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Decoding motor plans using a closed-loop 
ultrasonic brain–machine interface

Whitney S. Griggs    1,2,14 , Sumner L. Norman    1,14 , Thomas Deffieux3,4, 
Florian Segura3,4, Bruno-Félix Osmanski5, Geeling Chau1, 
Vasileios Christopoulos    6,7, Charles Liu    1,8,9,10, Mickael Tanter3,4, 
Mikhail G. Shapiro11,12,13 & Richard A. Andersen1,6

Brain–machine interfaces (BMIs) enable people living with chronic paralysis 
to control computers, robots and more with nothing but thought. Existing 
BMIs have trade-offs across invasiveness, performance, spatial coverage 
and spatiotemporal resolution. Functional ultrasound (fUS) neuroimaging 
is an emerging technology that balances these attributes and may 
complement existing BMI recording technologies. In this study, we use fUS 
to demonstrate a successful implementation of a closed-loop ultrasonic 
BMI. We streamed fUS data from the posterior parietal cortex of two rhesus 
macaque monkeys while they performed eye and hand movements. After 
training, the monkeys controlled up to eight movement directions using 
the BMI. We also developed a method for pretraining the BMI using data 
from previous sessions. This enabled immediate control on subsequent 
days, even those that occurred months apart, without requiring extensive 
recalibration. These findings establish the feasibility of ultrasonic BMIs, 
paving the way for a new class of less-invasive (epidural) interfaces that 
generalize across extended time periods and promise to restore function to 
people with neurological impairments.

Brain–machine interfaces (BMIs) translate complex brain signals into 
computer commands and are a promising method to restore the capa-
bilities of human patients with paralysis1. Numerous methods have 
been used to record brain signals for these BMIs, including intracortical 
multielectrode arrays (MEAs), electrocorticography (ECoG), functional 
near-infrared spectroscopy (fNIRS), electroencephalography (EEG) 
and functional magnetic resonance imaging (fMRI) (Extended Data 
Fig. 1). These methods have various trade-offs between performance, 

invasiveness, spatial coverage, spatiotemporal resolution, portability 
and decoder stability across sessions (Supplementary Table 1). For 
example, intracortical MEAs have been used to decode up to 62 words 
per minute2 and control a robotic arm3, but each array can only sample 
from a small area of cortex (∼4 × ∼4 mm) located on gyral crowns. Con-
versely, fMRI is noninvasive and samples from the entire brain, however, 
fMRI-based BMIs have only been demonstrated to decode approxi-
mately 1 char per min4 or control up to four movement directions5.
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Online decoding of two eye-movement directions
To demonstrate feasibility of an fUS-BMI, we first performed online, 
closed-loop decoding of two movement directions (Fig. 2). Each mon-
key initially performed 100 successful memory-guided saccades to the 
cued left or right target (Fig. 1b) while we streamed fUS images from the 
left PPC. After 100 trials, we switched to closed-loop decoding where 
the monkey now controlled the task direction using his movement 
intention, that is, the brain activity detected by the fUS-BMI in the last 
three fUS images of the memory period (Fig. 1c,e). At the conclusion of 
each closed-loop decoding trial, the monkey received visual feedback 
about the fUS-BMI prediction. We added the fUS images from each 
successful trial to our training set and retrained the decoder after each 
trial (Fig. 1c). We assessed the decoder’s performance throughout the 
training (20–100 trials; blue line) and closed-loop decoding (101+ trials; 
green line) using cumulative percent correct (Fig. 2a). During the initial 
training period (20–100 trials), the decoder’s prediction was not visible 
to the monkey, that is, no green dot was shown until the closed-loop 
decoding began after trial 100.

In the second closed-loop two-direction session, the decoder 
reached significant accuracy (P < 0.05; one-sided binomial test) after 
55 training trials and improved in accuracy until peaking at 82% accu-
racy at trial 114 (Fig. 2a). The decoder predicted both directions well 
above chance level but displayed better performance for rightward 
movements (Fig. 2b). To understand which brain regions were most 
important for the decoder performance, we performed a searchlight 
analysis with a 200 μm, that is, 2 voxel, radius (Fig. 2c). Dorsal LIP and 
area 7a contained the voxels most informative for decoding intended 
movement direction.

An ideal BMI needs very little training data and no retraining 
between sessions. BMIs using intracortical electrodes typically require 
recalibration for each subsequent session due to nonstationarities 
across days, including from difficulty recording the same neurons 
across multiple days15,16. Thanks to its wide field of view, fUS neuroim-
aging can image from the same brain regions over time, and therefore 
may be an ideal technique for stable decoding across many sessions. 
The neuron population identification problem is also present with 
ultrasound imaging, including from brain shifts relative to the ultra-
sound transducer between sessions. To test our hypothesis that we 
would have stable decoding across many sessions, we pretrained the 
fUS-BMI using a previous session’s data and then tested the decoder 
in an online, closed-loop experiment. To perform this pretraining, we 
first aligned the data from the previous session’s imaging plane to the 
current session’s imaging plane (Extended Data Fig. 3). This addressed 
the neuron population identification problem by allowing us to track 
the same neurovascular populations across different sessions. We used 
semiautomated rigid-body alignment to find the transform between 
the previous and current imaging plane, applied this two-dimensional 
(2D) image transform to each frame of the previous session and saved 
the aligned data. This semiautomated alignment process took <1 min. 
After we performed this image alignment, the fUS-BMI automatically 
loaded this aligned dataset and pretrained the initial decoder. As in the 
models without pretraining, we continued to use real-time retraining to 
incorporate the most recent successful trials. This adaptive retraining 
of the BMI after each successful trial allowed the BMI to incorporate 
session-specific changes (behavioral, anatomical, neurovascular and so 
on) and may allow the BMI to achieve better performance. The fUS-BMI 
reached significant performance substantially faster (Fig. 2d) when 
we used pretraining. The fUS-BMI achieved significant accuracy at 
Trial 7, approximately 15 min faster than the example session without 
pretraining.

To quantify the benefits of pretraining upon fUS-BMI training 
time and performance, we compared fUS-BMI performance across 
all sessions when (1) using only data from the current session, ver-
sus (2) pretraining with data from a previous session (Fig. 3). For all 
real-time sessions that used pretraining, we also created a post hoc 

Functional ultrasound (fUS) imaging is a recently developed 
technology that is poised to enable a new class of epidural BMIs 
that can record from large regions of the brain and decode spatio-
temporally precise patterns of activity. fUS neuroimaging uses ultra-
fast pulse-echo imaging to simultaneously sense changes in cerebral 
blood volume (CBV) from multiple brain regions6. These CBV changes 
are well correlated with single-neuron activity and local field poten-
tials7,8. It has a high sensitivity to slow blood flow (∼1 mm s−1 velocity) 
and balances good spatiotemporal resolution (100 μm; <1 s) with a 
large and deep field of view (∼2 cm; Extended Data Fig. 1). fUS can 
successfully image through the dura and multiple millimeters of 
granulation tissue9 (Extended Data Fig. 2a). However, fUS imaging 
currently requires either a cranial opening or an acoustic window10 
in large animals because the ultrasound signal is severely attenuated 
by bone11.

Previously, we demonstrated that fUS neuroimaging possesses 
the sensitivity and field-of-view to decode movement intention on a 
single-trial basis simultaneously for two directions (left/right), two 
effectors (hand/eye) and task state (go/no-go)9. However, we performed 
this post hoc (offline) analysis using prerecorded data. In this study, 
we demonstrate an online, closed-loop functional ultrasound brain–
machine interface (fUS-BMI). In addition, we present key advances that 
build on previous fUS neuroimaging studies, including decoding eight 
movement directions and designing decoders stable across >40 days.

