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SUMMARY
Recent literature suggests that tactile events are represented in the primary somatosensory cortex (S1)
beyond its long-established topography; in addition, the extent to which S1 is modulated by vision remains
unclear. To better characterize S1, human electrophysiological data were recorded during touches to the
forearm or finger. Conditions included visually observed physical touches, physical touches without vision,
and visual touches without physical contact. Two major findings emerge from this dataset. First, vision
strongly modulates S1 area 1, but only if there is a physical element to the touch, suggesting that passive
touch observation is insufficient to elicit neural responses. Second, despite recording in a putative arm
area of S1, neural activity represents both arm and finger stimuli during physical touches. Arm touches are
encoded more strongly and specifically, supporting the idea that S1 encodes tactile events primarily through
its topographic organization but also more generally, encompassing other areas of the body.
INTRODUCTION

The sense of touch is important for implementing dexterous,

adaptable action plans1–5 and creating a sense of ownership

and agency over one’s body.6–8 The primary source of informa-

tion for tactile sensations is input from peripheral mechanore-

ceptors, but multisensory integration9,10 plays a role as well,

especially visual information.11–15

The primary somatosensory cortex (S1) is one of the first

cortical areas to receive incoming tactile information, relayed

via the cuneate nucleus and the thalamus.16 S1’s responsiveness

to physical touch and its topographic organization have been

extensively documented,17–21 but the extent to which multisen-

sory information is represented inS1 remainsunder investigation.

A large body of literature addressing this precise question has

found that S1 responds to observed touch when it occurs in

others, but not oneself.22–30 However, a significant number of

studies have failed to find evidence of this phenomenon.31–34

A similar but distinct question concerns whether S1 is modu-

lated by vision when it is paired with a physical touch event. Psy-

chophysically, the visual enhancement of touch has been well

established: tactile acuity is enhanced when a touched area is

observed, even when the visual input is non-informative,14,35–38

although the precise conditions necessary to trigger the effect
This is an open access article und
are still unclear.39 Electroencephalographic (EEG) experiments

have shown that combining visual and tactile stimuli modulates

the P50 somatosensory-evoked potential, which is thought to

originate in S1.40–43 Magnetoencephalography (MEG) studies

have suggested that the topographic mapping of fingers shifts

in S1 based on the relative timing of visual and tactile signals.44,45

Transcranial magnetic stimulation (TMS) over S1 negatively af-

fects the ability to detect or discriminate touches, if the accom-

panying visual information incorporates a human hand rather

than a neutral object.46–48 Thus, biologically relevant visual infor-

mation appears to be used as a predictive signal and modulates

S1 encodings of tactile events.

Like its role in integrating multisensory stimuli, S1’s topo-

graphic organization appears to be more nuanced than first

thought. Recent experiments suggest that althoughS1maintains

a gross topographic representation of the body as laid out in the

earliest human cortical stimulation studies and observed many

times since,17–21,49 it also contains other more complex levels

of tactile representation.50–52 Studies of the primate hand have

shown that S1 neural activity contains non-linear interactions

across different digits,50,52,53 supporting the idea that S1 carries

information beyond a linear report of inputs from tactile recep-

tors. In humans, S1 has recently been shown to represent body

parts outside of their traditionally defined areas.54,55
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Table 1. Experimental task conditions

Modality Location Touch type Description

*FPa arm *FP The participant observed, in first person (FP) perspective, a real physical touch to his arm.

*FPf finger *FP The participant observed, in first person (FP) perspective, a real physical touch to his finger.

*BLa arm *BL The participant fixated on a non-informative dot in virtual reality, effectively blindfolding (BL) him

during a real physical touch to his arm.

*BLf finger *BL The participant fixated on a non-informative dot in virtual reality, effectively blindfolding (BL) him

during a real physical touch to his finger.

VrFPa arm VrFP The participant observed, via virtual reality and in first person perspective (VrFP), a touch to his arm

without any physical contact.

VrFPf finger VrFP The participant observed, via virtual reality and in first person perceptive (VrFP), a touch to his

finger without any physical contact.

TPa arm TP The participant observed, in third person (TP) perspective, a real physical touch to another

person’s arm.

TPf finger TP The participant observed, in third person (TP) perspective, a real physical touch to another

person’s finger.

Obj object Obj The participant observed a real physical touch to an inanimate object (Obj), a wooden block.

Nine different touch modalities were tested. Each modality with a physical touch stimulus is coded with an asterisk (*). All modalities with a stimulus on

the arm end in ‘‘a’’; all modalities with a stimulus on the finger end in ‘‘f.’’ Touches were single strokes delivered by an experimenter using a pressure-

sensing rod; in *BL and VrFP trials, the participant wore a Vive Pro Eye headset.
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To interrogate S1’s representations of touch across body

locations and multisensory contexts, electrophysiological re-

cordings in a human tetraplegic patient with two microelectrode

arrays (Blackrock Neurotech, Salt Lake City, UT, USA) implanted

in the putative area 1 of the S1 arm region56 were collected. The

patient retained enough tactile ability after spinal cord injury to

sense short stroking stimuli delivered to his arm and finger.

Touch conditions occurred on either the patient’s arm, finger,

or an inanimate object, in a variety of multisensory contexts

(Table 1). Our results provide evidence that tactile information

in S1 is encoded as part of the well-established cortical homun-

culus, as well as in a more general manner that encompasses

larger areas of the body. In addition, we find that S1 does not

respond to observed touches to oneself, another person, or an

object, but that vision does modulate neural activity when it is

paired with physical tactile stimulation. This finding suggests

that passively observing visual information depicting touches

fails to meet some threshold of relevance or attention necessary

to activate S1 neurons.

RESULTS

S1 responses to visual and tactile stroking stimuli along the arm

and finger in a human tetraplegic participant were recorded via

two intracortical microelectrode arrays. Within arm and finger lo-

cations, neural responses to four touch types were examined

(Table 1; Figure 1). A fifth touch type (Obj) used an inanimate ob-

ject as a control rather than a body location, resulting in a total of

nine conditions across locations and touch types. Seventy trials

were collected in each condition.

Multi-unit channel activity (Figure 1A) recorded during these tri-

als was aligned to the physical or virtual moment of contact be-

tween the touch sensor and the item being touched (touch onset).

