carmena et al. 2003, Serruya
et al. 2002, Taylor et al. 2002). This approach,
especially for cursor control, is similar to us-
ing a mouse to drag a cursor to a location on a
computer screen. However, many applications
would benefit from being able to rapidly indi-
cate a series of goals. One example would be the
rapid indication of letters on a letter board for
communication. Another would be to provide
a sequence of movements for a robotic limb to
ensure a more fluid programming of a string of
movements.

The primary motor cortex (MI1) contains
some goal information, but goal information is
strongly represented in the premotor and pos-
terior parietal cortex (Hatsopoulos et al. 2004,
Snyder et al. 1997) (Figure 2). This goal infor-
mation reflects the intent of the animal to make
a movement to the goal.

Gnadt & Andersen (1988) first demon-
strated intended eye movement signals in the
lateral intraparietal area (LIP) of the poste-
rior parietal cortex (PPC). Subsequent stud-
ies showed that neurons in the parietal reach
region (PRR) of PPC encode the intent to
make reach movements (Snyder et al. 1997).
A variety of experiments have demonstrated
intention-related activity that is not spatial at-
tention (Cui & Andersen 2007, Gail & Ander-
sen 2006, Quiroga et al. 2006, Scherberger &
Andersen 2007, Scherberger et al. 2005, Snyder
et al. 1998). These movement plans can be
formed but then cancelled without executing
a movement; therefore, they do not reflect mo-
tor execution but rather the higher-level plan
to move (Andersen & Buneo 2002, Bracewell
etal. 1996, Snyder et al. 1998). The more high-
level, abstract nature of the intention signals is
also evident from the finding that the intended
reach activity in PRR is coded in visual rather
than limb coordinates (Batista et al. 1999).

www.annualreviews.org o Cognitive Neural Prosthetics

Brain-machine
interface (BMI):

a device that records
neural activity, decodes
these signals, and uses
the decoded signals for
operating machines

Brain-control task:

a task in which the
subject uses only
neural signals to
control an external
device

Cognitive signals:
neural activities related
to high-level cognitive
function (e.g.,
intention, planning,
decision making,
executive function,
thoughts, concepts,
and speech)

M1: primary motor
cortex

LIP: lateral
intraparietal area

PPC: posterior
P
parietal cortex

PRR: parietal reach
region

171



Annu. Rev. Psychol. 2010.61:169-190. Downloaded from arjournals.annualreviews.org

by California Institute of Technology on 01/03/10. For personal use only.

PMd: dorsal
premotor cortex

172

Putative human homologues of LIP and
PRR have been identified in humans using
functional magnetic resonance imaging (fMRI)
experiments (Astafievetal. 2003, Connolly etal.
2003, Filimon etal. 2009). Interestingly, electri-
cal stimulation of the posterior parietal cortex
in human patients invoked the conscious inten-
tion to move various body parts even though
no movements resulted from the stimulation
(Desmurget et al. 2009). Whereas it was pos-
sible to demonstrate intention-related activity
in monkey PPC neurons, this study shows that
the conscious awareness of intention also arises
with increased PPC activity.

Musallam et al. (2004) demonstrated decod-
ing of four or eight goal locations from ar-
ray recordings from the PRR of PPC and the
dorsal premotor cortex (PMd) in frontal cortex
(Figure 3A4). To emphasize the cognitive na-
ture of the signal, they decoded the persistent
activity that results when monkeys plan a move-
ment to a briefly cued location in space but
while withholding the execution of the move-
ment. This goal signal is decoded in the dark,
with no stimulus present and no movement be-
ing executed,; it is endogenously generated and
represents the movement thought or intent of
the animal. This intent can be decoded very
rapidly. If a 100 ms time segment was used for
decoding, itwas nearly as accurate as using a 900
ms time segment. Subsequent studies in PMd
showed that three goals could be decoded in
rapid succession (Santhanam et al. 20006).

Many natural movements are highly coordi-
nated concatenations of movement sequences
rather than single reaches as discussed above.
Frontal areas encode the parts of sequences
including the directions and order of move-
ments (Averbeck et al. 2006, Fujii & Graybiel
2003, Histed & Miller 2006, Lu & Ashe 2005,
Mushiake et al. 2006, Ninokura et al. 2003,
Ohbayashi et al. 2003, Tanji & Shima 1994).
An early study of PRR found that only the next
movement of a sequence is encoded, but the
task was complex and involved the canceling of
old plans and formation of new ones (Batista
& Andersen 2001). In a more direct test of se-
quential planning in PRR, it was found that
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the area represents simultaneously and in par-
allel the first and second goals in a sequence
of two movements (Baldauf et al. 2008). This
dual representation was present regardless of
whether the two movements were made rapidly
or slowly. A nearest-neighbor decoding algo-
rithm applied to the data revealed that the
sequence of planned movements could be de-
coded. This decoding was done during a delay
period in which there was no stimulus or move-
ment, again emphasizing the cognitive nature of
the signals encoding the sequence. Thus PRR
activity encodes simultaneously and in parallel a
sequence of movements, and this feature could
be utilized to provide for a more fluid operation
of output devices for prosthetic applications.