Results
We used a miniaturized 15.6 MHz ultrasound transducer paired with 
a real-time ultrafast ultrasound acquisition system to stream 2 Hz 
fUS images from two monkeys as they performed memory-guided 
eye movements (Fig. 1 and Extended Data Fig. 2a). Before the experi-
ments, we performed a craniectomy over the left posterior parietal 
cortex (PPC) in both monkeys. During each experiment session 
(n = 24 sessions; Extended Data Table 1), we positioned the trans-
ducer surface normal to the brain above the dura mater (Fig. 1a and 
Extended Data Fig. 2b) and recorded from coronal planes of the left 
PPC, a sensorimotor association area important for goal-directed 
movements and attention12. This technique achieved a large field of 
view (12.8-mm width, 16-mm depth, ∼400-μm plane thickness) while 
maintaining high spatial resolution (100 μm × 100 μm in-plane). 
This allowed us to stream high-resolution hemodynamic changes 
across multiple PPC regions simultaneously, including the lateral 
(LIP) and medial (MIP) intraparietal cortex (Fig. 1a). The LIP and MIP 
are involved in planning eye and reach movements respectively9,13,14, 
making the PPC a good region from which to record effector-specific 
movement signals.

We streamed real-time fUS images into a BMI decoder that used 
principal component (PCA) and linear discriminant analysis (LDA) to 
predict planned movement directions. The BMI output then directly 
controlled the behavioral task (Fig. 1c). To build the initial training 
set for the decoder, each monkey initially performed instructed eye 
movements to a randomized set of two or eight peripheral targets. 
We used the fUS activity during the delay period preceding success-
ful eye movements to train the decoder. During this initial training 
phase, successful trials were defined as the monkey performing  
the eye movement to the correct target and receiving the liquid 
reward. After 100 successful training trials, we switched to the 
closed-loop BMI mode where the intended movement came from 
the fUS-BMI (Fig. 1e). During this closed-loop BMI mode, the mon-
key continued to fixate on the center cue until reward delivery. 
During the interval between a successful trial and the subsequent 
trial, we retrained the decoder, continuously updating the decoder  
model as each monkey used the fUS-BMI. During the closed-loop 
fUS-BMI mode, successful trials were defined as a correct predic-
tion plus the monkey maintaining fixation on the center cue until 
reward delivery.
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Fig. 1 | Anatomical recording planes and behavioral tasks. a, Coronal fUS 
imaging planes used for monkeys P and L. The approximate fUS field of view 
superimposed on a coronal MRI slice. The recording chambers were placed 
surface normal to the skull above a craniectomy (black square). The ultrasound 
transducer was positioned to acquire a consistent coronal plane across different 
sessions (red line). The vascular maps show the mean power Doppler image 
from a single imaging session. Different brain regions are labeled in white text, 
and the labeled arrows point to brain sulci. D, dorsal; V, ventral; L, left; R, right; 
A, anterior; P, posterior; ls, lateral sulcus; ips, intraparietal sulcus; cis, cingulate 
sulcus. Anatomical labels are based upon ref. 63. b, Memory-guided saccade 
task. * ±1,000 ms of jitter for fixation and memory periods; ±500 ms of jitter for 
hold period. The peripheral cue was chosen from two or eight possible target 
locations depending on the specific experiment. Red square, monkey’s eye 
position (not visible to the monkey). NHP, nonhuman primate, that is, monkey.  
c, fUS-BMI algorithm. Real-time 2-Hz functional images were streamed to a linear 

decoder that controlled the behavioral task. The decoder used the last three 
fUS images of the memory period to make its prediction. If the prediction was 
correct, the data from that prediction were added to the training set. The decoder 
was retrained after every successful trial. The training set consisted of trials 
from the current session and/or from a previous fUS-BMI session. d, Multicoder 
algorithm. For predicting eight movement directions, the vertical component 
(blue) and the horizontal component (red) were separately predicted and then 
combined to form each fUS-BMI prediction (purple). e, Memory-guided BMI task. 
The BMI task is the same as in b except that the movement period is controlled by 
the brain activity (via fUS-BMI) rather than eye movements. After 100 successful 
eye movement trials, the fUS-BMI controlled the movement prediction (closed-
loop control). During the closed-loop mode, the monkey had to maintain fixation 
on the center fixation cue until reward delivery. Red square, monkey’s eye 
position (not visible to the monkey); green square, BMI-controlled cursor  
(visible to the monkey).
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(offline) simulation of the fUS-BMI results without using pretraining. 
For these simulated sessions without pretraining, the recorded data 
passed through the same classification algorithm used for the real-time 
fUS-BMI but did not use any data from a previous session.

Using only data from the current session. The cumulative decoding 
accuracy reached significance (P < 0.05; one-sided binomial test) at the 
end of each online, closed-loop recording session (2 of 2 sessions, mon-
key P; 1 of 1 session, monkey L) and most offline, simulated recording 
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Fig. 2 | Example sessions decoding two saccade directions (monkey P). a, 
Cumulative decoding accuracy as a function of trial number. Blue represents fUS-
BMI training where the monkey controlled the task using overt eye movements. 
The BMI performance shown in blue was generated post hoc with no impact on 
the real-time behavior. Green represents trials under fUS-BMI control where the 
monkey maintained fixation on the center cue and the movement direction was 
controlled by the fUS-BMI. Gray chance envelope, 90% binomial distribution; 
red line, last nonsignificant trial. b, Confusion matrix of final decoding accuracy 

across the entire session represented as a percentage (rows add to 100%). c, 
Searchlight analysis represents the 10% voxels with the highest decoding accuracy 
(threshold is q ≤ 1.66×10−6). White circle, 200-μm searchlight radius. Scale bar, 
1 mm. d–f, Same format as in a–c. fUS-BMI was pretrained using data collected 
from a previous session. d, Cumulative decoding accuracy as a function of trial 
number. e, Confusion matrix of final decoding accuracy. f, Searchlight analysis 
represents the 10% of voxels with the highest decoding accuracy (threshold is 
q ≤ 2.07 × 10−13). White circle, 200-μm searchlight radius. Scale bar, 1 mm.
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sessions (3 of 3 sessions, monkey P, 3 of 4 sessions, monkey L) (Fig. 3, 
left). For monkey P, decoder accuracies reached 75.43 ± 2.56% correct 
(mean ± s.e.m.) and took 40.20 ± 2.76 trials to reach significance. For 
monkey L, decoder accuracies reached 62.30 ± 2.32% correct and took 
103.40 ± 23.63 trials to reach significance.

Pretraining with data from a previous session. The cumulative  
decoding accuracy reached significance at the end of each online, 
closed-loop recording session (3 of 3 sessions for monkey P, 4 of 4 
sessions for monkey L) (Fig. 3, right). Using previous data reduced the 
time to achieve significant performance (100% of sessions reached sig-
nificance sooner: monkey P, 36–43 trials faster; monkey L, 15–118 trials 
faster). The performance at the end of the session was not statistically 
different from performance in the same sessions without pretraining 
(paired t-test, P < 0.05). For monkey P, accuracies reached 80.21 ± 5.61% 
correct and took 9 ± 1 trials to reach significance. For monkey L, accu-
racies reached 66.78 ± 2.79% correct and took 71.00 ± 28.93 trials to 
reach significance. Assuming no missed trials, pretraining decod-
ers shortened training by 10–45 min. We also simulated the effects  
of not using any training data from the current session, that is, 

using only the pretrained model (Extended Data Fig. 4a). We did not 
observe a statistically significant difference between the performance  
(final accuracy or number of trials to significant performance) for 
either monkey, whether current session training data were included 
or not.

These results demonstrate three things: (1) we can online decode 
two directions of movement intention from fUS signals, (2) monkeys 
learned to control the task using the fUS-BMI and (3) pretraining using 
previous session’s data greatly reduced, or even eliminated, the amount 
of new training data required in a new session.