In visual conditions (first person real physical and visual touch

[*FP], first person virtual visual touch [VrFP], third person touch
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[TP], and object touch [Obj]), visual information predicting the

touch was available beginning approximately 0.5 s before touch

onset, because the experimenter could be seen beginning the

motion toward the touch target (Figure 1B; Video S1). In totality,

the task comprised nine conditions (Table 1); the average firing

rate of a single channel to each condition is plotted as an example

(Figure 1D). The task was designed such that data could be aver-

aged across location (Figure 1E) or averaged across touch type

(Figure 1F) to better isolate neural responses to these factors.

Condition identity decoding
Linear discriminant analysis (LDA) was performed on the top 40

dimensions of the multi-unit channel data, sub-selected over

1,000 train/test divisions for equal class sizes and averaged

together (Figure 2A). Classifiers were trained on every pair of

conditions, using average firing rates binned in 0.5 s increments.

No significant decoding occurs prior to touch onset. In the first

0.5 s following touch onset, conditions containing a physical

touch (*FP, *BL) can be meaningfully distinguished from purely

visual conditions (VrFP, TP, Obj) in all cases and can be signifi-

cantly distinguished from one another in every case except

*BLa vs. *BLf (accuracy = 70% [60%–80%]), which becomes sig-

nificant only 0.5 s later (72% [61%–81%]). *FPa vs. *BLa is highly

decodable with an accuracy of 87.7% (80%–94.3%) despite the

two classes varying only on the basis of visual information; simi-

larly, *FPf vs. *BLf obtains an accuracy of 83.7% (74.3%–91.4%).

Overall, in the first time bin after touch onset, *FPa and *FPf are

highly distinguishable from other conditions, especially those

without physical touch. *BLa and *BLf are less significantly

distinguishable. In the following time bin (0.5–1 s), this relative

disparity in classification accuracies remains true, but classifica-

tions are overall weaker (pairwise one-sided t test across all ac-

curacies, p = 3 3 10�9).

In the (1–1.5 s) bin, which occurs immediately after touch

offset, *FPa is the only condition that can be distinguished
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Figure 1. Experimental methods and paradigm

Data were recorded in a human tetraplegic participant (n = 1) implanted with microelectrode arrays.

(A) Array implant locations on the cortical surface of the left hemisphere, rendered with MRI. Only data from the two S1 arrays were analyzed in this study. Inset: in

situ array locations. Scale bar: 1 cm. Figure reproduced from Armenta Salas et al.56

(B) Task time course. Visual initiation of touch motion was perceived by the participant only in touch types with visual content (*FP, VrFP, TP, Obj).

(C) Sample frame from a VrFPa trial, presented using a virtual reality headset.

(D) Example smoothed firing rate of one S1 channel to each testedmodality of touch (n = 70 trials/modality). Shaded area surrounding each line indicates standard

error of the mean (SEM); n = 70 trials per modality.

(E and F) Activity of the same channel averaged acrossmodalities to isolate touch type (n = 140 trials except for Obj, where n = 70 trials) and effector (n = 280 trials

except for Obj, where n = 70 trials), respectively (i.e., *FPa and *FPf in D are averaged to yield *FP in E).

See also Video S1.
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from the other conditions. 1.5 s after touch onset, no classifiers

obtain significant decoding accuracy.

To examine decoding on a finer time scale, the same LDA clas-

sifiers as described above were run in touch-onset-aligned 0.1 s

bins (Video S2). No significant decoding occurs before the

0–0.1 s bin. In this bin, *FPa can be significantly decoded from

all conditions apart from *FPf and *BLa, but no other classifiers

are significant. In the following 100 ms (0.1–0.2 s after touch

onset), *FP/*BL can be significantly distinguished from all other

conditions with the exception of *FPf vs. *BLf. By 0.3–0.4 s after
touch onset, decoding is overall weaker than in the first bin, sug-

gesting the time period of 0–0.2 s following touch onset contains

the strongest touch representations. By 0.7–0.8 s after touch

onset, nearly all classifiers cease to be significantly accurate.

Representational similarity analysis (RSA)
To better visualize the relationships between different task con-

ditions, RSA57 was used on the same multi-unit activity as

analyzed with the linear classifier (Figure 2B). Representational

dissimilarity matrices (RDMs) were computed based on the
Cell Reports 42, 112312, April 25, 2023 3
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Figure 2. Pairwise decoding and representational similarity analysis (RSA)

(A) Pairwise identity decoding results. At each 0.5 s time bin, an LDA classifier was trained to distinguish between each pair of modalities based on the top 40

principal components of multiunit activity. The 70 trials per modality were randomly divided in half to generate train and test data 1,000 times, and the accuracies

of the resulting decoders were averaged together to yield the values in the confusion matrices. Asterisks represent significantly different accuracies relative to a

null distribution, which was generated by training the same decoder on data with shuffled labels 1,000 times. *Significantly different 95% confidence intervals

(CIs); **97.5% CIs; ***99% CIs.

(B) RSA was performed on touch-onset-aligned multi-unit S1 channel activity, and resulting representational dissimilarity matrices (RDMs) are shown. Distances

between conditions (plotted on log axis) are cross-validated Mahalanobis distance with multivariate noise correction; a distance of zero indicates conditions are

statistically indistinguishable.

(C) Multi-dimensional scaling (MDS) plots of RDMs in (B). Axes are arbitrary but have been rotated for consistency across time bins. Gray lines between condition

icons are ‘‘rubber bands’’ whose thickness is based on the goodness of fit of the scaling. A relatively thinner, more ‘‘stretched’’ band between conditions indicates

that in a plot that fully captures neural geometry, the conditions would be closer together.

See also Video S2.
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cross-validated Mahalanobis distance with multivariate noise

correction.58 For visualization purposes, multi-dimensional

scaling (MDS) was used to scale the relationships captured in

the RDMs into two dimensions (Figure 2C).59

There is a high level of similarity between pairwise decoding

(Figure 2A) and the RDMs (Figure 2B) during touch encoding

(for the three consecutive time bins after touch onset, r > 0.89;

p < 1 3 10�12 in all cases, Bonferroni corrected). This similarity

is expected because both methods assess the discriminability

of neural activity averaged across conditions.
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In the 0.5 s prior to touch onset, distances between conditions

form a pattern that shares a mild correlation with activity after

touch onset; activity is most correlated between the �0.5 to

0 s RDM and the 1–1.5 s RDM (Figure 2B, Pearson correlations

between�0.5 and 0 s RDM and RDMs 0–2s, in chronological or-

der: r = 0.67, 0.61, 0.70, and 0.38; p = 3 3 10�11, 3 3 10�9, 1 3

10�12, and 5 3 10�4, Bonferroni corrected).