MOTOR IMAGERY

A basis of neural prosthetic control may be
motor imagery. The fact that primary motor
cortex cells can be trained to respond without
evoking a movement suggests that movements
can be imagined even from an area very close to
the final motor output (Fetz 2007, Hochberg
et al. 2006). Noninvasive studies using fMRI
have provided a picture of the circuits in-
volved in imagined movement. Motor imagery
activates a subset of the areas that are also
active during real movements, particularly
premotor areas in the frontal lobe and areas
in the posterior parietal cortex (Decety 1996,
Gerardin et al. 2000, Stephan et al. 1995)
(Glidden et al. 2005), and this activation can be
as large as that seen for real movements [with
the exception of motor cortex, which shows
much less activation for imagined compared to
real movements (Glidden et al. 2005)].
Another potential source of motor imagery
for prosthetic control is the mirror neuron.
Mirror neurons respond when a monkey makes
a movement and also when the monkey ob-
serves the experimenter making the same move-
ment (di Pellegrino et al. 1992, Fogassi et al.
2005, Gallese et al. 1996, Tkach et al. 2007).
It has been proposed that mirror neurons
form the basis of action understanding (Fogassi
et al. 2005). It is possible that mirror neurons
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may also be activated during internally gener-
ated, imagined movements. If this is the case,
and these cells also exist in human cortex,
they may provide a source of control of com-
plex and meaningful movements for prosthetics
applications.

DECISION MAKING

Many of the cortical areas that can produce con-
trol signals are also involved in action selection.
These areas represent the expected value or
utility of an action. Decision making is based on
choosing the alternative with the highest value.
In monkey experiments, the value is generally
appetitive and includes the type, amount, and
probability of reward. Many areas in the pari-
etal and frontal cortex which represent move-
ment plans also represent the expected value
of the planned action (Barraclough et al. 2004,
Campos et al. 2005, Hikosaka & Watanabe
2000, Kobayashi et al. 2002, Leon & Shadlen
1999, Matsumoto et al. 2003, Platt & Glimcher
1999, Schultz 2000, Shidara & Richmond 2002,
Sugrue et al. 2004, Tremblay & Schultz 2000).

Expected value can be decoded from PRR
recordings in both delayed reach and brain-
control tasks (Musallam et al. 2004). In the
latter, the monkey plans a movement but does
not execute it and instead uses the planning ac-
tivity to move a cursor to a goal on a computer
screen. During a session, one reward variable
(type, size, or probability) changed from trial
to trial. The cue size indicated on each trial
whether the animal would receive the preferred
or less-preferred reward for successful comple-
tion of the trial. The cue size was varied across
sessions so that a large cue represented a more
desirable or less desirable reward on different
days. In general, the anticipation of a preferred
reward led to a larger response and improved
spatial tuning. The increase in activity was un-
likely to be due to increased attention given that
no increase in activity was seen when the non-
preferred reward was aversive (saline solution).
Opverall, the cells carried more information for
preferred reward expectation. Parallel decoding
showed that expected reward and spatial loca-

tion could be decoded simultaneously. More-
over, since the cells carried more information
about spatial location when higher reward was
expected, the decoding performance for target
location was better in high-reward trials.

A practical advantage of the reward expec-
tation decoding results is that they provide in-
sight into the preferences and potentially the
mood of the patient. The first thing a doctor
asks a patient is, “How are you feeling?” On a
more general level, this study was the first to
show that a very high level cognitive signal, ex-
pected value, could be decoded in brain-control
trials. These results open the door to decod-
ing many complex cognitive signals including
speech, attention, executive control, and emo-
tion for prosthetics applications.

FORWARD MODELS

Numerous studies support the idea that the
brain constructs internal forward and inverse
models to control movement (Atkeson 1989,
Jordan & Rumelhart 1992, Kawato et al. 1987,
Wolpert et al. 1995). The forward model pre-
dicts the sensory consequences of a movement
by incorporating recent motor commands into
a model of the movement dynamics, thereby
predicting the upcoming state of the effector
(e.g., the limb). The inverse model produces
the motor commands necessary to achieve the
desired movement.

Efference copy, and by extension a forward
model, can be used to cancel the sensory effects
of one’s own movements (Andersen et al. 1987,
Bradley et al. 1996, Claxton 1975, Crowell
et al. 1998, Diedrichsen et al. 2005, Duhamel
et al. 1992, Haarmeier et al. 2001, Roy &
Cullen 2004, Royden et al. 1992, Shadmehr &
Krakauer 2008, Weiskran et al. 1971). Another
important feature of forward models is that
they remove the delays thatare present between
movements and the resulting sensory feedback.
When sensory feedback alone is used to cor-
rect movements online, these delays would nor-
mally lead to overcompensation and instability.
For example, the execution of a goal-directed
arm movement will result in visual signals that
will take approximately 90 ms (Raiguel et al.
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1999) and somatosensory signals that will take
20 to 40 ms (Allison et al. 1991) to reach senso-
rimotor cortex. Subsequent processing delays
for sensorimotor integration, motor command
generation, and execution result in delays of
more than 100 ms for somatosensory control
(Flanders & Cordo 1989) and over 200 ms for
visualmotor control (Georgopoulos et al. 1981,
Miall et al. 1993). However, by monitoring
the movement commands through an efference
copy of the command, the current state of the
arm can be estimated internally well in advance
of the late-arriving sensory information.