Online decoding of eight eye movement directions
Having demonstrated that we could achieve similar, but online and 
closed-loop, performance to our previous offline decoding study9, we 
extended the capabilities of our fUS-BMI by decoding eight movement 
directions in real time (Fig. 4). We used a ‘multicoder’ architecture 
where we predicted the vertical (up, middle or down) and horizontal 
(left, middle or right) components of intended movement separately 
and then combined those independent predictions to form a final pre-
diction (for example, up and to the right) (Fig. 1d). This multicoder 
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across the entire session represented as percentage (rows add to 100%). The 

horizontal axis plots the predicted movement (predicted class) and the vertical 
axis the matching directional cue (true class). c, Searchlight analysis represents 
the 10% of voxels with the lowest mean angular error (threshold is q ≤ 2.98 × 10−3). 
White circle, 200-μm searchlight radius. Scale bar, 1 mm. d–f, Same format 
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architecture allowed the decoder to incorporate our prior knowledge that  
PPC neurons have similar responses to neighboring movement direc-
tions but different responses to movement directions with a greater 
angular separation17. In other words, this multicoder approach  
incorporated the neural representational similarity between  
neighboring directions rather than treating the eight directions as 
eight independent classes.

In the first eight-direction experiment, the decoder reached sig-
nificant accuracy (P < 0.05; one-sided binomial test) after 86 training 
trials and improved until plateauing at 34–37% accuracy (Fig. 4a, upper 
plot), compared to 12.5% chance level, with most errors indicating 
directions neighboring the cued direction (Fig. 4b). To quantify the 
proximity of each prediction to the true direction, we examined the 
mean angular error. The fUS-BMI reached significance at 55 trials and 
steadily decreased its mean angular error to 45° by the end of the ses-
sion (Fig. 4a, bottom plot). Compared to the most informative voxels 
for the two-target eye decoder, a larger portion of LIP, including ventral 
LIP, contained the most informative voxels for decoding eight move-
ment directions (Fig. 4c).

We next tested whether pretraining would aid the eight-target 
decoding similarly to the two-target decoding. As with the model 
without pretraining, we retrained the fUS-BMI in real time following 
each successful prediction during the intertrial interval. As before, 
pretraining improved the number of trials required to reach signifi-
cant decoding (Fig. 4d). The fUS-BMI reached significant accuracy 
at trial 13, approximately 25 min earlier than using only data from 
the current session. The cumulative decoder accuracy reached 45% 
correct with a final mean angular error of 34°, which was better than 
the performance achieved in the example session without pretrain-
ing. The searchlight analysis indicated the same regions within LIP 
provided the most informative voxels for decoding (Fig. 4f) for  
both the example sessions with and without pretraining. Notably, 
we pretrained the fUS-BMI on data from 42 days before the current  
session. This demonstrates that fUS-BMI can remain stable over  
at least 42 days. It further demonstrates that we can consistently 
locate the same imaging plane and that mesoscopic PPC popula-
tions consistently encode for the same directions on the time span 
of >1 month.

Using only data from the current session. The cumulative decoder 
accuracy reached significance by the end of all real-time (2 of 2) and sim-
ulated (8 of 8) sessions (Fig. 5, left). The mean angular error for monkey 
P reached 45.26 ± 3.44° and the fUS-BMI took 30.75 ± 12.11 trials to reach 
significance. The mean angular error for monkey L reached 75.06 ± 1.15° 
and the fUS-BMI took 132.33 ± 20.33 trials to reach significance.

Pretraining with data from a previous session. The cumulative 
decoder accuracy reached significance by the end of all real-time  
(6 of 6) and simulated (2 of 2) sessions (Fig. 5, right). The fUS-BMI 
reached significant decoding earlier for most sessions compared to 
simulated post hoc data: 5 of 5 faster than monkey L; 2 of 3 faster than 
monkey P (third session reached significance equally fast). For monkey 
P, the pretrained decoders reached significance 0–51 trials faster and 
for monkey L, the pretrained decoders reached significance 66–132 
trials faster. For most sessions, this would shorten training by up to 
45 min. The performance at the end of each session was not statistically 
different from performance in the same session without pretraining 
(paired t-test, P < 0.05). The mean angular error for monkey P reached 
37.82° ± 2.86° and the fUS-BMI took 10.67 ± 1.76 trials to reach signifi-
cance. The mean angular error for monkey L reached 71.04° ± 2.29° and 
the fUS-BMI took 42.80 ± 17.05 trials to reach significance. We also 
simulated the effects of not using any training data from the current 
session, that is, using only the pretrained model (Extended Data Fig. 
4b). We did not observe a statistically significant difference between 
the performance (final accuracy, final mean angular error or number of 
trials to significant performance) for either monkey, whether current 
session training data were included or not.

These results demonstrate online decoding of fUS signals into 
eight directions of movement intention, a substantial advance over 
decoding only contra- and ipsilateral movements. These results also 
show that the directional encoding within PPC mesoscopic populations 
is stable across >1 month, thus allowing us to reduce, or even eliminate, 
the need for new training data.

Online decoding of two hand-movement directions
Another strength of fUS neuroimaging is its wide field of view  
capable of sensing activity from multiple functionally diverse brain 
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regions, including those that encode different movement effectors, 
for example, hand and eye. To test this, we decoded intended hand 
movements to two target directions (reaches to the left/right for 
monkey P) (Fig. 6). The monkey performed a memory-guided reach 
task wherein he had to maintain touch on a center dot and touch the 
peripheral targets during the training (Fig. 6a). In this scenario, we 
no longer constrained the monkey’s eye position, instead record-
ing hand movements to train the fUS-BMI. After the training period, 
the monkey controlled the task using the fUS-BMI while keeping his 
hand on the center fixation cue. Notably, we used the same imaging 
plane used for eye movement decoding, which contained both LIP 
(important for eye movements) and MIP (important for reach move-
ments). In an example session using only data from the current session  
(Fig. 6b), the decoder reached significance after 70 trials and achieved 
a cumulative decoder accuracy of 61.3%. The decoder predominately 

guessed left (Fig. 6c). Two foci within the dorsal LIP and scattered 
voxels throughout area 7a and the temporo-parietal junction (area 
tpt) contained the most informative voxels for decoding the two 
reach directions (Fig. 6d).

We evaluated the effect of pretraining the fUS-BMI on an example 
session (Fig. 6e–g). As with the saccade decoders, pretraining signifi-
cantly shortened training time. In some cases, pretraining rescued a 
‘bad’ model. For example, the example session using only current data 
(Fig. 6c) displayed a heavy bias toward the left. When we used this 
same example session to pretrain the fUS-BMI a few days later, the new 
model made balanced predictions (Fig. 6f). The searchlight analysis 
for this example session revealed that the same dorsal LIP region from 
the example session without pretraining contained most of the most 
informative voxels (Fig. 6g). MIP and area 5 also contained patches of 
highly informative voxels.
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Using only data from the current session. The cumulative decoder 
accuracy reached significance by the end of each session (one real-time 
and three simulated). The performance reached 65 ± 2% correct and 
took 67.67 ± 18.77 trials to reach significance (Fig. 7, left).

Pretraining with data from a previous session. The cumulative 
decoder accuracy reached significance by the end of each session 
(three real-time) (Fig. 7, right). Monkey P’s performance reached 
65 ± 4% correct and took 43.67 ± 17.37 trials to reach significance. For 
two of the three real-time sessions, the number of trials needed to reach 
significance decreased with pretraining (−2–46 trials faster; 0–16 min 
faster). There was no statistical difference in performance between 
the sessions with and without pretraining (paired t-test, P < 0.05). We 
also simulated the effects of not using any training data from the cur-
rent session, that is, using only the pretrained model (Extended Data  
Fig. 4c). We did not observe a statistically significant difference between 
the performance (accuracy or number of trials to significant perfor-
mance), whether current session training data were included or not.

These results are consistent with our previous study’s results9 that 
we can decode not only eye movements, but also reach movements. As 
with the eye movement decoders, we could pretrain the fUS-BMI using 
a previous session’s data and reduce, or even eliminate, the need for 
new training data.

Discussion
This work demonstrates the successful implementation of a closed-loop, 
online, ultrasonic BMI, and makes two other key advances that prepare 
for the next generation of ultrasonic BMIs: decoding more movement 
directions and stabilizing decoders across more than a month.

Decoding more movement directions
We successfully decoded eight movement directions in real time, an 
advance on previous work that decoded two saccade directions and 
two reach directions using prerecorded data9. Specifically, we repli-
cated the two direction results using real-time online data (Figs. 2, 3, 
6 and 7) and then extended the decoder to work for eight movement 
directions (Figs. 4 and 5).