Once touch occurs, the initial RDM within 0–0.5 s after

touch onset contains a strong pattern that remains stable during

the touch and afterward, although it becomes weaker as time
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Figure 3. Generalization decoding results

(A) Effector was decoded across all pairs of touch types. For example, the bottom left square of each grid represents the average accuracy when a decoder is

trained to distinguish arm vs. finger on TP trials and tested on *FP trials. See also Video S3.

(B) Pairs of touch types were decoded, training on finger trials and testing on arm trials. For example, the bottom left square of each grid represents the average

accuracy when a decoder is trained to distinguish TP vs. *FP on finger trials and tested on arm trials. See also Video S4.

(C) The same procedure as in (B) except that training occurred on arm trials and testing on finger trials. See also Video S5. All decoders used 140 trials in training

and testing, respectively (70 of each effector). All statistics and plotting conventions are as in Figure 2A.
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elapses (Pearson correlations between 0 and 0.5 s RDM and

RDMs 0.5–2 s, in chronological order: r = 0.96, 0.86, and 0.62;

p = 2 3 10�43, 1 3 10�24, and 9 3 10�10, Bonferroni corrected).

Within the 0–0.5 s bin, touch types with only visual stimuli

(VrFP, TP, Obj) are less distinguishable and tightly grouped

together, whereas the physical touch types (*FP, *BL) are more

distinct from one another and therefore more spread out (two-

sample t test on distances within VrFP/TP/Obj vs. distances

within *FP/*vBL: p = 9 3 10�5).

*FP and *BL vary in their level of separation from the non-

physical touch types (Figure 2C, 0–0.5 s bin). *FP (mean =

0.17; SD = 0.03) is more distant to the non-physical touch types

than *BL (mean = 0.04; SD = 0.03). These sets of distances are

significantly different from each other (paired t test, p = 3 3

10�5). In addition, during and immediately after the touch,

*FP/*BL arm representations are grouped distinctly from the

finger representations: on the MDS plots (Figure 2C), arm con-

ditions are consistently grouped separately (above) from the

finger conditions.
Location and touch-type generalization decoding
To investigate whether body location information generalizes

across touch types, LDA classifiers were trained to differentiate

arm/finger conditions within one touch type and tested on

another (Figure 3A). During the touch (0–1 s), body location infor-

mation generalizes within physical touch conditions; it is

possible to train the classifier on *FP and decode body location

from *BL, or vice versa. The strongest decoding is achieved in

the 0–0.5 s bin by the decoder that trained on *BL and tested

on *FP (accuracy = 79.6% [68.6%–90%]). After touch offset,

generalization is no longer possible.

When the same decoding problem is performed in 0.1 s bins

(Video S3), the only significant accuracies are at 0.1–0.2 s after

touch onset for the same subset of conditions significant in the

0–0.5 s bin, indicating a small window of timewhen body location

can generalize strongly across touch types. The opposite ques-

tion was also interrogated: can a classifier trained on one body

location successfully decode the type of touch presented using

another body location? In this case, for classifiers that trained on
Cell Reports 42, 112312, April 25, 2023 5
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finger data and tested on armdata (Figure 3B) and classifiers that

trained on arm data and tested on finger data (Figure 3C), the

only significantly decodable instances occur in the 0–0.5 s

time bin.

Decoding is notably asymmetric between training on finger/

testing on arm and the opposite paradigm: *FP can be strongly

distinguished from all other conditions when training on finger

and testing on arm but cannot be significantly distinguished

from any conditions when training on arm and testing on finger.

In addition, there are smaller asymmetries in significance across

the two paradigms when distinguishing *BL from VrFP or TP. De-

coding in 0.1 s time bins is overall weaker and is significant only

in the 0.2–0.3 s time bin for training on finger and testing on arm

(Video S4), whereas training on arm and testing on finger never

reaches significance at any time point (Video S5).

Individual channel-tuning analysis
To investigate the tuning properties of individual channels within

the S1 arrays, linear regression analysis was performed in 0.5 s

bins aligned to touch onset. The most channels are tuned to

*FPa (34, 95% confidence interval [CI] = [30, 45] of 96 channels

total), a number significantly greater than the number of channels

tuned to *FPf (21 [18, 26]) or *BLa (13 [10, 22]; Figure 4A). *FPf

elicits more tuned channels than *BLf, which trails at 8 [6, 16]

channels. Of the non-physical touch conditions, only 1 [1, 8]

channel is tuned to VrFPf. The number of time bins that tuned

channels are responsive to a given condition is quantified (Fig-

ure 4B). No tuning to finger conditions occurs for longer than

two bins (1 s). *BLa tuning follows the same rule, but *FPa trials

elicit up to five bins (2.5 s) of responsive activity.

The overlap across tuned arm conditions within channels was

calculated (Figure 4C). Twenty-two channels are tuned to *FPa

solely, whereas 12 channels are tuned to *FPa and *BLa

together. Similarly, 13 channels are tuned to *FPf solely, whereas

7 channels are tuned to *FPf and *BLf together. In finger condi-

tions (Figure 4D), fewer channels are tuned overall. Within arm

and finger, channels are nearly all tuned to *FP conditions

(Figures 4C and 4D).

The overlap of tuned channels across all arm and finger condi-

tions was determined (Figure 4E). Overall, most channels are

tuned to both arm and finger (n = 19), whereas 16 channels are

tuned only to arm conditions. Only two channels are tuned to

solely finger conditions. Within touch types, a similar pattern

emerges. In *FP, 19 channels are tuned to both arm and finger,

15 to just arm, and 2 channels to just finger. In *BL, 6 channels

are tuned to arm and finger, 7 to just arm, and 2 to just finger.

Lastly, the position of tuned channels across all arm and finger

conditions was plotted on diagrams of the microelectrode arrays

(Figure 4F). Channels tuned to both arm and finger are clustered

together, surrounded by channels tuned to arm only. The two

exclusively finger-tuned channels are located on the opposite

array from the other channels.