Kalman Filter

The forward model can also be incorporated
into an observer framework (Goodwin & Sin
1984, Miall & Wolpert 1996) (see Figure 4).

Sensorimotor Planning

The forward model derives an estimate of the
upcoming or current state of the limb. Sen-
sory events arriving later are integrated with
the forward model to update and refine the
estimate. This combination of the forward
model and sensory feedback is called the “ob-
server,” and for linear systems with additive and
Gaussian noise, the optimal observer is known
as a Kalman filter (Kalman 1960).

Studies in humans have suggested that the
observer may, at least in part, be located in the
PPC. Lesions of the PPC produce optic ataxia
in which patients have difficulty in locating and
reaching to targets (Balint 1909, Perenin &
Vighetto 1998, Rondot et al. 1977), in mak-
ing corrective movements (Grea et al. 2002,
Pisella et al. 2000), and in maintaining an es-
timate of the internal state of the arm (Wolpert
et al. 1998). Transcranial magnetic stimulation

Continuous Sensorimotor Control

Desired Inverse Motor Biomechanical
Trajectory l Model Controller @_ Plant
t
Sensory
el Processing
: Observer
— — e — e — T —
Fal
' | &, [
1
1 e |
initial ] [ Target I[sensory A Forward
state J | Location L Correction | Xk JT] Model I Yk
I
l proprio. = -30 ms, visual = -90 ms
Figure 4

Sensorimotor integration for reach planning and online control. Rounded boxes denote pertinent
sensorimotor variables, and computational processes are contained in the rectangular boxes. Prior to a reach,
an intended trajectory is formulated as a function of both the initial state of the arm and the desired
endpoint. An inverse model is used to determine a set of motor plans that will result in the desired trajectory.
Motor commands, #, are then issued (e.g., by primary motor cortex) and subsequently executed by muscle
activations (biomechanical plant hexagon). Following the movement onset, the state of the arm is continuously
monitored and corrected if necessary. Rapid online correction is made possible by the forward model, which
generates an anticipatory estimate of the next state of the arm, &, , as a function of the previous state and
efference copy. Sensory feedback refines the a priori estimate of the forward dynamics model (observer).
This a posteriori, current-state estimate, &, can then be evaluated to make corrections for subsequent motor

commands (after Desmurget & Grafton 2000).
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(TMS) over the PPC interferes with the correc-
tion of trajectories or adaptation to novel force-
fields (Della-Maggiore et al. 2004, Desmurget
et al. 1999). PPC lesions disrupt the mental
simulation of movement (Sirigu et al. 1996),
and a disruption is not seen with lesions of M1
(Sirigu et al. 1995), cerebellum (Kagerer et al.
1998), or basal ganglia (Dominey et al. 1995).
The movement durations are generally under-
estimated during simulation by these patients,
suggesting a disruption of the forward model.

Neurophysiological recording experiments
also suggest that a forward model may include
PPC. This part of cortex receives massive feed-
back projections from motor structures and in-
put from visual and somatosensory cortex and
thus is ideally situated for integrating effer-
ence copy and sensory signals (Andersen et al.
1985a, 1990; Goldman-Rakic 1998; Johnson
et al. 1996; Jones & Powell 1970). In an ex-
periment designed to investigate forward mod-
els in PPC, monkeys were trained in a joystick
task to move a cursor to targets either directly
or around obstacles (Mulliken et al. 2008b).
The obstacles afforded a more curved trajec-
tory (Figure 54). Neurons in the PPC not only
encoded the static goal of the movement end-
point, but also the dynamic heading angle of
the moving cursor. The timing of the dynamic
component was centered on zero lag (Figure
5B). Thus it was too late to represent the mo-
tor command and too early to be derived from
sensory input. Rather, it appears to represent
the current direction of cursor movement con-
sistent with a forward estimate. This direction
was approximately linear in space-time, indi-
cating that it encodes a mostly linear instan-
taneous trajectory. Similar dynamics have re-
cently been observed between hand kinematics
and neural activity in area 5 (Archambalut et al.
2009).

A subsequent experiment showed that this
forward estimate could be harnessed for neuro-
prosthetic applications (Mulliken et al. 2008a).
The trajectories of a cursor could be decoded
in joystick and brain-control tasks (Figure 5C
and 5D). In the latter, the neural activity moved
the cursor on the computer screen in real time.

A goal-based Kalman filter was also applied for
decoding, which used both the forward estimate
and the goal component of neural activity. This
decoding method was superior to other meth-
ods that did not use a combination of the goal
and trajectory information.

EFFECTOR SPECIFICITY AND
COORDINATED MOVEMENTS

So far, neural prosthetics applications have fo-
cused on single effector movements, for in-
stance a robotic limb or a cursor. However,
natural movements often involve several body
parts, especially for bimanual operations, hand-
eye coordination, and reach-to-grasp.

