
ARTICLE

The human primary somatosensory cortex encodes
imagined movement in the absence of sensory
information
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Richard Alan Andersen1,2

Classical systems neuroscience positions primary sensory areas as early feed-forward pro-

cessing stations for refining incoming sensory information. This view may oversimplify their

role given extensive bi-directional connectivity with multimodal cortical and subcortical

regions. Here we show that single units in human primary somatosensory cortex encode

imagined reaches in a cognitive motor task, but not other sensory–motor variables such as

movement plans or imagined arm position. A population reference-frame analysis demon-

strates coding relative to the cued starting hand location suggesting that imagined reaching

movements are encoded relative to imagined limb position. These results imply a potential

role for primary somatosensory cortex in cognitive imagery, engagement during motor

production in the absence of sensation or expected sensation, and suggest that somato-

sensory cortex can provide control signals for future neural prosthetic systems.
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Somatosensory cortex (S1) is largely studied and understood
in its role as the primary sensory region for processing
somatic sensory signals from the body1,2. However, recent

work highlights a more direct role in motor production: S1
neurons can respond to passive movements alone, active move-
ments alone, or both3,4 and neurons become activated prior to
movement initiation3–5. S1 neurons project to the spinal cord6,7,
and electrical or optical stimulation of S1 elicits motor move-
ments2,8,9. These results suggest a direct role of S1 in the pro-
duction of motor behavior. However, in many of these studies, it
is hard to dissociate whether neural signals reflect motor variables
or aspects of sensory processing.

To understand if S1 processes reach intentions in the complete
absence of sensation or expected sensation, we recorded neural
activity from S1 while a tetrapalegic human participant imagined
reaching. Recordings were made from multi-channel microelec-
trode arrays implanted in S1 as part of an ongoing clinical trial
that showed that microstimulation delivered through these same
multi-channel arrays evokes localized and naturalistic cutaneous
and proprioceptive sensations10. The imagined reaching task
systematically manipulated fixation, imagined initial hand, and
reach target locations at distinct points in the trial11,12. We found
that S1 neurons encoded movement direction during motor
imagery, but did not encode motor plans or imagined arm
position. These results establish engagement of S1 during
cognitive-motor behavior in the absence of sensations or expected
sensations.

Results
We recorded 652 channels of single and multiunit activity from
multi-channel electrode arrays implanted in S1 of the left hemi-
sphere (Fig. 1a) of a 34-year-old tetraplegic male (FG) during a
delayed imagined reaching task. Our paradigm (Fig. 1b), adapted
from previous non-human primate (NHP) studies11,12, system-
atically manipulated fixation, imagined initial hand, and reach
target locations. Importantly, the participant is capable of moving
his eyes and thus can direct his gaze to the fixation targets.
However, the paralyzed participant did not move his arm, but
instead used motor imagery to imagine moving his right (con-
tralateral) hand to the initial hand cue location and subsequently
imagined moving it to the final target. This design allowed us to,
one, understand how activity in S1 relates to storing information
about arm location, movement plans, and movement execution,
and two, characterize the reference frame of these signals, i.e.
whether movement variables are coded relative to the initial
imagined position of the hand, relative to the eyes, or relative to
the body or world.

Single neurons in human primary sensory cortex are engaged
by motor imagery. We performed a sliding window analysis to
determine whether and when neurons in S1 become active for our
cognitive-motor task. For each unit, we used a linear model with
interactions to explain firing rate as a function of fixation, initial
imagined hand, and target locations (Fig. 1c, p < 0.05 FDR cor-
rected for number of units per time slice, window size: 500 ms,
step size: 100 ms). We found negligible selectivity following
cueing of the hand and eye positions indicating no neural coding
for true eye position or the imagined position of the arm. We also
found negligible selectivity following target presentation, indi-
cating no encoding of the spatial location of the target or plan-
ning activity related to the upcoming imagined motor action.
Finally, we found that a significant proportion of the population
was selective following the instruction to initiate the imagined
reach. Thus, the sensory cortex is engaged during a cognitive-

motor task despite the absence of overt movement and sensory
feedback, but only during imagined movement of the limb.