The average tuned response curves of channels tuned to *FP

and *BL conditions were examined (Figure 5), calculated as de-

viation from the distribution of baseline activity: *FPa onset =

�25 ms (95% CI = �75, 75); *FPf onset = 125 ms (75, 125);

*BLa onset = 25 ms (25, 75); and *BLf onset = 75 ms (75, 125).

The average offset times of tuned activity were also determined,
6 Cell Reports 42, 112312, April 25, 2023
relative to onset of the touch stimulus: *FPa offset = 1,125 ms

(575, 1,575); *FPf offset = 825 ms (625, 875); *BLa offset =

875 ms (575, 925); and *BLf offset = 875 ms (525, 925).

Although there is substantial variance across trials and elec-

trodes, a major trend emerges from this analysis. Within *FP

and *BL, arm onset times always occur before finger onset times,

whereas offset times are similar across conditions with the

exception of the wide variance of *FPa (Figure 5A). Within arm

and within finger, onset times are not statistically different,

although the mean of *FPa onsets occurs slightly prior to touch

onset. In all conditions (Figure 5B), activity peaks sharply imme-

diately following touch onset, followed by a gradual decrement

of activity back to baseline.

DISCUSSION

To examine how S1 represents tactile events based on their

location and their multisensory context, electrophysiology data

from the putative area 1 of the S1 arm region were examined

(Figure 1A). Within arm and finger locations, touch types varying

in their tactile and visual content were tested (Table 1). It is worth

noting that the participant’s long-term tactile impairment could

have resulted in representations of touch in S1 that are altered

relative to healthy humans. This is unlikely to be a major effect

on the findings of this study, because recent work has shown

that topographic representations in S1 are highly preserved in

tetraplegic people, even years post-injury, although these repre-

sentations can weaken over time.60,61

Analysis of this rich, exploratory dataset suggested two main

conclusions about local neural activity where the multi-electrode

arrays were implanted: (1) this S1 area is specialized for arm rep-

resentations but is capable of representing touch information

from the finger in a more general manner, and (2) this S1 area

is modulated by vision during physical touches but is not acti-

vated by vision on its own.

Neural activity is specialized for arm touches and
represents finger touches more generally
Immediately after touch onset in FP* and BL*, arm conditions are

separated from finger conditions, based on neural activity visu-

alized using MDS (Figure 2C). This division based on touch loca-

tion continues until the touch ceases. *FP and *BL are both sepa-

rable by touch location, although *BL is significantly less

separable. This pattern is also evident in the linear decoding

analysis, where *FPa vs. *FPf is immediately highly decodable

on touch onset, whereas *BLa vs. *BLf is significantly decodable

only one time step (0.5 s) later (Figure 2A). *FPa can be distin-

guished from all other conditions for much longer than any other

condition, up to 1.5 s after touch onset, and is the first condition

to become decodable in the 0.1 s bin classifier (Video S2).

Despite *FP seeming to contain more robust location informa-

tion than *BL, classifiers trained on either *FP or *BL and tested

on the other to distinguish arm from finger trials achieve signifi-

cant decoding (Figure 3A). Locational information is therefore

sufficiently present in *BL conditions to allow for generalization

to and from *FP conditions. Through analysis of the 0.1 s bin de-

coders, it appears the bulk of this locational information is pre-

sent 0.1–0.2 s after touch onset.



BA

DC

# of 0.5s bins tuned in [-1 2]s range

#
of
ch
an
ne
ls

#
of
ch
an
ne
ls

*FP
*BL

VrFP
TP

*FP
*BL
VrFP
TP

*FP
*BL

VrFP
TP

n=13

n=1

n=1n=12

n=22

n=7

FE

overall *FP *BL

16 19 2 15 19 2 7 6 2
arm
both
finger
none

arm
finger***

**

*

*

***

*FP *BL VrFP TP

dorsal array caudal array

40

30

20

10

0

50

40

30

20

10

0 1 2 3 4 5 6

regnfimra

Figure 4. Tuning analysis

Channels selective for any touch modality (p < 0.05, Bonferroni-corrected linear regression analysis) at any time bin in the�1 to 2 s range relative to touch onset

were examined.

(A) Total number of channels tuned within arm and finger touch conditions. Asterisks indicate non-overlapping 95% CIs generated by bootstrapping trials to

calculate the distribution of tuned channels. *Significantly different 95% CIs; **97.5% CIs; ***99% CIs.

(B) Histogram indicating the range of time that channels were tuned. Tuning was performed in 0.5 s non-overlapping time bins (maximum bins a channel could be

tuned to in the �1 to 2 s range was 6).

(C) Circles indicate the specific set of modalities each channel was tuned to, within arm touch modalities, and have a diameter proportional to the number n

channels tuned to that set.

(D) Plotting as in (C) but based on finger touch conditions.

(E)Distributionof channels tuned to arm (solid line circle), finger (dashed line circle), or both, across all touch conditions (left) orwithin touch types (middle and right).

(F) Array map of implanted electrodes, indicating locational tuning across all conditions.
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Figure 5. Neural dynamics of tuned channels
(A) Onset and offset of channel tuning. Onset of tuning was calculated based on the average normalized firing rate across all tuned channels and condition trials,

as the first time bin where average activity exceeded the 95th percentile of the distribution of average baseline responses. Offset was calculated on the same data

as the first time bin to dip below the 95th percentile of baseline activity after the peak firing rate. Error bars represent 95% CI obtained by bootstrapping 10,000

times over trials (*FPa: n = 34 tuned channels; *FPf: n = 21; *BLa: n = 13; *BLf: n = 8).

(B) Average responses to individual conditions in the same tuned channels as (A), relative to touch onset (vertical black line at 0 s); touch offset is plotted as a

vertical black line at 1 s. Vertical dotted lines indicate onset and offset of response with colored background depicting 95% CIs.
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Although arm and finger touches are both represented in S1, an

asymmetry becomes apparent when training classifiers to decode

touch type while generalizing across body locations. In particular,

*FP trials can be distinguished from all other touch types when

classifiers are trained on finger data and tested on arm data (Fig-

ure 3B), but the reverse is not true (Figure 3C): *FP trials are indis-

tinguishable from other touch types when classifiers are trained

on arm data and tested on finger data. Because the data were re-

corded in a putative arm area, it is likely that this asymmetry is due

todifferent levels of encoding specificity. Arm touchesmaybe rep-

resented in a highly specific manner that does not generalize to

other touch locations, whereas finger touches (and potentially

touches from other areas) may be represented more generally as

they are outside of their primary topographic S1 location.