Cells in parietal and premotor areas show
response specificity for effectors (Figure 3B).
For instance, in the PPC there are cells spe-
cific for reaching, eye movements, and grasp
(Andersen et al. 1985a, 1990; Andersen &
Buneo 2002; Sakata et al. 1997; Snyder et al.
1997). These cells tend to be clustered into cor-
tical areas—saccade selectivity in lateral intra-
parietal (LIP) area, reach in PRR, and grasp
in the anterior intraparietal (AIP) area. A sim-
ilar clustering of specificity has been shown
in the frontal lobe, with saccades for the
frontal eye fields (FEFs) (Bizzi 1967, Bruce &
Goldberg 1985, Bruce et al. 1985), reach for
PMd (Wise 1985), and grasp for the ventral
premotor cortex (PMv) (Rizzollatti et al. 1994).
To date, closed-loop brain control for reach
has been shown in PRR and PMd (Carmena
et al. 2003, Mulliken et al. 2008a, Musallam
et al. 2004, Santhanam et al. 2006) and on-
line decoding for grasp in AIP and PMv
(Townsend et al. 2007), but not for eye move-
ments from FEF or LIP.

Reach-to-Grasp

A most natural extension of brain-control reach
is reach-to-grasp. One method of approach-
ing this problem would be to record from
the limb area and hand area of M1 (Velliste
et al. 2008). However, an alternative would be
to record from reach (PRR/PMd) and grasp
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areas (AIP/PMv) in parietal and premotor cor-
tex, where the movements are more abstractly
represented (Baumann et al. 2009). For in-
stance, cells in AIP and PMv represent the
shapes of objects and the hand shape needed
to grasp them (Baumann et al. 2009, Rizzollatti
etal. 1994, Sakata etal. 1997). Thus, single cells
can indicate the configuration of the hand and
would notrequire a large number of cells for the
different digits (as would perhaps be the case for
M1 recordings).

Bimanual Movements

There are very few investigations of the neural
mechanisms for bimanual movement. Most
early studies considered M1 to be involved
only in the control of the contralateral limb.
However, experiments in which monkeys
made bimanual movements showed that a
significant number of M1 cells responded to
ipsilateral movements, although less than the
contralateral limb (Donchin et al. 1998). When
comparing bimanual movements to single-limb
movements, most M1 cells showed significant
differences in activity, indicating that bimanual
interactions are extremely common. These
effects could not be accounted for by postural
differences between the single- and two-limb
tasks. The interactions were often quite
complex and included facilitation, suppression,
and even changes in preferred direction tuning
(Donchin et al. 1998, Rokni et al. 2003). The
supplementary motor area (SMA) contains
a large number of bimanual-responding
neurons and bimanual interactions (Donchin
et al. 1998). In PRR, a recent study found a
continuum of representations of the limb from
pure contralateral representation to bimanual
representation (Chang et al. 2008). These
studies indicate a high degree of coordination
between the limbs in parietal-frontal circuits
and open the possibility of being able to control
two limbs effectively in bimanual operations.

Hand-Eye Coordination
Recordings from eye movement areas may be

used for improving the decoding of reaches.
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This combination of recording from eye and
reach areas utilizes the fact that eye and hand
movements are coordinated and we look to
where we reach. Using eye position informa-
tion recorded from an external eye tracker
or estimated from neural activity, the success
for decoding reach targets can be improved
(Batista et al. 2008). Similarly, activity in
parietal and frontal areas indicates the focus of
attention. Attention is automatically attracted
to the target of a reach (Baldauf et al. 2006,
Deubel et al. 1998) and could also be used to
facilitate decoding.

Common Coordinate Frames

Cells in LIP and PRR encode visual targets
mostly in eye coordinates (Andersen et al.
1985b, Batista et al. 1999). That is, they signal
the location of a target with respect to the eyes,
and if the gaze direction changes, the location
in space for which the cells are sensitive shifts
with the gaze. The spatial locations of sounds
are initially extracted with respect to the head.
However, when auditory stimuli are the tar-
gets of saccades or reaches, the encoding of the
saccade targets in LIP and reach targets in PRR
are often represented in eye coordinates (Cohen
& Andersen 2000, 2002; Stricanne et al. 1996).
Common coordinate frames between these
areas may facilitate decoding during hand-eye
coordination.

Brain-control trials from PRR have been
performed with the eyes fixating straight ahead
to compensate for the eye-centered encoding
of stimuli. However, when the eyes are free
to move, the efficiency of spatial decoding is
about the same as with eyes fixed (Musallam
et al. 2004). This curious observation raises
several possibilities. It may be that compensa-
tions are made through updating or gain fields
(Andersen et al. 1985b, Duhamel et al. 1992,
Gnadt & Andersen 1988), the decoding algo-
rithms may extract the regularities of hand-
eye coordination, or PRR may change coordi-
nate frames depending on the constraints of the
task.
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Relative Coordinate Frames

PMd uses a different coordinate frame for en-
coding reach targets from PRR. Whereas PRR
uses predominantly an eye-centered coordinate
frame (Batista et al. 1999, Cisek & Kalaska
2002, Pesaran et al. 2006b), PMd encodes si-
multaneously the target with respect to the eye
(eye-centered), the target with respect to the
hand (hand-centered), and the hand with re-
spect to the eye (hand-in-eye) (Pesaran et al.
2006b). Rather than encoding the three vari-
ables in absolute spatial coordinates, it repre-
sents all three with respect to one another. This
relative coding may be tailored to coordinating
different body parts invariant of particular lo-
cations in the workspace. Area 5 may use a sim-
ilar relative coordinate frame since it encodes
reach targets with respect to the hand and the
eye (Buneo et al. 2002), although the hand-in-
eye coding has yet to be tested.