Stabilizing decoder across time
BMIs using intracortical electrodes, such as Utah arrays, are particularly 
adept at sensing fast changing (millisecond-scale) neural activity from 
spatially localized regions (<1 cm) during behavior or stimulation that is 
correlated to activity in such spatially specific regions, for example, M1 
for motor and V1 for vision. Intracortical electrodes, however, struggle 
to track individual neurons over longer periods of time, for example, 
between subsequent recording sessions15,16. Consequently, decoders 
are typically retrained every day15. A similar neural population identi-
fication problem is also present with an ultrasound device, including 
from shifts in the field of view between experiment sessions. In the 

current study, we demonstrated an alignment method that stabilizes 
image-based BMIs across more than a month and decodes from the 
same neurovascular populations with minimal, if any, retraining. This 
is a critical development that enables easy alignment of a previous 
days’ models to a new day’s data and allows decoding to begin with 
minimal to no new training data. Much effort has focused on ways to 
recalibrate intracortical BMIs across days that do not require extensive 
new data18–23. Most of these methods require identification of mani-
folds and/or latent dynamical parameters and collecting new neural 
and behavioral data to align to these manifolds/parameters. These 
techniques are, to date, tailored to each research group’s specific appli-
cations with varying requirements, such as hyperparameter tuning 
of the model23 or a consistent temporal structure of data22. They are 
also susceptible to changes in function in addition to anatomy. For 
example, ‘out-of-manifold’ learning/plasticity alters the manifold24 
in ways that many alignment techniques struggle to address. Finally, 
some of the algorithms are computationally expensive and/or difficult 
to implement in online use22.

Contrasting these manifold-based methods, our decoder align-
ment algorithm leverages the intrinsic spatial resolution and field of 
view provided by fUS neuroimaging to perform decoder stabilization 
in a way that is intuitive, repeatable and performant. We used a single 
fUS frame (∼500 ms) to generate an image of the current session’s 
anatomy and aligned a previous session’s field of view to this single 
image. Notably, this did not require any additional behavior for the 
alignment. Because we only relied upon the anatomy, our decoder 
alignment is robust, can use any off-the-shelf alignment tool and is a 
valid technique so long as the anatomy and mesoscopic encoding of 
relevant variables do not change drastically between sessions.

It remains an open question as to how much the precise positioning 
of the ultrasound transducer during each session matters for decoder 
performance, especially out-of-plane shifts or rotations. In these cur-
rent experiments, we used linear decoders that assumed a given image 
pixel is the same brain voxel across all aligned data sessions. To mini-
mize disruptions to this pixel–voxel relationship, we performed image 
alignment within the 2D plane. As we could only image a 2D recording 
plane, we did not correct for any out-of-plane brain shifts between ses-
sions that would have disrupted the pixel–voxel mapping assumption. 
Future fUS-BMI decoders may benefit from three-dimensional (3D) 
models of the neurovasculature, such as registering the 2D field of view 
to a 3D volume25–27 to better maintain a consistent pixel–voxel mapping.

Improving performance
State-of-the-art BMIs using subdural ECoG or intracortical electrodes 
are currently capable of decoding >15–60 words per min, >29–90  
char per min and individual finger movements with high accuracy2,28–30 
(Supplementary Table 1). Noninvasive scalp EEG is another technol-
ogy that has been commonly used as a neural basis for control of BMI  
systems. Performance of modern EEG BMIs varies greatly across  
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users31, but using EEG to decode motor imagery or intention can typi-
cally yield two degrees of freedom with 70–90% accuracy32. This per-
formance is comparable to that described here using fUS. However, 
fUS performance is rapidly increasing as an evolving neuroimaging 
technique. We have several ideas about how to improve the fUS-BMI 
performance.

First, realigning the ultrasound transducer along the intraparietal 
sulcus axis would allow sampling from a larger portion of LIP and MIP. In 
this paper, we placed the chamber and probe in a coronal orientation to 
aid anatomical interpretability. However, most of our imaging plane is 
not contributing to the decoder performance (Figs. 2c,f, 4c,f and 6d,g). 
Previous research found that receptive fields are anatomically organ-
ized along an anterior–posterior gradient within LIP17. By realigning 
the recording chamber orthogonal to the intraparietal sulcus in future 
studies, we could sample from a larger anterior–posterior portion of 
LIP with a more diverse range of directional tunings.

Second, we were limited to 2D planar imaging. The advent of 3D 
ultrafast volumetric imaging based on matrix or row–column array 
technologies will be capable of sensing changes in CBV from blood 
vessels that are currently orthogonal to the imaging plane26,27. Addi-
tionally, 3D volumetric imaging can fully capture entire functional 
regions and sense multiple functional regions simultaneously. There 
are many regions that could fit inside a single 3D probe’s field of view 
and contribute to a motor BMI, for example, posterior parietal cor-
tex (PPC), primary motor cortex (M1), dorsal premotor cortex (PMd) 
and supplementary motor area (SMA). These areas encode differ-
ent aspects of movements including goals, sequences and expected 
value of actions33–36. This is just one example of myriad BMI decoding 
strategies that will be made possible by synchronous data across brain 
regions. Currently, high-quality, low-latency real-time 3D fUS imaging 
is not possible due to bandwidth, memory and compute limitations. 
However, ongoing advances in hardware and algorithms will likely 
soon enable 3D fUS-BMI.

Third, another route for improved performance may be to use 
more advanced decoder models to replace the linear decoders used 
in this study. Convolutional neural networks are tailor-made for iden-
tifying image characteristics and are robust to spatial perturbations 
common in fUS images, such as brain pulsatility related to breathing or 
heart rate. Recurrent neural networks and transformers use ‘memory’ 
processes that may be particularly adept at characterizing the temporal 
structure of fUS timeseries data. One potential downside of artificial 
neural networks (ANNs) like these is that they require appreciably 
more training data. The methods presented here for across-session 
image alignment allow for previously recorded data to be aggregated 
and organized into a large data corpus. Such a data corpus may be 
sufficient to train many ANNs. Aside from the amount of data required 
to train ANNs, recent work has highlighted additional challenges in 
training deep learning models for closed-loop motor BMI control37, 
especially avoiding overfitting of the model to the temporal structure 
in previously recorded data. Although training and inference using 
ANNs were beyond the scope of the current experiments, this could 
become an important area of investigation for future, more sophisti-
cated fUS-BMIs38.

Advantages of fUS to existing BMI technologies
fUS has several strengths compared to existing BMI technologies. 
These include:

 (1) Large and deep field of view with mesoscopic spatial resolution: 
the 15.6 MHz ultrasound transducer we used provided a large and 
deep field of view (12.8 mm × 20 mm) that allows us to reliably  
record mesoscopic (100 μm) activity from multiple cortical re-
gions simultaneously. The spatial representations of movement 
variables are often localized to different brain regions. Thus, it 
is highly advantageous to record from many of these regions in  
parallel. Additionally, many techniques used for BMI applications  

are limited to recording from superficial cortex within a few  
millimeters of the brains surface (Supplementary Table 1). In this  
study, the most informative voxels for decoding eye move ments  
were located within the mid- to deep LIP, approximately 5–9 mm 
below the brain surface (Figs. 2c,f and 4c,f), beyond the reach  
of ECoG, Utah arrays and calcium imaging.

Previous work found that offline fUS decoding accuracy from 
PPC decreases rapidly as spatial resolution worsens9. This sug-
gests that BMI technologies with macroscopic (≥1 mm) spatial 
resolution, such as EEG, fNIRS and fMRI, will continue to struggle 
to effectively decode information that varies within microscopic 
and mesoscopic neural populations, such as the PPC subregions 
used in this study.

 (2) Easy to reposition: with fUS, it is easy to locate and record from 
specific regions of interest. The ultrasound transducer can be 
positioned, tested and repositioned multiple times before being 
locked in place. Invasive electrode arrays are typically inserted 
only once and are often placed in a suboptimal position due  
to poor localization or to avoid piercing major vasculature.  
Implanted electrode arrays are difficult to reposition, as doing 
so requires additional surgery.