The tuning analysis further demonstrates the differences in arm

andfinger neural representations.More channels overall are tuned

to arm than finger conditions (Figure 4A), and *FPa trials elicit tun-

ing foruptofive timebins (2.5s),whereas *FPf tuning lastedonlyup

to two time bins (1 s; Figure 4B). The vast majority of tuned chan-

nelsareeither tuned tosolelyarmconditionsorbotharmandfinger

conditions (Figure 4E). Only two channels are tuned to solely finger

conditions, suggesting the bulk of the neural population recorded

is not selective to finger touches specifically but may be activated

by body touchesmore generally in addition to arm touches specif-

ically. *FP and *BL each contain roughly equivalent numbers of

channels tuned to solely arm or to both finger and arm, and very

few channels tuned solely to finger (Figure 4E). Onset analysis of
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*FP and *BL reveal a trend that appears to mesh with this pattern:

*FPaonset occurs0.15 sbefore *FPf onset, and *BLaonset occurs

0.05 s before *BLf (Figure 5A). In other words, arm conditions elicit

sharply tuned neural responses that begin before the tuned re-

sponses to finger conditions (Figure 5B).

To summarize, neural activity elicited by physical touches

delivered to the arm forms patterns distinct from the activity eli-

cited by touches to the finger. Individual channels tend to be

tuned to both arm and finger, or just arm conditions, but rarely

just finger conditions. Tuned activity starts earlier for arm condi-

tions than finger conditions. This evidence builds a picture of a

region of S1 that is primarily geared toward representing arm

touches. A neural sub-population of this region is also capable

of representing finger touches, albeit less strongly or specifically.

There could be several reasons for this difference between the

two tested locations. One is that, due to the spinal cord injury, the

participant was able to sense one location more strongly and

naturalistically than the other. The patient reported finger sensa-

tions to be more natural, yet neural finger representations were

weaker. This makes the participant’s uneven tactile impairment

an unlikely culprit for the differences in location encoding.

If thedifferencesbetweenarmandfinger representationsarenot

primarily due to differences in spinal cord damage and tactile

impairment, then theyare likelydue todifferences in the neural rep-

resentations of these locations. The distribution of tuned channels

appearsgeographically distributedwhenmapped to the implanted

micro-electrode arrays: the upper array contains the bulk of
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activity, with a nucleus of channels tuned to both arm and finger

conditions and a surrounding of channels tuned solely to arm con-

ditions (Figure 4F). The only two finger-specific channels are

located on the lower array. Cortical curvature may have resulted

in electrodes recording from varying cortical layers within S1.

From prior work with this participant, it is known that intracort-

ical microstimulation (ICMS) of the S1 arrays studied here elicits

cutaneous and proprioceptive sensations primarily in the arm,

with a much smaller number of sensations in the fingers.56 It is

likely the arrays, especially the dorsal array (Figure 4F), are

located in the arm region of area 1within S1. The neural response

to finger touches detailed here contribute to the growing litera-

ture suggesting that although S1 overall does maintain a gross

representation of the body along the lines of the homunculus

laid out in the earliest human cortical stimulation studies and

observed many times since,17–21 it also contains other more

complex levels of tactile representations.50–54 Most recently,

Muret et al.54 used magnetic resonance imaging (MRI) to show

that different body locations are represented in S1 in areas

beyond their primary topographic area both in area 3b specif-

ically and S1 overall. Our findings support and expand this

finding, indicating that S1 area 1 encodes highly specific and

rapid responses to touches through its established topography,

but tactile information from other anatomical areas outside this

topography may activate area 1 in a more general manner.

Visual information modulates neural activity if
accompanied by a physical stimulus
S1 neural activity is restricted to conditions that contain a phys-

ical tactile stimulus, and less than 2% of channels are tuned to

visual-only conditions (Figure 4A). Although several variations

on visual touches without physical stimuli were tested (VrFP,

TP, Obj), they are not represented in a discriminable manner

from one another in S1 (Figure 2). VrFP and TP do not elicit rep-

resentations of touch location information in S1 activity, whether

decoded in an identity or generalization problem (Figures 2A and

3A). Across all methods in this study, there is no detectable en-

coding of tactile information in S1 from purely visual stimuli.

In contrast, *FP trials contain visual information paired with a

physical stimulus and, immediately after touch onset, they can

be easily discriminated from all non-physical conditions and

from *BL trials that contain the same physical stimulus minus

the visual content (Figure 2A). The strong performance of *FPa

vs. *BLa and *FPf vs. *BLf classifiers indicate the presence of vi-

sual information is sufficient to change the touch encoding in S1.

Visual information also appears to affect the length of time a

touch representation occurs in S1, because *FPa is decodable

for much longer than any other condition.

RSA demonstrates that the pattern of responses immediately

prior to touch onset is mildly correlated with activity during the

touch itself, suggesting there is some effect of a visual approach

of a tactile stimulus before an expected touch occurs (Figure 2B).

However, a much stronger stable pattern of activity emerges

once the touch actually begins, as indicated by the correlations

between the RDM of the first 0.5 s and the following RDMs. This

relationship is evident in the MDS plots generated based on neu-

ral activity (Figure 2C). In the second following touch onset, *FP

and *BL conditions are separated from all other touch types and
from each other. In particular, *FPa and *FPf are highly dissoci-

ated from the other conditions. The presence of visual informa-

tion generalizes across touch location to some extent: a classi-

fier trained on finger trials can distinguish *FP vs. *BL in arm

trials, but not vice versa (Figures 3B and 3C). The ability to

decode visual information in a manner that generalizes across

body location also appears to be present quite late relative to

touch onset; the 0.1 s bin decoder achieves any significance

only in the 0.2–0.3 s time bin relative to touch onset. These find-

ings speak to amore general distinction between visual and blind

physical touches existing in S1 finger touches, which is over-

ridden by more specific information in arm touches that are not

able to generalize to other body parts.

There are large populations of channels tuned to *FPa and

*FPf, and within these populations there are sub-groups also

tuned to *BLa and *BLf, respectively (Figures 4C and 4D). Blind

and visual touches appear to activate the same population of

neurons, but touches with a visual component activate addi-

tional neurons on top of this population.