This relative coordinate frame encoding has
potential advantages for neuroprosthetic appli-
cations. It defines a “work space,” as mentioned
above, which can be used for multi-effector
movement tasks. Since the three relative
frames are in extrinsic coordinates, it also
allows between
coordinate frames (Pesaran et al. 2006b).

inversions/transformations

Relative codes can reduce the accumulation
of errors that may result from maintaining
absolute encodings of spatial location (Csorba
& Durrant-Whyte 1997, Dissanayake et al.
2001, Newman 1999, Olfati & Murray 2002).

EXECUTIVE FUNCTION:
SENSORIMOTOR CONTEXT

Sensorimotor context determines movement
goals. For instance, one may wish to reach to
the location of a cookie, but reach away from
the location of a bee. Most neural prosthetics
research has used straightforward goal-directed
movements toward a stimulus.

One method for studying context is the an-
timovement task (Figure 64). The animal is
cued to either move toward or away from a
target (Boussaoud et al. 1993, Crammond &

Kalaska 1994, di Pellegrino and Wise 1993,
Everling et al. 1999, Gail & Andersen 2006,
Georgopoulos etal. 1989, Gottlieb & Goldberg
1999, Kalaska 1996, Schlag-Rey et al. 1997,
Zhang & Barash 2000). This task has typically
been used for saccades and reaches to dissoci-
ate sensory signals from movement signals. For
antimovement trials, if a neuron only codes the
stimulus location, it is considered sensory; if it
only encodes the movement direction, it is con-
sidered movement-related; and if it codes both,
it is considered sensorimotor.

The pro-/antimovement task can be struc-
tured as a sensorimotor transformation with
two opposing stimulus-response mappings.
The executive function for applying the ab-
stract rule for transformation may reside in the
prefrontal cortex, premotor cortex, and basal
ganglia (Boettiger & D’Esposito 2005, Nixon
et al. 2004, Pasupathy & Miller 2005, Petrides
1982, Toni & Passingham 1999, Wallis et al.
2001, White & Wise 1999), although rule-
based activity has also been reported in the PPC
(Grol et al. 2006, Stoet & Snyder 2004). This
rule can then act on the sensorimotor trans-
formation process in PPC, premotor, and mo-
tor areas. We present here a recent example
from PRR, since in this case neural decoding
techniques were used as part of the analysis
and shed light on how a CNP could determine
the abstract rule and the appropriate stimulus-
response mapping (Gail & Andersen 2006).

A pro-/antireach task was used for record-
ings from PRR (Figure 64) that had three
advantages: (#) Four different directions for pro
and anti movements were used so the spatial
tuning of the cells for both rules could be deter-
mined; (b) briefly flashed targets were used, and
delays were interposed before the “go” signal
to highlight cognitive-related activity; and
(¢) the task rule to be applied was provided each
time at the beginning of the trial prior to the
presentation of the target cue. This last feature
of the task is important for examining whether
the rule can be decoded, since often the
features of the target dictate the rule and lead
to a confounding in time of rule-based activity
with other variables such as a sensory response
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(A) Flow diagram of rule-based pro-/antimovement task. (B) Decoding of the task rule in PRR. The
prediction of the task rule (pro/anti) was significantly above chance (50%) prior to the start of the cue period,
indicating explicit task rule representations in PRR. (C) Dynamics of sensory versus motor decoding of
direction in anti-reach trials (four-way classification of direction; 25% chance level). The performance value
denotes the probability that the predicted direction coincides with the cue or motor goal position,
respectively. This decode revealed a moderate transient representation of the cue position during part of the
cue period (fight curve). However, this sensory representation is quickly replaced by a strong motor goal
representation in the population of PRR neurons (dark curve). Figures 6B and 6C are from Gail & Andersen

(2006).

to the target and the possible cancelling of
an automatic plan toward the target in the
anti-movement trials. Using this paradigm, it
was found that the number of cells tuned only
to the target was statistically insignificant, the
number tuned only to the movement direction
predominated (45%), and a small number were
sensorimotor (7%). The sensorimotor cells
were initially tuned to the stimulus location
and then, during the delay period, were tuned
to the direction of the planned movement.
The fact that most cells were only tuned for
movement direction rules out spatial attention
as a contributing factor for those neurons.
Decode performance for task rule and
direction (2 x 4, 12.5% chance) rose steeply
after the brief (200 ms) presentation of the
target cue, reaching 90% peak in 150 ms,
and remained high during the variable delay

Andersen o Hwang o Mulliken

(1-1.5 s) before the “go” signal. A transcon-
ditional decode revealed that the cue location
was only weakly coded during the brief cue
presentation, through the sensorimotor cells.
PRR represented the movement plan from the
end of the cue throughout the delay period
(Figure 6C). These dynamics indicate that
PRR immediately transforms the sensory
representation into a movement representation
without any residual memory of the location of
the sensory signal. Interestingly, the rule could
already be predicted above chance a short time
before the presentation of the target, indicating
that the rule was already explicitly represented
in PRR before the appearance of the target
cue (Figure 6B). In a separate neural network
modeling study based on the above experiment,
it was found that the context-based information
could be integrated with the sensory target
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location through a classic gain field mechanism
(Brozovic etal. 2007). It was suggested that this
context modulation may result from top-down
information originating from the frontal or
parietal lobe.