 (3) Can image through soft tissue: while tissue reactions degrade the 
performance of subdural and intracortical chronic electrodes39,40, 
fUS can, in principle, operate through the dura indefinitely,  
enabling chronic imaging over long time periods with minimal, 
if any, degradation, in signal quality. In a previous monkey study, 
fUS neuroimaging was able to image through the dura, including 
the granulation tissue that forms above the dura (approximately 
several millimeters), with minimal loss in sensitivity across 2.5 
years9. Distinct from the ability of fUS to image through thick-
ened dura and granulation tissue, future work will be needed 
to characterize and optimize implanted ultrasound transducer 
longevity.

 (4) Easy to align data across sessions: in this Technical Report, we dem-
onstrated a new benefit of fUS, which is decoders that are stable 
across multiple days or even months. Using conventional image  
alignment methods, we can align our decoder across different  
sessions and decode from the start of the session without collect-
ing additional training data (Extended Data Fig. 4). This is similar  
to the advantage seen with ECoG based BMIs, which can work well  
across sessions with minimal, if any, recalibration41–43. This is 
likely due, in part, to less representational drift of the mesoscop-
ic neural populations measured by ECoG and fUS compared  
to the single neurons recorded by intracortical electrodes44.

Disadvantages of fUS to existing BMI technologies
fUS has several weaknesses compared to existing BMI technologies. 
These include:

 (1) Temporal resolution: electrophysiological BMIs have superb  
temporal resolutions (frequently 20–40 KHz) that allow single- 
spike decoding methods45–47. In this study, we used 2-Hz fUS with 
a real-time latency of approximately 800 ms. fUS is intrinsically 
limited by the time constant of mesoscopic neurovascular cou-
pling (seconds). Despite this neurovascular response acting as a 
low pass filter on each voxel’s signal, faster fUS acquisition rates 
can measure temporal variation across voxels down to 10-ms 
resolution48. Dizeux et al.48 performed offline fUS imaging at 
100 Hz and tracked rapid (10 ms) propagation of local hemody-
namic changes through cortical layers and between functional 
regions within a single plane of view. Online 100-Hz fUS imag-
ing was not technically feasible with our current equipment 
and software. However, we performed a lag correlation analysis 
on previously acquired offline fUS data to approximate the re-
sults from 100-Hz fUS imaging (Supplementary Fig. 1). For our 
seed voxel, correlated activity within superficial cortex and the 
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brain surface preceded the seed voxel activity by approximately 
10–50 ms while correlated activity within deeper cortex lagged 
10–50 ms behind the seed voxel. This matches with the results 
from Dizeux et al.48 and supports that fUS imaging can detect 
spatiotemporal patterns at 10-ms time resolution. As the tem-
poral resolution and latency of real-time fUS imaging improves 
with enhanced hardware and software, tracking the propaga-
tion of these rapid hemodynamic signals may enable improved 
BMI performance and response time. Additionally, for the cur-
rent study and for many BMI applications, the goals of an action 
can be extracted despite the slow mesoscopic hemodynamic 
response and do not require the short latency required for ex-
tracting faster signals such as the trajectories of intended move-
ments. Beyond movement, many other signals in the brain may 
be better suited to the spatial and temporal strengths of fUS, for 
example, monitoring biomarkers of neuropsychiatric disorders 
(discussed in detail below).

 (2) Indirect measure of neural activity: fUS measures local changes 
in CBV6 and is well correlated with local neuronal activity7,8,49. 
As intracranial electrophysiology and calcium optical imaging 
directly measure activity of individual neurons or small popula-
tions of neurons, they are a better control signal for brain–ma-
chine interfaces. As acoustic indicators of neural activity are 
developed50, fUS may be able to more directly measure neuronal 
activity.

Invasiveness of implant
Our fUS neuroimaging was epidural and required a cranial opening  
due to significant signal attenuation through bone11 (Extended Data  
Fig. 2). Despite being an intracranial technique, fUS-BMI does not 
require penetration of the dura mater or cause damage to brain  
tissue. This decreases the surgical and infection risk compared to  
subdural ECoG and intracortical electrodes. Penetration of the dura 
mater increases the risk of serious infections, such as meningitis,  
cerebritis and empyema51–53.

In this study, we used a large cranial opening (∼24 mm × ∼24 mm) 
made for other experiments that explored multiple brain regions9. For 
future ultrasonic BMIs, a cranial opening would only need to be the size 
of the ultrasound transducer lens (∼13 mm × 4 mm for the transducer in 
this study; Extended Data Fig. 2b). Burr holes made by neurosurgeons 
are frequently 14 mm in diameter, meaning that future versions of this 
fUS-BMI could be implanted within a single burr hole over the target 
of interest. Additionally, there is work on performing transcranial 
fUS neuroimaging using novel ultrasound sequences54 or through 
ultrasound-transparent skull replacement materials10.

Decoding hand versus eye movements
Dorsal and ventral LIP contained the most informative voxels when 
decoding eye movements (Figs. 2c,f and 4c,f). This is consistent with 
previous literature that LIP is important for spatially specific oculomo-
tor intention and attention12. Dorsal LIP, MIP, area 5 and area 7 contained 
the most informative voxels during reach movements (Fig. 6d,g). The 
voxels within the LIP closely match with the most informative voxels 
from the two-direction saccade decoding, suggesting that our fUS-BMI 
may be using eye movement plans to build its model of movement direc-
tion. The patches of highly informative voxels within MIP and area 5 
suggest the fUS-BMI may also be using reach-specific information13,55,56. 
Future experiments will be critical for disentangling the mesoscopic 
contributions of LIP, MIP, area 5 and other PPC regions for accurate 
effector predictions with an fUS-BMI. One such experiment would be 
recording, and ultimately decoding, fUS signals from the PPC as mon-
keys perform dissociated eye and reach movements13. As this fUS-BMI 
is translated into human applications, these effector-specific signals 
can also be more cleanly studied by instructing subjects to perform 
dissociated effector tasks.

In this Technical Report, we demonstrated the utility of the fUS-BMI 
for motor applications to allow easier comparison with existing BMI 
technologies. As fUS neuroimaging can record from multiple cortical 
and subcortical brain regions simultaneously, an exciting future direc-
tion will be exploring how fUS-BMI can be used to decode both sensory 
and motor activity simultaneously in novel BMI paradigms.

Moving beyond a motor BMI
The vast majority of BMIs have focused on restoring lost motor function 
in people with paralysis. Recently there has been interest in developing 
closed-loop BMIs to restore function to other demographics, including 
patients disabled from neuropsychiatric disorders1. Approximately 12% 
of people worldwide suffer from depression, anxiety or other mood 
disorders, and first-line treatments only work for ∼33% of patients57. 
Neuropsychiatric BMIs may be a promising avenue for these patients 
for whom first-line therapies have failed. In one example, a BMI would 
measure a brain signal that is highly correlated with different mood 
states. When an aberrant mood state is detected, the BMI could adjust 
the therapy, such as precisely stimulating specific brain regions58.

fUS-BMI may be a platform ideally suited for a neuropsychiatric 
BMI (Supplementary Table 1). It can record from distributed brain 
regions; the hemodynamic signal it measures varies on the order of 
seconds, thus faster than the timescale of mood; it can track the same 
anatomical volumes across months; and it can be made portable59. 
One possible solution would be to pair fUS imaging with ultrasound 
neuromodulation (UNM). fUS neuroimaging could track the local 
network response to the neuromodulation, such that the neuromodula-
tion could not only be precisely adjusted for each patient but for each 
specific mood aberrance. UNM and fUS imaging may experience inter-
ference if used in close space, time and frequency. Frequency-division 
or time-division multiplexing can likely address this issue without 
sacrificing overall bandwidth. Current evidence suggests that UNM has 
effects that can last hours to months after just 0.5–2.0 min of stimula-
tion60–62, meaning that fUS would be well-suited to track the local effect 
of UNM and precisely target the amount of UNM needed to achieve the 
desired clinical effect.