These results suggest that visual information is enough to

distinguish two otherwise identical physical touches in S1, but vi-

sual information on its own, whether it relates to oneself (VrFP),

another person (TP), or an inanimate object (Obj), is not sufficient

to engage S1. This finding is especially intriguing because

although it is clear that visual information affects experiences

of touch,11,38,62 a rapidly evolving scientific literature is still

deciding the role of vision in modulating S1.22,26,27,29–33,63

The results presented here examine the effect of vision on S1

using human electrophysiology, specifically in a highly localized

sub-region of S1, with high spatial resolution of spiking activity.

The bulk of prior literature has used functional MRI (fMRI),

MEG, and EEG to address this question, data that capture

whole-brain dynamics at a relatively low spatial resolution, and

likely include membrane potentials that do not produce spikes.

These experiments have for the most part examined S1 as a

whole, and results have varied, finding either that S1 has no

response to observed touch31–33 or does respond to observed

touch.22,27,29,30,63 From the studies examining Brodmann areas

more specifically, we see evidence that area 3b25 and areas 1

and 226 are capable of responding to observed touch. One po-

tential method to reconcile these findings and the results found

here in area 1 would be to examine the type of task employed.

The majority of experiments finding S1 modulation to

observed touches employ a touch-relevant task during data

collection, whether it be counting touches,24,29 answering qual-

itative questions about the touch type,23,25,26,30 or rating touch

intensity.22 The experiments that find no effect of observed touch

on S1 tend to employ either non-touch-related tasks31 or simply

ask participants to passively observe the stimuli.32,33 Thus it is

possible that a relevance threshold, modulated by higher-order

brain areas, must be exceeded in order for S1 to represent

observed touches.43 If this is true, the fact that S1 does not

respond to visual stimuli when the participant passively observes

touches in this study agrees with the existing literature, despite

the differences in data types. This effect could also explain

why visual information does modulate tactile representations of

physical touch: the physical component of the touch activates

S1 as it would in a blind touch, but additionally higher-order
Cell Reports 42, 112312, April 25, 2023 9
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areas integrate the visual input as sufficiently relevant to the

tactile input such that vision affects S1 simultaneously.

What might be the role of this modulation? It is known that

vision modulates experiences of touch in a variety of ways,

including effects such as visual enhancement of touch14,35–38

in which non-informative vision of a body part improves tactile

perception. Our results suggest that touch-relevant visual infor-

mation elicits an earlier tuned response over more neurons and

results in a representation of touches that are highly distinguish-

able in terms of location and multisensory content. All of these

attributes have the potential to contribute to visual enhancement

of touch. Indeed, these results agree with prior literature that has

suggested that S1 is modulated by paired visual and tactile stim-

uli,40–43,64,45,63,65,66 and has also shown that S1 is a necessary

component of body-centered visuotactile integration46–48 and

reflects predictions of tactile events from visual signals.67

S1 can be modulated by concepts as high level as affective

significance, as was shown in a study that examined the effect

of perceived gender of a person delivering a caress to heterosex-

ual men.62 S1 is also affected bymotor planning (presumably ex-

pecting the sensory consequences of upcoming actions)68,69

and by imagining touch sensations.70,71 It is likely that when S1

is modulated by visual information, it is not directly interacting

with the visual system but instead affected by upstream areas

that are implementing some version of a forward model to deter-

mine expected tactile inputs.

Conclusions
This study represents a broad exploration of how different types

and locations of touch affect a small area in theputativearm region

of S1. It contributes to the growing body of literature suggesting

that area 1 within S1 contains highly specific topographic organi-

zation as classically depicted, but additionally encodes touches

outside this topography in a less specific manner. We also find

that visual information depicting touches, either to oneself, to

another person, or to an object, are not sufficient to activate S1

in a measurable way. However, a blindly sensed physical touch

and a visually seen physical touch are represented distinguishably

in S1; both elicit strong responses that share commonalities, such

as how touch location is encoded, but they are not identical.

Taken as awhole, these findings demonstrate that S1 contains

a nuanced and complex encoding of tactile experiences that is to

some degree multisensory. Future endeavors should aim to

examine these same conditions in a larger population of individ-

uals, both healthy and with a variety of levels of sensorimotor

impairment. There are many practical applications for a better

understanding of S1, including the improvement of restorative

devices seeking to artificially generate tactile sensations in deaf-

ferented limbs and prosthetics.56,72–74 By better understanding

how naturalistic tactile sensations are encoded in S1, and how

they interact with cues from other sensory modalities, we can

improve our ability to generate biomimetic artificial stimuli.

Limitations of the study
The dataset examined here, although informative, is limited in

several ways. Recordings from more locations of S1 would have

allowed for a better understanding of the differences between

Brodmann areas 1, 2, 3a, and 3b within S1, as well as differences
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along the topographicmapwithin areas. Examining only two body

parts leaves room for the possibility that other body parts are rep-

resented differently than the ones tested; because array localiza-

tion was based on subjective ICMS responses,56 these locations

have some uncertainty and limited precision. Visual information

within the task may have contributed to a variety of processes,

including expectation/prediction of touch onset, face processing,

peri-personal space processing, and attentional factors. The

different conditions tested here may be more or less salient, but

these differences occur as part of our biologically relevant task

design, and part of the experiment was explicitly addressing how

different visuotactile contexts affect S1. Data fromonly one partic-

ipant can confound individual differences with population trends,

and although unlikely, it is possible the participant’s spinal cord

injury has caused some remapping of S1.60,61 Finally, due to re-

strictions on data collection, recordings were collected over the

course of 6 months, and some conditions were tested in separate

sessions, whichmay have affected decoding and introduced con-

founds associated with neural recordings drifting over time.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Isabelle A.

Rosenthal (rosenthalia@caltech.edu).

Materials availability
This study did not generate any new unique reagents.

Data and code availability
d Original data is available at Zenodo and is publically available as of the date of publication. The DOI is listed in the key resources

table.

d All original code has been deposited at Zenodo and is publically available as of the date of publication. The DOI is listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

A C5-level incomplete tetraplegic participant (male, 32 years old) was recruited and consented for a brain-machine interface (BMI)

clinical trial including intracortical recording and stimulation. At the beginning of data collection, the participant was 6.5 years post-

injury and 5 years post-implant. All procedures were approved by the Institutional Review Boards (IRB) of the California Institute of

Technology, University of Southern California, and Rancho Los Amigos National Rehabilitation Hospital.