Recent experiments show that rule-based
sensorimotor transformations can also be ex-
tended to brain-control experiments (E.J.
Hwang and R.A. Andersen, personal observa-
tion). The monkeys were able to move the cur-
sor on a computer screen in the opposite direc-
tion to a cue using cell recordings from PRR and
without any overt reaches. In a second experi-
ment, the monkeys were trained to associate an
arrow presented at the straight-ahead position
on a computer screen with brain-control cur-
sor movements in the direction the arrow was
pointing (Hwang & Andersen 2008).

In the above reach tasks and brain-control
tasks, the rules are applied to sensorimotor
transformations. However, the fact that rules
and their effect on neural transformations can
both be decoded from the same population
of cells in PPC suggests that other types of
executive functions can be decoded in other
brain areas. Executive rules that lie out-

side sensorimotor transformation include
categorization, direction of spatial attention,
and the formation of abstract concepts and

thoughts.

CHOOSING SIGNALS

Typically, neural prosthetic applications have
relied on spiking activity of neurons as a signal
source. Information from spikes is very precise
and represents fundamental building blocks of
the brain. Another signal that is interesting,
particularly from the viewpoint of CNPs, is
the local field potential (LFP) (Andersen et al.
2004b, Pesaran et al. 2006a). The LFP is deter-
mined by a number of factors, including the ge-
ometry and alignment of the sources, and thus
can vary from region to region due to changes
in local architecture. Also, the LFP is derived
from multiple sources including synaptic
potentials and action potentials and is summed
over a volume of tissue that contains hundreds

or thousands of cells. Still there are features
of the LFPs that make them generally useful
for prosthetic applications. They are often
tuned, for instance, to the direction of planned
reaches (Scherberger etal. 2005). Thus they can
provide additional information to improve de-
coding when used in combination with spikes.
They have a larger “listening sphere” than
that of single cells. Electrode array implants
generally have fixed geometries. The sampling
of cells is hit or miss, and many electrodes
will not be near neurons and will not yield
recordings. Typically, to increase yield, lower
impedance electrodes are used. This approach
increases the listening sphere but also lowers
the signal-to-noise ratio and makes single-cell
isolation difficult. LFPs, on the other hand,
sample from a large listening sphere and so the
yield is much higher. Over time, the reliability
of recording spikes often goes down, although
the LFP signal remains largely unaffected. The
basis of this decrease in performance is not
completely clear, but it may include long-term
encapsulation of the electrodes by glial scarring,
which would be expected to have a larger effect
on the more local signals of spikes compared to
LFPs.

From the viewpoint of CNPs, LFPs have
two primary contributions. The first is that it
is actually easier to decode cognitive state from
LEPs than from spikes. Recordings made from
single electrodes in LIP during a memory sac-
cade task showed that, on a single-trial basis, the
direction of a planned saccade could be equally
well decoded from single-cell spike activity and
the LFP (Pesaran et al. 2002). On the other
hand, the time of transition from planning to
executing a saccade could be decoded from the
LFP but not the spike recording. Interestingly,
the decoding of direction was obtained from
the higher-frequency (30-100 Hz) LFP spec-
trum and the cognitive state transition from
the lower (0-20 Hz) spectrum. A similar re-
sult was found in PRR decoding from a popula-
tion of PRR recording sites obtained on differ-
ent days of recording (Scherberger et al. 2005).
In this particular task, the monkeys made sac-
cades or reaches on different trials so there were
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Figure 7

Example of recording sources of spikes and local field potentials. Large pyramidal neurons project out of
cortex and represent the predominant source of recorded spikes due to their larger size and number. The
local field potentials reflect to a large degree the synaptic potentials and thus the inputs to cortex and local
processing. The stellate cell drawn on the left represents an interneuron that contributes to the local
processing. The recording is a few hundred milliseconds of actual data from LIP showing both the spikes
and the oscillations of the local field potential. Drawn by Christin Montz.

a variety of cognitive states that included base-
line (fixating only), reach planning, saccade
planning, reaching, and saccading. Whereas
state could be decoded from LFPs and spikes,
it took many more recording sites using spikes
compared to LFPs to reach a similar perfor-
mance. On the other hand, although direction
could be decoded from both spikes and LFPs,
the spike decodes were slightly better.

The second contribution of LFPs to CNPs
is that they may provide complementary infor-
mation due to some differences in source and as
a result allow a broader view of overall network
activity. In cortex, the largest class of neurons
is the pyramidal (output) cell. Also, single-cell
recording is biased toward larger cells, again
the pyramidal neurons. Thus, spiking activity
tends to represent the output of a cortical re-
gion (Figure 7). The LFP is notsimply a sum of
averaged spike activity but rather reflects, to a
considerable degree, the mean synaptic activity
that derives from inputs and intracortical pro-
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cessing (Buzsaki & Draguhn 2004, Logothetis
et al. 2001). Thus, a component of LFP activ-
ity in the PPC may derive from inputs into the
area (Figure 7). An efference copy from motor
areas to PPC may explain why the LFP in PPC
is so sensitive to the transition from planning to
executing, since the PPC output is not thought
to contribute to the execution of movements
(Andersen & Buneo 2002). Recently, monkeys
have been trained to generate a self-paced “go”
LFP signal in PPC for brain-control experi-
ments (Hwang & Andersen 2007). The animals
were trained to generate the signature LFP sig-
nal associated with the state change from plan-
ning to executing actual reaches, an increase
in lower frequencies and decrease in higher
frequencies, without making any movements.
The feasibility of a hybrid BMI system was
also demonstrated in brain-control experiments
in which the direction was decoded from the
PRR spike activity while the state was decoded
from the LFP recorded at the same site (Hwang
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& Andersen 2007). As mentioned above, the
direction can be decoded from both spikes
and LFPs in PRR. Additional brain-control
experiments showed that using spikes and
LFPs together increased decode performance
compared to using either alone, demonstrat-
ing that combining information from the two
sources can lead to better decodes (Hwang &
Andersen 2009).