Conclusion
The contributions presented here demonstrate the feasibility of an 
online, closed-loop fUS-BMI. It is still early days with this technology 
and much work remains to translate this into a clinically viable BMI. 
However, we believe this work prepares for a new generation of BMIs 
that are high-resolution, stable across time and scalable to sense activ-
ity from large and deep regions of the brain. These advances are a step 
toward fUS-BMI for a broader range of applications, including restoring 
function to patients suffering from paralysis or debilitating neuropsy-
chiatric disorders.
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Methods
Experimental model and subject details
All training, recording, and surgical and animal care procedures were 
approved by the California Institute of Technology Institutional Animal 
Care and Use Committee (protocol no. 1256) and complied with the 
Public Health Service Policy on the Humane Care and Use of Laboratory 
Animals. We implanted two healthy 14-year-old male rhesus macaque 
monkeys (Macaca mulatta) weighing 14–17 kg.

General
We used NeuroScan Live software (ART INSERM U1273 and Iconeus) 
interfaced with MATLAB 2019b (v9.7) (MathWorks) for the real-time 
fUS-BMI and MATLAB 2021a (v9.10) for all other analyses.

Animal preparation and implant. For each monkey, we placed a cranial 
implant containing a titanium head post and performed a craniectomy 
positioned over the posterior parietal cortex. The dura underneath 
the craniectomy was left intact. The craniectomy was covered by a 
24 mm × 24 mm (inner dimension) chamber. For each recording ses-
sion, we used a custom 3D-printed polyetherimide slotted chamber  
plug that held the ultrasound transducer. This allowed the same  
anatomical planes to be consistently acquired on different days.

Behavioral setup. Monkeys sat in a primate chair facing a monitor or 
touchscreen. The liquid crystal display monitor was positioned ∼30 cm 
in front of the monkey. The touchscreen was positioned on each day so 
that the monkey could reach all the targets on the screen with his fingers 
but could not rest his palm on the screen. This was ∼20 cm in front of 
the monkey. Eye position was tracked at 500 Hz using an infrared eye  
tracker (EyeLink 1000). Touch was tracked using a touchscreen  
(Elo IntelliTouch). Visual stimuli were presented using custom  
Python v.2.7 software based on PsychoPy64. Eye and hand position were 
recorded simultaneously with the stimulus and timing information  
and stored for offline analysis.

Behavioral tasks
Monkeys performed several different memory-guided movement 
tasks. In the memory-guided saccade task, monkeys fixated on a center 
cue for 5 ± 1 s. A peripheral cue appeared for 400 ms in a peripheral 
location (either chosen from two or eight possible target locations) at 
20° eccentricity. The monkey kept fixation on the center cue through 
a memory period (5 ± 1 s) where the peripheral cue was not visible. The 
monkey then executed a saccade to the remembered location once the 
fixation cue was extinguished. If the monkey’s eye position was within 
a 7° radius of the peripheral target, the target was re-illuminated and 
stayed on for the duration of the hold period (1.5 ± 0.5 s). The monkey 
received a liquid reward of 1,000 ms (0.75 ml; dilute juice) for success-
ful task completion. There was an 8 ± 2 s intertrial interval before the 
next trial began. Fixation, memory and hold periods were subject to 
±500 ms timing jitter sampled from a uniform distribution to prevent 
the monkey from anticipating task state changes.

The memory-guided reach task was similar but, instead of fixation, 
the monkey used his fingers on a touchscreen. Due to space constraints, 
eye tracking was not used concurrently with the touchscreen, that is, 
only hand or eye position was tracked, not both.

For the memory-guided BMI task, the monkey performed the same 
fixation steps using his eye or hand position, but the movement phase 
was controlled by the fUS-BMI. Critically, the monkey was trained to not 
make an eye or hand movement from the center cue until at least the 
reward was delivered. For this task variant, the monkey received a liquid 
reward of 1,000 ms (0.75 ml; dilute juice) for successfully maintaining 
fixation/touch and correct fUS-BMI predictions. The monkey received 
a 100 ms (0.03 ml; dilute juice) reward for successfully maintaining 
fixation/touch during incorrect fUS-BMI predictions. This was done 
to maintain monkey motivation.

fUS-BMI
fUS sequence and recording. During each fUS-BMI session, we placed 
the ultrasound transducer (128-element miniaturized linear array 
probe, 15.6-MHz center frequency, 0.1-mm pitch) on the dura with 
ultrasound gel as a coupling agent (Extended Data Fig. 2b). We consist-
ently positioned the ultrasound transducer across recording sessions 
using a slotted chamber plug. The imaging field of view was 12.8 mm 
(width) by 13–20 mm (height) and allowed the simultaneous imaging 
of multiple cortical regions, including lateral intraparietal area (LIP), 
medial intraparietal area (MIP), ventral intraparietal area (VIP), area 
7 and area 5 (Fig. 1a). In monkey P, we acquired data from the same 
coronal imaging plane across all experiments. In monkey L, we used 
two different coronal imaging planes: one for two-target decoding and 
one for eight-target decoding. The three imaging planes were chosen 
for good decoding performance in a pilot offline dataset.

We used a programmable high-framerate ultrasound scanner 
(Vantage 256; Verasonics) to drive the ultrasound transducer and col-
lect pulse-echo radiofrequency data (Extended Data Fig. 2a). We used 
different plane-wave imaging sequences for real-time and anatomical 
fUS neuroimaging.

Real-time low-latency fUS neuroimaging. We used a custom-built 
computer running NeuroScan Live (ART INSERM U1273 and Iconeus) 
attached to the 256-channel Verasonics Vantage ultrasound scan-
ner (Extended Data Fig. 2a). This software implemented a custom 
plane-wave imaging sequence optimized to deliver power Doppler 
images in real-time at 2 Hz with minimal latency between ultrasound 
pulses and power Doppler image formation. The sequence used a 
pulse-repetition frequency of 5,500 Hz and transmitted plane waves at 
11 tilted angles equally spaced from −6° to 6°. These tilted plane waves 
were compounded at 500 Hz. Power Doppler images were formed 
from 200 compounded B-mode images (400 ms). To form the power  
Doppler images, the software used an ultrafast power Doppler 
sequence with an SVD clutter filter65 that discarded the first 30% of 
components. The resulting power Doppler images were transferred to a 
MATLAB instance in real-time and used for the fUS-BMI. The prototype 
2-Hz real-time fUS system had approximately an 800-ms latency from 
the end of the ultrasound pulse sequence to arrival of the beamformed 
fUS image in MATLAB. Each fUS image and associated timing informa-
tion were saved for post hoc analyses.

Anatomical Doppler neuroimaging. At the start of each recording 
session, we used a custom plane-wave imaging sequence to acquire 
an anatomical image of the vasculature. We used a pulse-repetition 
frequency of 7,500 Hz and transmitted plane waves at five angles (−6°, 
−3°, 0°, 3°, 6°) with three accumulations. We coherently compounded 
these five angles from three accumulations (15 images) to create one 
high-contrast ultrasound image. Each high-contrast image was formed 
in 2 ms, that is, at a 500-Hz framerate. We formed a power Doppler 
image of the monkey brain using 250 compounded B-mode images 
collected over 500 ms. We used singular value decomposition to imple-
ment a tissue clutter filter and separate blood cell motion from tissue 
motion65.

fUS-BMI overview. There were three components to decoding move-
ment intention in real-time: (1) apply preprocessing to a rolling data 
buffer, (2) train the classifier and (3) decode movement intention 
in real time using the trained classifier. As described previously9, 
the time for preprocessing, training and decoding was dependent 
upon several factors, including the number of trials in the training 
set, CPU load from other applications, the field of view and classifier 
algorithm (PCA + LDA versus class-wise principal component analysis 
(cPCA) + LDA). In the worst cases during offline testing, the preprocess-
ing, training and decoder respectively took approximately 10, 500 ms 
and 60 ms. See ref. 9 for further description of the amount of time 
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needed for preprocessing, training and prediction with different sized 
training sets.