METHOD DETAILS

Implants
The participant was implanted with microelectrode arrays in three locations in the left hemisphere: the supra-marginal gyrus (SMG),

ventral premotor cortex (PMv), and primary somatosensory cortex (S1) (Figure 1A). This paper only examines data in S1, which was

recorded using two 48-channel 1.5mm SIROF-tipped (sputtered iridium oxide film) microelectrode arrays (Blackrock Microsystems,

Salt Lake City, UT). Given the curvature of sensorimotor cortex and the need to implant arrays on the gyral surface, it is likely the S1

micro-electrode arrays are located in Brodmann area 1 (BA 1). Additional details pertaining to the arrays and the specifics of surgical

planning are described in.56
14 Cell Reports 42, 112312, April 25, 2023

mailto:rosenthalia@caltech.edu
https://doi.org/10.5281/zenodo.7470655
https://doi.org/10.5281/zenodo.7470579
http://www.mathworks.com
https://github.com/rsagroup/rsatoolbox
https://github.com/rsagroup/rsatoolbox_matlab
https://github.com/rsagroup/rsatoolbox_matlab
https://unity.com/
https://github.com/microsoft/Microsoft-Rocketbox/
https://github.com/microsoft/Microsoft-Rocketbox/
https://blackrockneurotech.com/


Article
ll

OPEN ACCESS
Experimental paradigm
Two anatomical locations were examined across a set of tactile and visual conditions. The two locations selected were a ‘‘finger’’

location on the back of the thumb where the participant reported naturalistic sensations, and an ‘‘arm’’ location near the back of

the elbow where the participant reported numb sensation. These locations were selected on the basis of a preliminary mapping

of the participant’s tactile capabilities on the arm and hand using Semmes-Weinstein filaments at varying strengths, which took place

two days prior to the first experimental session.

Although the different task conditions (Table 1) did not all include both a physical and a visual component, all employed the same

style of touch: a 1-second stroke over approximately 6cm of skin. The touch was delivered by a plastic rod (or a virtual facsimile of

one), built in-house, which had a raised button on one end (1.5 x 2 cm) that was passed along the touch location. The rod housed a

load cell which was used to record the pressure applied and align the onset of touch to neural recordings.

Each trial consisted of an inter-trial-interval (ITI) of 5s with an additional 0-3s jitter, followed by a 1s touch stimulus and 1s post-

touch phase. In trials with a visual component (approach towards the touch target), this component began approximately 0.5s before

touch onset. The experimenter performing the touch was positioned at approximately a one o’clock position relative to the partici-

pant’s head, such that the participant could clearly see the experimenter and the approach trajectory of the touch stimulus (Figure 1C

and Video S1). The uniform and direct nature of the approach trajectory meant that the participant could approximately anticipate

when a touch would begin using visual information once the approach began. A total of 11 conditions were examined, incorporating

6 touch types and 3 touch locations (Table 1).

Data collection
Neural data was recorded from eachmicroelectrode array using a 128-channel Neural Signal Processor (BlackrockMicrosystems) as

30,000 Hz broadband signals. Data was collected in 8 sessions over 6 months, in two sets (see Table 1 for task condition descrip-

tions). In the first set, the participant observed real physical touches to his body in first person (*FP), the same touches delivered to

someone else (third person; TP), and touches to an inanimate object (Obj). This set was collected over the first two months in 4 ses-

sions with up to 3 weeks between sessions. In the second set, the participant experienced real physical touches without visual touch

information (blind; *BL), and saw touches being delivered to him in first person using virtual reality, without any physical touch compo-

nent (VrFP). The second set was collected over the third to sixth months in 4 sessions with up to 9 weeks between sessions.

Within a session, data was collected in series of 11-trial runs. Each run contained 10 trials of the same condition and one catch trial.

Within the two sets, runs were pseudorandomly shuffled so there were no two runs of the same condition back to back in any session.

1-2 runs of each condition within a set were collected in each session. 70 trials (7 runs) were collected in every condition. At the start of

each run, the participant was informed which type of stimuli would be delivered and was instructed to attend to the stimuli while visu-

ally fixating on the touch location except for BL trials in which he fixated on a non-informative dot centered in his field of view.

In third person (TP) trials, the third person being touched (an experimenter familiar to the participant) was positioned so their arm

and hand were adjacent and parallel to the participant’s own arm and hand. In object (Obj) trials, the participant observed a wooden

block approximately the size of his hand being touched along its flat surface while it lay on a desk in front of him.

The conditions in set two required a virtual reality headset; a Vive Pro Eye was used to display a virtual environment run with Unity,

which closely mimicked the data collection room and gave the participant a first-person perspective over a virtual body with a size,

gender, and posture reflecting his own body. In the virtual environment, a virtual experimenter was animated to deliver touches in a

manner resembling the real experimenter (Figure 1C, Video S1). The human avatar for the virtual experimenter was taken from the

Microsoft Rocketbox Avatar Library75 (https://github.com/microsoft/Microsoft-Rocketbox/). For *BL conditions, the headset was

used as a blindfold, and displayed a non-informative white dot in the center of a black field of view which the participant was in-

structed to fixate on.

To verify that the fundamentals of the neural signal remained unchanged across the two sets, SNRwas analyzed using two different

metrics. 1) In every run, the ratio of themeanwaveform’s peak value on each channel to the rootmean square of the noise estimate for

that channel was computed. 2) The ratio of the mean waveform on each channel to the standard deviation of the waveform within

every run was also computed. Both these metrics were averaged across runs within each set; neither metric was different across

the two sets (Wilcoxon sign rank test, 1) p=0.28; 2) p=0.08).

The mean and standard deviation of ITI firing rates taken from the time period [4s to 1s] before each touch stimulus began, were

also examined. All firing rates were normalized by dividing by themean of the baseline within a run, then averaged across all trials and

runs within a set and compared across sets. Both the mean (Wilcoxon sign rank test, p=0.18) and the standard deviation (p=0.53) of

ITI firing rates were not significantly different between sets.