Imagined movements are coded relative to the initial hand
position cue. We found that nearly all the neurons selective
during the movement execution phase coded movement as the
reach vector: the direction of imagined movement of the hand. In
other words, selective units coded the location of the target
relative to the hand position cue used to instruct the initial

Fig. 1 Behavioral task, electrode array location, and percent of the neural
population recruited during task epochs. a Group-average brain map (left)
and brain of subject FG (right) showing location of implanted
microelectrode array (red circle) and Brodmann Area 1 (blue shading) in
the left hemisphere. b Task progression of delayed reference frame
reaching task testing all unique combinations of four gaze, hand, and target
positions (green inset). Geometry of the reference frame task (blue inset).
c Percent of task selective units (mean ± SEM p < 0.05, FDR corrected, n=
652 recorded units). The firing rate of each unit was modeled as a linear
function of eye, hand, and target locations and their respective interactions
using a sliding window analysis. Units were considered selective if the p-
value of the linear fit was significant after false-discovery rate correction.
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imagined hand position (or, by symmetry, hand position cue
relative to the target). This result was found using a gradient
analysis pioneered in NHPs11,12; neural responses for each unit
were organized into response matrices where the firing rate is
coded for each hand, eye, and target position. A gradient field is
then computed which describes how the firing rate is dependent
on changes in the three behavioral variables. This dependency is
defined along three axes: these axes define how firing rate changes
when (1) gaze position changes relative to hand position (and vice
versa), (2) gaze position changes relative to target position (and
vice versa), and (3) hand position changes relative to target
position (and vice versa). Finally, the dependencies are sum-
marized as the resultant, or vector sum, of the gradient field for
each of the variable combinations. Critically, the reference frame
can only be characterized by the pattern of resultants computed
for all three combinations of variables. For example, the triplet of
values can be used to determine whether neural activity encodes
target position relative to gaze position (T-G), the target position
relative to the hand (T-H), the hand position relative to gaze
direction (H-G), or some combination of these vectors (Supple-
mentary Fig. 1). A representative neuron coding the position of
the target relative to the hand cue and its associated response
matrix is shown in Fig. 2a, b. The response matrix is computed
from the window of activity following the go cue. Note that
looking at the resultant of any one variable pair can be mis-
leading. For instance, in Fig. 2b, the resultant for the gaze and
hand combinations shows coding of hand independent of gaze
and might be taken to imply neural encoding of hand position.
However, the resultant for the hand and target combination
shows that any coding for hand position is actually expressed as
an encoding of the relative location of the hand and target. Taken
together, the unit encodes the relative location of the hand and
target, essentially independent of eye position; all three resultants
must be considered together. Figure 3 shows the population
distribution of response gradient angles computed during the
execution epoch for all units with a selective response, based on a
linear tuning analysis. The results show that selective units in the

recorded neural population strongly encode the reach vector
given that essentially all units encode hand relative to target.

To verify that this interpretation is an adequate summary of S1
encoding, we used complex principal component analysis (cPCA)
to characterize the temporal dynamics of the reference frame of
the population as a whole (Supplementary Fig. 2). The gradient
analysis described above summarizes the sensitivity of a neuron
to behavioral variables using the resultant of the gradient, a 2D
vector that can be described by a length and angle. We used cPCA
for its capability to handle vector data samples, i.e. described by
both a length and angle for each observation13. We found that
coding of the reach vector strengthens and peaks around 750 ms
after the cue to execute the imagined reach (Fig. 4a). Further, only
the first cPCA component was significant based on a parallel
analysis, a procedure that determines the significance of
components by comparing eigenvalues from the recorded dataset
versus a random control dataset of the same dimensionality (e.g.
p variables and n samples) (parallel analysis14,15, α < 0.05). This
population analysis supports the finding that neural activity

Fig. 2 Example S1 Unit illustrating selective responses and response matrices. a Peristimulus time histograms for all 64 conditions (3 trials; mean ±
SEM). Each of the 16 subplots shows the response of the unit to a particular combination of eye, hand, and target position. b Response matrices, gradient
field, and gradient resultant orientations for the cell shown in panel a during the execution epoch.

Fig. 3 Population summary of single unit gradient analysis. Histograms
show gradient resultant orientations for the population of tuned units.
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correlated with imagined reaching in S1 is dominated by a single
homogeneous representation of the reach vector.