Data preprocessing. Before streaming the power Doppler images 
into the classification algorithm, we applied two preprocessing opera-
tions to a rolling 60-frame (30-s) buffer. We first performed a rolling 
voxel-wise z-score over the previous 60 frames (30 s) and then applied 
a pillbox spatial filter with a radius of 2 pixels to each of the 60 frames 
in the buffer.

Real-time classification. The fUS-BMI made a prediction at the end of 
the memory period using the preceding 1.5 s of data (three frames) and 
passed this prediction to the behavioral control system via a TCP-based 
server (Extended Data Fig. 2c). We used different classification algo-
rithms for fUS-BMI in the two-direction and eight-direction tasks. For 
decoding two directions of eye or hand movements, we used cPCA 
and LDA, a method well-suited to classification problems with high 
dimensional features and low numbers of samples4,5. This method is 
mathematically identical to that used previously for offline decoding 
of movement intention9 but has been optimized for online training 
and decoding. Briefly, we used cPCA to dimensionally reduce the data 
while keeping 95% variance of the data. We then used LDA to improve 
the class separability of the cPCA-transformed data. For more details 
on the method and implementation, see refs. 9,66.

For decoding eight directions of eye movements, we used a mul-
ticoder approach where the horizontal (left, center or right) and verti-
cal components (down, center or up) were separately predicted and 
combined to form the final prediction. As a result of this separate 
decoding of horizontal and vertical movement components, ‘center’ 
predictions are possible (horizontal—center and vertical—center) 
despite this not being one of the eight possible peripheral target loca-
tions. We chose this multicoder architecture because we know that 
similar movement directions will have similar neural responses while 
movement directions with a large angular separation will have different 
neural responses. This multicoder thus converts decoding eight sepa-
rate direction classes into simultaneously decoding two three-class 
sets that better align with the response properties of PPC. To perform 
the predictions, we used PCA and LDA. We used the PCA to reduce the 
dimensionality of the data while keeping 95% of the variance in the data. 
We then used LDA to predict the most likely direction. We opted for the 
PCA + LDA method over the cPCA + LDA for eight-direction decoding 
because we found in offline analyses that the PCA + LDA multicoder 
outperformed cPCA + LDA for decoding eight movement directions 
with a limited number of training trials.

Real-time training of model. We retrained the fUS-BMI classifier 
during the intertrial interval (without stopping the experiment) every 
time the training set was updated. For the real-time experiments, the 
data recorded during a successful trial were automatically added to 
the training set. During the initial training phase, successful trials 
were defined as the monkey performing the movement to the correct 
target and receiving his liquid reward. Once in BMI mode, successful 
trials were defined as a correct prediction plus the monkey maintaining 
fixation until reward delivery.

For experiments that used a model trained on data from a previ-
ous session, we used data from all valid trials from the previous ses-
sion upon initialization of the fUS-BMI. A valid trial was defined as  
any trial that reached the prediction phase, regardless of whether the 
correct class was predicted. The classifier then retrained after the 
addition of each successful trial to the training set during the current 
session.

Post hoc experiments. These experiments analyzed the effect of using 
only data from a single session on decoder performance. We simulated 
an online scenario where we trained and/or decoded on each attempted 

trial in order. We considered all trials where the monkey received a 
reward as successful and retrained after each trial.

Connection with the behavioral system. We designed a threaded 
TCP server in Python v.2.7 to receive, parse and send information 
between the computer running the PsychoPy behavior software and 
the real-time fUS-BMI computer (Extended Data Fig. 2c). Upon queries 
from the fUS-BMI computer, this server transferred task information, 
including task timing and actual movement direction, to the real-time 
ultrasound system. The client–server architecture was specifically 
designed to prevent data leaks: the actual movement direction was 
never transmitted to the fUS-BMI until after a successful trial had ended. 
The TCP server also received the fUS-BMI prediction and passed it to the 
PsychoPy software when queried. The average server write–read–parse 
time was 31 ± 1 (mean ± s.d.) ms during offline testing between two 
desktop computers (Windows) on a local area network.

Across-session alignment
At the beginning of each experimental session, we acquired an ana-
tomical image showing the vasculature within the imaging field of view. 
For sessions where we used previous data as the initial training set for 
the fUS-BMI, we then performed a semiautomated intensity-based 
rigid-body alignment between the new anatomical image and the 
anatomical image acquired in a previous session. We used the MATLAB 
‘imregtform’ function with the mean square error metric and a regu-
lar step gradient descent optimizer to generate an initial automated 
alignment of the previous anatomical image to the new anatomical 
image. If the automated alignment had misaligned the two images, 
the software prompted the proctor to manually shift and rotate the 
previous session’s anatomical image using a custom MATLAB graphical 
user interface. We then applied the final rigid-body transform to the 
training data from the previous session, thus aligning the previous 
session with the new session.

We chose rigid-body alignment and transformation over  
Procrustes alignment and transformations because the brain size did 
not vary across sessions. Although we did observe brain pulsatility 
between sequential fUS frames (due in part to heart rate and breath-
ing), this pulsatility did not affect the rigid-body alignment accuracy. 
Additionally, the amount of brain expansion and/or shrinkage from 
pulsatility varied across the image. The brain surface would move 
up and down, but brain tissue within a few millimeters of the brain 
surface would be stable. Uniformly scaling the image (such as via a 
Procrustes transform) would not fix this issue but rather introduce 
new alignment issues.

Quantification, statistical analysis and reproducibility
Unless reported otherwise, summary statistics are reported as XX ± XX 
are mean ± s.e.m.

Accuracy metrics. We used cumulative percent correct and mean 
angular error to assess the performance of the fUS-BMI. All accuracy 
metrics reported reflect the test performance rather than performance 
on the training set, that is, we trained the model using the training set 
and then tested on data not within the training set.

Cumulative percent correct = No. of correct predictions
No. of total predictions

Meanangular error

= 1
n

n
∑
i=1
|angular error|,wheren is the numberof predictions

The chance envelope for the cumulative percent correct was 
calculated using the binomial distribution and the number of total 
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predictions. Accuracies above or below the chance envelope were 
significant at α = 0.05. Assumptions for using a binomial test were 
satisfied including each trial having only two possible outcomes (suc-
cess/failure), the probability of success was the same for all trials (1/n 
where n is the number of possible movement directions), and each 
trial being independent. The chance envelope for the mean angular 
error was calculated using a permutation test with 105 replicates. For 
each replicate, we randomly sampled n times from a uniform distri-
bution of the eight possible directions, where n was the number of 
predictions in the entire session. This generated a null distribution of 
chance level decoding as a function of the number of predictions. We 
then found the 5th and 95th quantiles of the null distribution to gener-
ate the chance envelope as a function of the number of predictions. 
For the paired t-tests comparing performance between the same ses-
sions with or without pretraining or retraining, the data distribution 
was assumed to be normal, but this was not formally tested.

Post hoc simulated session. We used the recorded real-time fUS 
images to simulate the effects of different parameters on fUS-BMI per-
formance, such as using only current session data without pretraining. 
To do this, we streamed prerecorded fUS images and behavioral data, 
frame-by-frame, to the same fUS-BMI function used for closed-loop, 
online fUS-BMI. To dynamically build the training set, we added all 
trials reaching the end of the memory phase regardless of whether 
the offline fUS-BMI predicted the correct movement direction. This 
was done because the high possible error rate from bad predictions 
meant that building the training set from only correctly predicted tri-
als could lead to imbalanced samples across conditions (directions) 
and possibly contain insufficient trials to train the model. Zero correct 
predictions for certain directions could prevent the model from ever 
predicting that direction.

Searchlight analysis. We defined a circular region of interest (ROI; 
200-μm radius) and moved it sequentially across all voxels in the imag-
ing field of view. For each ROI, we performed offline decoding with 
10-fold cross-validation using either the cPCA + LDA (two-directions) 
or PCA + LDA (eight-directions) algorithm where we only used the 
voxels fully contained with each ROI. We assigned the mean perfor-
mance across the cross-validation folds to the center voxel of the ROI. 
To visualize the results, we overlaid the performance (mean angular 
error or accuracy) of the 10% most significant voxels on the anatomical 
vascular map from the session.