LEARNING

Most applications using brain-control tasks
have shown a high degree of learning. This
learning can be very rapid, over a few min-
utes to hours of training (Fetz 1969, Jarosiewicz
etal. 2008, Moritz et al. 2008), over a period of
days (Mulliken et al. 2008a), or even over a pe-
riod of weeks (Carmena et al. 2003, Musallam
et al. 2004, Taylor et al. 2002). This learning
extends to LFPs (Hwang & Andersen 2007).
Learning effects have been seen in many brain
areas including the motor cortex, premotor cor-
tex, and parietal cortex. To our knowledge, it is
currently not understood which areas may show
more plasticity or be better for learning partic-
ular categories of tasks.

WHAT MIGHT DECODING
ALGORITHMS SAY ABOUT
BRAIN PROCESSING?

A number of classes of decoding algorithms
have been applied in brain-control experiments.
Interestingly, many of these algorithms have
parallels with brain function and may be suc-
cessful, in part, because of these similarities.
Bayesian decoding, which calculates maximum
likelihood of an intended movement (Bokil etal.
2006, Gao et al. 2002, Scherberger et al. 2005,
Shenoy et al. 2003), is one example. Recent
modeling studies have suggested that cortical
areas represent probability distributions and
may use Bayesian inference for decision making
(Beck et al. 2008). Population vector decod-
ing has also been used in brain-control experi-
ments (Taylor et al. 2002, Velliste et al. 2008).
This algorithm was originally developed to

explain how the direction of reaches is repre-
sented by populations of neurons in motor cor-
tex (Georgopoulos et al. 1986). As mentioned
above, Kalman filter decoding works well in
PPC, and this cortical region has properties
of state estimation that can be modeled effec-
tively with Kalman filters (Mulliken etal. 2008a,
Wau et al. 2004). Transitions between cognitive
states show changes in brain activity, particu-
larly reflected in the spectrum of LFPs but also
in spike firing rates. State-space models such as
finite state machines and Markov models have
been successful in decoding state changes and
may reflect the states and transitions between
states in brain activity (Shenoy et al. 2003).
Decoding has been improved by taking into ac-
count correlations between spike trains (Abbott
& Dayan 1999, Averbeck et al. 2006, Brown
etal. 2004, Nirenberg & Latham 2003) and the
temporal regularities in responses (Musallam
etal. 2004). These decoding methods that take
into account correlations and dynamics may be
exploiting underlying temporal coding strate-
gies used by the brain.

CONCLUSION

The applications of CNPs are very wide rang-
ing and rely on the decoding of signals that
are neither motor execution nor sensory sig-
nals but rather rely on internal cognitive states.
Although several specific examples are given in
this review, in principle all cognitive states likely
can be decoded with the appropriate record-
ing technologies, placement of electrodes, and
decoding algorithms. Spike activity is a major
source of signal, but LFPs are also particularly
useful for determining cognitive state. Exten-
sions of signal analysis may include the mea-
sure of spike-field coherence between cortical
areas, which may provide additional insights
into the processing of cognitive functions, and
their decoding, across cortical circuits (see
Future Issues, below). CNPs may also be ex-
tended to patients’ volitional control of brain
stimulation, which can be applied to movement
disorders, depression, epilepsy, and other brain
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diseases that may benefit from neural stimu-
lation. Clearly, the future is bright for CNPs
and their future application to assisting pa-
tients with brain disorders. An added bene-

fit is that research in CNPs will continue to  CNPs.

SUMMARY POINTS

1.

Cognitive neural prosthetics tap into brain signals that are neither motor execution com-
mands nor sensory signals, but rather represent higher brain functions such as intention,
multi-effector and sequential movement planning, attention, decision making, executive
control, emotions, learning, and speech. Scientific understanding of the functional orga-
nization of cortex helps to guide the placement of electrodes and the choices of decoding
algorithms.

. Memory-guided movements are often used in examining cognitive processes that might

be applicable to cognitive neural prosthetic applications. These tasks have delay compo-
nents in which there is no sensory stimulus or movement, and persistent neural activity
during this period represents the cognitive process under study.

. Single goals and even sequences of intended goals can be decoded from prefrontal and

parietal regions. Advantages of this approach over conventional trajectory decoding are
speed (typically it takes a second or more to arrive at a goal, whereas goal endpoint
decoding can be achieved in one-tenth the time) and the ability to plan ahead. Such goal
decoding is ideally suited for rapid applications such as “typing” using letter boards.