Neural population activity enables decoding of imagined
movement direction. Neural encoding of the reach vector can be
used to decode the subject’s motor intent relative to the starting
location of the effector (Fig. 4b). Ensuring that the neural
decoding is designed to interpret neural activity in the correct
reference frame is essential to accurate estimation (Supplemen-
tary Fig. 3). The geometry of initial hand positions and target
locations for our task was selected to determine the reference
frame of reach encoding. Importantly, this means that the same
target is associated with multiple reach vectors. For this reason,
decoding target locations without accounting for initial hand
location results in poor classification performance (Supplemen-
tary Fig. 3a). To ensure that classification analysis was optimized
for decoding the reach vector (i.e. in a hand centered frame), we
sub-selected trials with equivalent reach directions and angular
separation for classification analysis (Supplementary Fig. 4b). We
found that S1 encodes movements accurately with ~92% accuracy
for targets separated by 26° and 97% accuracy for reach vectors
separated by 44° (Supplementary Fig. 3 and Supplementary
Fig. 4).

Discussion
Contributions of S1 to motor execution. While the current
study demonstrates that S1 is engaged during cognitive imagery,
the role of S1 during motor execution remains an open question.
It is believed that regions homologous to S1 were the first to bring
motor behavior under cortical control16,17. In mice, S1 plays a

direct role in controlling certain classes of behavior such as
whisker retraction9. NHP S1 contains monosynaptic descending
projections to motor output regions of the spinal cord and thus is
able to directly influence motor behavior7. These results are
consistent with the possibility that the reported S1 responses may
play a relatively direct role in motor production, presumably
complimentary to other descending motor systems such as pri-
mary motor cortex. S1 also has reciprocal connections with the
motor cortex, and thus S1 activity may reflect an efference copy of
execution signals originating from motor cortices18. This could
mediate coordination for descending control and/or may play a
role in processing afferent sensory inflow. Lesions to human or
NHP S1, while preserving the basic ability to move, nonetheless
result in profound motor deficits19. Whether these deficits are
exclusively related to difficulties in planning and executing
movements in the absence of sensory input or also reflects a
direct loss of cortex responsible for motor production remains
unclear20.

Interpreting the percent of selective units. This study establishes
that S1 encodes the direction of imagined reaches relative to the
starting location of the effector. However, the spatial layout of the
task, while well designed for the study of spatial reference
frames11,12, involves a highly restricted angular range of move-
ment directions (e.g. up, up and to the right, up and to the left).
As a consequence, our study likely underestimates the percentage
of the S1 neural population selective for imagined movements.
For example, neurons with preferred directions of down and to
the right, or in and out of the movement plane, will likely not
show up as significant in our study. Further, recent single-unit
studies in humans have shown that localized populations of
neurons are selective for multiple segments of the body and these
different segments engage distinct populations of neurons21–23.
Future studies, testing more effectors and a fuller range of
movements, are necessary to better estimate absolute percentages
of S1 populations engaged by motor imagery.

Do neural signals reflect the correlates of motor imagery.
Interpreting neural representations during imagery presents
challenges due to the inability to directly determine what the
subject is imagining. For example, in our study we ask the subject
first to imagine his hand at the hand position cue and then to
imagine moving his hand to the instructed target. However, we
are unable to independently verify that the participant is per-
forming the task as instructed. This opens the possibility that
neural signals in S1 may not be coding imagined arm movements
per se, but instead generalized effectors movements, cognitive
spatial variables, or other correlates of motor behavior. However,
our previous results studying imagery at the level of single neu-
rons in humans show effector movement imagery recruits
responses in the same cells that also respond to the actual
movement of the effector and that imagery of different effectors
engages distinct populations of neurons21,22. These results argue
that neural responses can be interpreted as the correlates of
imagery involving specific effector movements. These results are
not specific to spinal cord injured subjects as work in motor intact
individuals demonstrate a shared neural substrate between overt
and imagined actions24. Further, the highly specific timing of
neural encoding, strong parametric modulation by intention, and
high trial-to-trial consistency of responses (as evidenced by high
classification accuracy) support consistent trial to trial com-
pliance by the participant. Taken together, S1 signals likely reflect
the correlate of imagined movement of the arm with respect to its
starting location.