Reproducibility. We collected data across 24 sessions (Monkey L, 11 
sessions; monkey P, 13 sessions; Extended Data Table 1). These sessions 
were split across three different sets of experiments with 10 sessions 
of the two-target saccade experiment, 10 sessions of the eight-target 
saccade experiment and four sessions of the two-target reach experi-
ment. Within each session, the order of different target directions was 
pseudo-randomized based on a Latin square design. No statistical 
method was used to predetermine sample size for number of sessions. 
No statistical method was used to predetermine sample size for number 
of monkeys but our sample sizes are similar to those reported in previ-
ous publications9,18,20. No sessions or data points were excluded from 
the analyses. Data collection and analysis were not performed blind to 
the conditions of the experiments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Key data used in this paper are archived at https://doi.org/10.22002/
pa710-cdn95.

Code availability
Code used to generate key figures and results is available at https://
github.com/wsgriggs2/rt_fUS_BMI and archived at https://doi.
org/10.5281/zenodo.8414598.
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Extended Data Fig. 1 | Functional ultrasound imaging can record mesoscopic 
neural populations with good spatial coverage. Comparison of spatial 
coverage, invasiveness, and spatial resolution between different large animal 
recording technologies. Spatial coverage refers to maximum dimension of 

brain volume sampling. MEA: multi-electrode array; Ca2+: calcium imaging; 
ECoG: electrocorticography; EEG: electroencephalogram; fNIRS: functional 
near-infrared spectroscopy; fMRI: functional magnetic resonance imaging;  
fUS: functional ultrasound imaging.
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Extended Data Fig. 2 | Hardware and software for real-time fUS-BMI.  
(a) Hardware components. The behavioral computer communicates via TCP with 
the fUS-BMI computer. The fUS-BMI computer is attached via a dedicated data 
cable to the ultrafast ultrasound scanner. The fUS-BMI computer receives the 
radiofrequency data from the ultrasound scanner and performs the real-time 2 
Hz Power Doppler image formation. The ultrafast ultrasound scanner is attached 
to and controls a 15.6 MHz ultrasound transducer. (b) Acute placement of 
ultrasound transducer. The ultrasound transducer is held by a custom 3D-printed 
slotted plug that fits in the monkey chamber. This chamber is chronic and is 
embedded in a headcap attached to the monkey skull. The acute ultrasound 
transducer rests above the dura along with sterile ultrasound coupling gel.  

(c) Software components. A threaded TCP server in Python 2.7 received, parsed, 
and sent information between the computer running the PsychoPy behavior 
software and the real-time fUS-BMI computer. Upon queries from the fUS-BMI 
computer (‘fUS decoder’), this server transferred necessary task information. 
The client-server architecture was specifically designed to prevent data leaks, 
that is, the actual movement direction was never transmitted to the fUS-BMI 
until after a successful trial had ended. The TCP server also received the fUS-BMI 
prediction and passed it to the PsychoPy software when queried. The average 
server write-read-parse time was 31 +/− 1 (mean ± STD) ms during offline testing 
between two Windows computers on a local area network.
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Extended Data Fig. 3 | Across session alignment algorithm. We used semi-automated intensity-based rigid-body alignment to find the transform from the previous 
session to the new imaging plane. The alignment error is shown in the overlay where green represents the old session (Day 1) and magenta represents the new session 
(Day 64).
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Extended Data Fig. 4 | Closed-loop, real-time decoding of movement 
directions using pretrained model only. (a) Performance for 2-direction 
saccade decoding using only the pretrained model. Same format as in Fig. 3. (b) 

Performance for 8-direction saccade decoding using only the pretrained model. 
Same format as in Fig. 5. (c) Performance for 2-direction reach decoding using 
only the pretrained model. Same format as in Fig. 7.
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Extended Data Table 1 | Session record

Experiment
Date

Session 
Day Monkey Task Session used for 

pretraining (if any)

04-Mar-22 1 P 2-target saccade None used 

11-Mar-22 8 P 2-target saccade None used 

16-Mar-22 13 P 2-target saccade Session Day 8 

18-Mar-22 15 P 2-target saccade Session Day 8 

23-Mar-22 20 P 2-target saccade Session Day 8 

24-Mar-22 21 L 2-target saccade None used 

25-Mar-22 22 P 8-target saccade None used 

29-Mar-22 26 L 2-target saccade Session Day 21

31-Mar-22 28 P 8-target saccade Session Day 22

01-Apr-22 29 L 2-target saccade Session Day 21

08-Apr-22 36 L 2-target saccade Session Day 21

20-Apr-22 48 L 2-target saccade Session Day 21

03-May-22 61 L 8-target saccade None used 

04-May-22 62 P 8-target saccade Session Day 22

05-May-22 63 L 8-target saccade Session Day 61

06-May-22 64 P 8-target saccade Session Day 22

17-May-22 75 L 8-target saccade Session Day 61

18-May-22 76 P 2-target reach None used 

19-May-22 77 L 8-target saccade Session Day 61

19-May-22 77 P 2-target reach Session Day 76

20-May-22 78 L 8-target saccade Session Day 61

20-May-22 78 P 2-target reach Session Day 76

21-May-22 79 L 8-target saccade Session Day 61

21-May-22 79 P 2-target reach Session Day 76

A record of all experimental sessions, including the experiment date, monkey participant, task, and what session was used for pretraining. Session day is relative to the first session day.

http://www.nature.com/natureneuroscience
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection We used NeuroScan Live software (v0.1; ART INSERM U1273 & Iconeus, Paris, France) interfaced with MATLAB 2019b (MathWorks, Natick, 

MA, USA) for the functional ultrasound data collection. This data was then streamed to a second MATLAB 2019b instance running the fUS-BMI 

algorithm (v0.1.0) and saved to disk. This fUS-BMI algorithm is available at available at https://github.com/wsgriggs2/rt_fUS_BMI and archived 

at https://doi.org/10.5281/zenodo.8414598.  

 

For behavioral data tracking and collection, we used custom Python 2.7 software based on PsychoPy (v1.90.3). For eyetracking, we used an 

commercially available EyeLink 1000 system (Ottawa, Canada). For the touchscreen, we used a commercially available Elo IntelliTouch 

(Milpitas, California). 

Data analysis We used MATLAB 2021a for all analyses. Code used to generate key figures and results is available at https://github.com/wsgriggs2/

rt_fUS_BMI and archived at https://doi.org/10.5281/zenodo.8414598. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Key data used in this paper is archived at https://doi.org/10.22002/pa710-cdn95.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 

other socially relevant 

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We determined the sample size (e.g., number of trials per experimental condition, number of sessions) based upon our lab's experience and 

standards in the field. This was consistent with our previous studies using a similar motor task (Norman et al. 2021).

Data exclusions No data were excluded from the analysis.

Replication We replicated our results in two rhesus monkeys, as widely practiced in the primate research field. We repeated the same task setup for 

multiple sessions per monkey.

Randomization Randomization of animals to different groups was not relevant for our study. We randomly varied trial parameters, such as length of intertrial 

interval, to prevent the animals from anticipating task changes, which was important for studying movement planning in our study. 

Blinding Blinding was not relevant for our study because the trial parameters were randomly adjusted for each trial and the brain-machine interface 

operated in a closed-loop fashion without human intervention, i.e., there was no human within the loop to adjust or modify the brain-

machine interface. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals We worked with two healthy 14-year-old male rhesus macaque monkeys (Macaca mulatta) weighing 14-17 kg. 

Wild animals No wild animal were used in this study.

Reporting on sex Both rhesus macaque monkeys were male.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight All training, recording, surgical, and animal care procedures were approved by the California Institute of Technology Institutional 

Animal Care and Use Committee and complied with the Public Health Service Policy on the Humane Care and Use of Laboratory 

Animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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