. Cognitive neural prosthetics can make use of motor imagery that appears in motor cortex

and generates even greater activity, judged from fMRI experiments, in other frontal and
parietal areas related to movement planning.

. Decision variables related to reward expectation, including the amount, type, and prob-

ability of reward, can be decoded from parietal cortex. These signals may be useful for
cognitive neural prosthetic applications by registering the preferences and mood of the
patients.

. Forward models, used to predict the current state of a movement and derived from effer-

ence copy signals, can be harnessed for producing trajectories for CNPs. Interestingly,
these signals can be internally generated without any movement actually occurring.

. The representation of different effectors in different cortical areas allows for the decod-

ing of complex movements such as reach-to-grasp and bimanual movements. Common
coordinate frames in some of these cortical areas, and the use of relative coordinate
frames, can facilitate the use of multi-effector operations using CNPs.

. CNPs can be used to decode executive functions. This application has been demonstrated

for determining rules for sensorimotor tasks but in principle can also be applied to
executive functions of categorization, directing spatial attention, and the formation of
abstract concepts and thoughts.

. Local field potentials (LFPs) can be used in addition to spike activity to enhance

CNP applications. They are superior to spikes for decoding cognitive state in parietal
cortex. Also, spikes and LFPs reflect to a certain degree different sources, with spikes more
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uncover the neural basis of cognitive functions
through the basic research that forms the foun-
dations of CNPs as well as the insights that are
afforded by the operation and performance of
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indicative of cortical outputs and LFPs indicative of inputs and intracortical processing.
Thus, combined use of these signals provides a larger functional view of the network in
which a cortical area is embedded.

10. Certain decoding algorithms may model underlying brain processes and thus be partic-
ularly useful for CNP applications.

FUTURE ISSUES

1. A future challenge is to extend CNPs to multiple cortical areas. Recording from multiple
cortical areas allows measures of LFP-LFP and spike-LFP coherences between them
(Pesaran et al. 2008). These measures, particularly the spike-LFP measures, may indi-
cate changes in communication between areas and may provide additional insights into
cognitive functions and refinement of cognitive decoding algorithms.

2. Another advance would be to bring therapies using brain stimulation under volitional
control of the patient. For instance, deep-brain stimulation for movement disorders such
as Parkinson’s disease can be controlled manually by patients, although this can be a bit
cumbersome. A more direct approach would be to bring the stimulation under cognitive
control, in which a patient’s decoded intentions could be used to control stimulation.
Such an approach could be extended to other future uses of brain stimulation, such as
the control of severe depression and obsessive-compulsive disorders.
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Decode cognitive Control external
<@ — | neural signals —>| assistive devices

Figure 1

Schematic representation of a cognitive neural prosthetic. In this example, the patient has a lesion of the
spinal cord, represented by the red X on the brain drawing on the left. The patient can still see the goal of
a movement and can plan the movement, but cannot execute it. The electrodes are positioned in sensori-
motor cortex in the parietal reach region, which is involved in reach planning. The recordings are decoded
to obtain the meaning of the cognitive signal and then transformed into processed control signals to oper-
ate an external device. The schematic on the right indicates that this signal can be used, among other
things, for controlling a robot limb, stimulating the muscles to animate the paralyzed limb, navigating a
wheelchair, controlling a television, and using the Internet and email. (Modified from www.
cyberkinetics.com.)
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Figure 2

The representation of intended goals in the parietal reach region (PRR). The top plot shows the delayed
goal-directed reach task. After the brief presentation of a cue stimulus (green circle), the monkey plans a
reach to the cued location but delays the execution until the GO signal (extinction of the green triangle).
The monkey’s gaze is fixed on the red rectangle. The bottom plot shows the response of a typical PRR
neuron during this task. Notice the sustained, elevated activity during the delay period when the monkey
plans a reach to the target in the preferred direction.
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(A) Schematic of areas in the cortex where cognitive signals can be recorded for neural prosthetic applica-
tions. For reaches, these areas include the parietal reach region (PRR) and dorsal premotor cortex (PMd);
for saccades, lateral intraparietal (LIP) and frontal eye field (FEF); and for grasp, anterior intraparietal area
(AIP) and ventral premotor cortex (PMv). (B) Diagram of connections between effector-specific regions.
LIP has strong corticocortical connections with FEF and PRR with PMd. There are also strong cortico-
cortical connections between LIP and PRR in the parietal lobe and FEF and PMd in the frontal lobe.
These additional connections could provide an avenue for integration of complex movements including
hand-eye coordination. (Modified from Cohen & Andersen 2002.)
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(A) Example trajectories made for direct and obstacle versions of the joystick task. (B) Distribution of opti-

mal lag times (OLT5) for posterior parietal cortex (PPC) population tuned to the dynamic movement angle.

Many neurons’ OLTs were consistent with a forward estimate of the state of the movement angle, which
did not directly reflect delayed sensory feedback to PPC, nor were they compatible with outgoing motor
commands from PPC. (C) Example trajectory reconstructions predicted using goal-based Kalman filter
decoding algorithm. (D) Successful trajectories made by the monkey during online brain-control trials for
which the monkey moved the cursor directly to the target or needed to correct the path of the cursor.
Figures 54 and 5B are from Mulliken et al. (2008a) and Figures 5C and D are from Mulliken et al.

(2008b).
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