Fig. 4 Population dynamics of movement variable encoding. a Temporal
evolution of reference frame encoding across the population of S1 units.
Only the first component (shown) was significant (p < 0.05; parallel
analysis). Arrow length, width, and color shows tuning strength. Schematic
illustration of population gradient analysis is shown in Supplementary
Figure 2. b Offline analysis depicting cross-validated classification of reach
direction initiated from the middle two hand positions to targets located
above, to the right, and to the left of the starting hand position (see
Supplementary Fig. 3 and Supplementary Fig. 4 for classification details).
Sliding window classification performed on a 500-ms window stepped at
100ms and is shown with mean and 95% bootstrapped confidence interval.
Dashed horizontal black line shows chance accuracy (33%).
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Motor imagery in primary somatosensory cortex. To our
knowledge, our study is the first to probe single neuron responses
to motor imagery in the primary somatosensory cortex of a
human subject. Previous work has studied imagery using func-
tional neuroimaging and generally shows either a strong reduc-
tion of activity when comparing imagined to executed actions25–
27 or no significant activation28,29. A reduction in neural
responses to imagery should be expected given the absence of
peripheral sensory input, the primary driving inputs to the region.
From this perspective, it is somewhat surprising that single units
demonstrate the degree of temporal and spatial precision
demonstrated in this study. A possible concern is that our results
are unique to individuals who have lost their main peripheral
input due to spinal cord injury. However, recent findings from
our lab and others have shown these representations are largely
stable and reorganization does not result in the production of
novel functional responses10,30–32. Further, our results are con-
sistent with studies in motor intact preparations demonstrating
movement-related activity3–5,9. Finally, as discussed above, fMRI
frequently reveals imagery related activity in S1. Thus, we do not
think our results are primarily a function of loss of peripheral
input, although it is possible that spinal cord injury may enhance
responses in primary sensory cortices33,34.

S1 as a potential source of neural prosthetic signals. We placed
electrode arrays in S1 to provide somatic sensations using elec-
trical stimulation. Intriguingly, directional selectivity and the
ability to accurately classify movement direction suggests that S1
can also be used to control a neural prosthetic or augment control
signals from additional brain regions35–37. However, important
questions about the viability and performance of S1 signals for
closed-loop neural control remain. For example, the current study
does not demonstrate that S1 encodes dynamic properties of
movements such as speed or that S1 can simultaneously encode
multiple control signals that would enable more complex beha-
viors such as control of cursor movements and clicking. The
properties of S1 signals during closed-loop control remains an
important and unexplored question that will require future study.

Conclusion
Our study challenges the classical understanding of S1 as an early
cortical processing station for incoming sensory information by
providing evidence for a possible role in motor production and
cognition. S1 neurons tracked motor execution intentions in the
complete absence of sensation exclusively during imagined
execution. We found negligible activity while the subject main-
tained the position of the limb in memory, fixated distinct targets,
or planned movements. S1 activity coded intended movements
relative to the imagined initial state of the effector. This activity
accurately predicted movement direction and thus may provide
neural signals that can assist in the closed-loop neural control of
prosthetic effectors.

Methods
Participant Information. Neural recordings were made from participant FG, a
tetraplegic 32-year-old male with a complete C5/C6 spinal cord injury. FG was
implanted 1.5 years post-injury for a clinical trial of a BMI system consisting of
intracortical stimulation and recording. Neural recordings for the current study
were acquired 1-year post-implantation. All of subject FG’s sensations and motor
ability are consistent with the level of the sustained injury. The subject remains
intact for all other motor control and sensations above the level of injury. Surgical
implantation took place at Keck Hospital of USC.

Experiments were conducted in the framework of an ongoing neural prosthetics
clinical study (ClinicalTrials.gov identifier: NCT01964261) and were in compliance
with all relevant clinical regulations. We obtained informed consent after
explaining the objectives of the study and the possible risks involved. The study and
all procedures were approved by the Institutional Review Boards (IRB) of the

California Institute of Technology (Caltech), the University of Southern California
(USC), and Rancho Los Amigos National Rehabilitation Hospital (RLA).

Surgical planning and implantation. In brief, functional magnetic resonance
imaging (fMRI) was used to measure the BOLD response while FG performed
imagined reaching and grasping movements in response to visual cues10,22. The
statistical parametric analysis guided the selection of implant locations in the left
hemisphere of the ventral portion of the premotor cortex (PMv), the supramarginal
gyrus (SMG), and the somatosensory cortex (S1). PMv and SMG were implanted
with 96-channel Neuroport microelectrode arrays (Blackrock Microsystems, Salt
Lake City, UT). S1 was implanted with two 7×7 microelectrode arrays (48 channels
per array, Blackrock Microsystems, Salt Lake City, UT) on the post-central gyrus.
Figure 1b shows the implantation locations for the two arrays. In addition, we
estimated the anatomical location of the implantation of S1 in terms of Brod-
mann’s Area. To this end, we used Freesurfer38 to perform a surface reconstruction
of the individual subject’s anatomy. The subject’s anatomy was then registered to
the 164K fs-lr group-average template using Connectome Workbench39. The
subject’s implants were determined to be localized to Brodmann’s Area 1 (BA1)
according to the composite template of Van Essen et al 201239 as visualized within
Connectome Workbench. Localizing the areal boundaries of BA1 within the
individual subject requires the registration of the individual subject’s surface
anatomy to a group-average atlas. We therefore show implant locations both as
they appear on the individual subject’s brain surface as well as where the arrays are
estimated to be located on the fs-lr group-average template brain (Fig. 1a).