Althoughoutside thescopeof thispaper, additional conditionswerecollectedalongwith theonesanalyzedhere. Inset one,conditions

in which the participant imagined the touches being delivered without any external tactile stimuli were also obtained. In set two, a touch

type identical to VrFP except that the participant’s virtual bodywas composed of abstract blocks rather than a realistic human bodywas

collected, and a condition in which the participant viewed an inanimate object being touched in virtual reality was also acquired.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed using MATLAB R2019b (MathWorks, Natick, MA) unless otherwise indicated.
Cell Reports 42, 112312, April 25, 2023 15

https://github.com/microsoft/Microsoft-Rocketbox/


Article
ll

OPEN ACCESS
Preprocessing and temporal alignment of data
Firing rates for each electrode were extracted in 50ms bins from the broadband signal in a multi-unit, unsorted fashion,76,77 using a

threshold of -3.5 times the noise RMS of the continuous signal voltage. This multi-unit channel activity was aligned within each trial to

the physical or virtual moment of contact between the touch sensor and the item being touched (i.e. touch onset). In conditions with a

physical touch component, touch onset was calculated using the pressure readings obtained from the rod used to deliver touches; in

conditions with only a virtual touch component, touch onset was calculated using the timing of Unity animations.

To normalize firing rates, within each run and each channel, a mean baseline firing rate was calculated from the time period 4s to

2.5s prior to each touch onset and averaged across trials. The firing rates of each channel at every time point were divided by this

baseline.

Decoding analysis
Linear Discriminant Analysis (LDA) pairwise classifiers were used to probe the linearly decodable information within and across task

conditions (Figures 2A and 3). Normalized firing rate data was binned into either 0.5s or 0.1s bins, depending on the analysis. Within

each bin, data was randomly split equally into train/test partitions, regardless of session collected. This split occurred 1000 times and

was balanced each time to include equal numbers of trials from every condition tested (70 trials per condition = 35 trials each in train

and test).

Singular value decomposition (SVD) was used to perform dimensionality reduction on the initial 96 multi-unit channels of the

training dataset. Average firing rate data from both train and test datasets in each bin was projected on the top 40 features capturing

the most variance in the training data.

LDA classifiers were fit to the resulting data using MATLAB’s fitcdiscr function across the 1000 iterations. The overall performance

of each classifier was taken as the average performance and 95% confidence intervals on this estimate were taken from the distri-

bution of accuracies across iterations. This analysis was repeated on a null dataset in which condition labels were shuffled across

trials in order to generate chance-level performance of the classifier. Significance was calculated by comparing the accuracy percen-

tile values of the classifiers with their null counterparts.

RSA and MDS
Representational Similarity Analysis (RSA) was employed on normalized firing rate data to assess the relationships between touch

conditions (Figures 2B and 2C).57,59 Cross-validated Mahalanobis distance with multivariate noise normalization was used as the

measure of dissimilarity.58 The noise covariance matrix was estimated from the data and regularized toward a diagonal matrix to

ensure that it would be invertible. The cross-validatedMahalanobis distance is an unbiasedmeasure of squareMahalanobis distance

with the added benefit of having ameaningful zero-point.58,78 The larger theMahalanobis distance between two conditions, themore

discriminable their neural patterns. If the patterns are fully indiscriminable, their distance is 0. This continuous measure is directly

related to discrete classification performancewith pairwise LDA. Cross-validatedMahalanobis distance is thus less affected by com-

mon activation patterns across conditions in comparison to other measures such as Pearson correlation. The python package

rsatoolbox (https://github.com/rsagroup/rsatoolbox) was used to compute noise covariance and generate representational dissim-

ilarity matrices (RDMs).

Datawas cross-validated across 7 splits, divided by the 10-trial runs the datawas originally collected in, and RDMswere generated

independently on data divided into 0.5s bins. The resulting RDMs were symmetric across the diagonal, with meaningless values on

the diagonal itself.

RDMs were visualized with multi-dimensional scaling (MDS) using the MATLAB toolbox rsatoolbox (https://github.com/rsagroup/

rsatoolbox_matlab).59 MDS allows for distances in RDMs to be visualized intuitively in a lower-dimensional space while preserving

these distances as much as possible. The MDS visualizations used a metric stress criterion to arrange conditions without assuming

any category structure a priori. The stress is visualized on MDS plots (Figure 2C) in the form of gray ‘‘rubber bands’’ stretched be-

tween points – the thinner the band, the more the true distances between points are distorted by the low dimensional MDS mapping

to be further apart than in the high dimensional RDM.

Tuning and onset analysis
Tuning properties of multi-unit channels were assessed via linear regression analysis. In each 500ms bin corresponding to 1s before

touch onset to 2s after touch onset, normalized firing rates for each channel were fit to a linear regression model based on the

following equation:

F = b0 + b1X1 + b2X2 +. bCXC

where F = vector of firing rates on each trial, X = one-hot-encoded matrix signaling condition identity for each trial, b = estimated

regression coefficients indicating level of tuning to each condition, andC= number of conditions tested. In addition to data from every

trial, F also included 70 entries (to match the number of trials per condition), corresponding to b0, containing the baseline firing rate of

the channel across all trials. This baseline was calculated as a mean of channel activity 4s–2.5s before touch onset in every trial. For

each channel and condition fit with linear regression, a student’s t test was performed to assess the null hypothesis b = 0. If the null

hypothesis was rejected, the channel was determined to be tuned to that condition in comparison to its baseline firing rate. p values
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were corrected for multiple comparisons using the Bonferroni-Holm method within each channel.

A bootstrap analysis was run for 1000 iterations, in which all conditions were randomly sampled with replacement to yield 70 trials

each, to assess significant differences in numbers of tuned channels across conditions (Figure 4).

The channels identified as tuned to any condition in the period of 1s before touch onset to 2s after touch onset were analyzed to

determine the average timing onsets and offsets of their tuned responses. Within a condition, firing rates of all tuned channels were

averaged together in 50ms bins, and the 95th percentile of the distribution of average baseline firing rates was computed. The onset

time for the condition was themiddle of the first time bin in which the firing rate rose above the 95th percentile of the average baseline.

The offset timewas calculated as themiddle of the first time bin in which the firing rate dipped below the 95th percentile of the average

baseline, after onset. 95%confidence intervals were constructed for the onset and offset times by bootstrapping over trials within the

tuned channels 10,000 times.

ADDITIONAL RESOURCES

The data in this manuscript was collected as part of a clinical trial (NCT01964261).

Clinical trial registry link: https://clinicaltrials.gov/ct2/show/NCT01964261.
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