Reference frame task. Experimental sessions with subject FG were performed at
Rancho Los Amigos National Rehabilitation Center (RLA). FG performed the task
in a dimly lit room seated in his motorized wheelchair. Task stimuli were viewed
on a 47-inch LCD monitor with the screen occupying approximately 45° of visual
angle. The subject was asked to minimize head movements throughout the task. At
the beginning of each trial, FG was presented with a fixation cue and a hand
position cue. Each cue could be positioned at one of four locations resulting in 16
possible hand and eye configurations. FG was able to move his eyes and thus fixate
the fixation cue as verified using eye tracking. In contrast, FG did not position his
actual hand at the location of the hand cue, but instead FG imagined moving his
right (contralateral) hand to the cued location and maintained imagery of his hand
until he was cued to make a reach (Fig. 1b, “go” cue). After 3 s a reach target cue
was shown at one of four spatial locations arranged parallel to and above the cued
eye and hand positions. The target cue was shown for 1.25 s during which the
subject continued to hold their gaze and imagined hand positions. A change in the
color of the fixation marker instructed the subject to begin an imagined reach to
the cued target location. The subject was asked to make an imagined reach and
maintain the imagined ending position (target location) until the execution epoch
was over (2 s). The execution epoch was then followed by an inter-trial interval
(ITI) of 2 s. A schematic representation of the task is shown in Fig. 1b.

Experimental data were collected in three experimental runs. Each run
consisted of a total of 64 trials, one trial for each unique combination of the four
eye, hand, and target positions. This resulted in 192 total trials, 3 repetitions for
each unique trial type. Each experimental session was separated out by at least
a week.

Neural Recordings. Neural activity from each array was amplified, digitized, and
recorded at 30 kHz using the Neuroport neural signal processor (NSP). The
Neuroport system, comprised of the arrays and NSP, has received FDA clearance
for less than 30 days of acute recordings. However, for purposes of this study we
received FDA IDE clearance for extending the duration of the implant (IDE
number: G130100).

Putative waveforms were detected at thresholds of −3.5 times the root-mean-
square after high pass filtering the full bandwidth signal (sampled at 30 kHz), using
the Blackrock Central software suite (Blackrock Microsystems). Waveforms
consisted of 48 samples, 10 prior to threshold crossing and 38 samples after. These
recordings were then sorted (both single and multiunit) using k-mediods clustering
using the gap criteria to estimate the total number of clusters21,40. Offline sorting
was then reviewed and adjusted as needed following standard practice41. On
average across 4 days of recordings in S1 we analyzed 163 sorted units per session.
All sorting was done prior to analysis and blind to channel or unit responses found
during the task. Further spike sorting methods can be found in Zhang and Aflalo
et al., 2017.

Eye tracking. Subject FG’s eye position was monitored using a 120 Hz binocular
eye-tracking system (Pupil Labs, Berlin, Germany). If the subject’s gaze shifted off
the cued eye position the task was terminated and restarted to ensure that gaze
position was correct and remained fixed to the cued eye position throughout each
appropriate epoch for a run (64 consecutive trials). Eye positions were synced to
the task and allowed online determination of eye position. We instructed the
subject to maintain a constant head position and to only move his eyes to fixate the
target. However, head position was not monitored and more conservatively we can
say that we manipulated gaze as opposed to eye position proper. In either case, our
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results showed no dependences on eye/gaze and thus the distinction is not espe-
cially important given the pattern of results.

Linear analysis for tuning (Fig. 1c). We defined a unit as selective if the unit
displayed significant differential modulation for our task variables as determined by
a linear regression analysis: We created a matrix that consisted of four indicator
variables for each unique behavioral variable (e.g. one indicator variable for each of
the four initial hand positions) resulting in 12 indicator variables. Firing rate was
estimated as a linear combination of these indicator variables and their interac-
tions: FR is firing rate, Xc is the vector indicator variable for condition c, ßc is the
estimated scalar weighting coefficient for condition c, and ß0 is the intercept.

FR ¼
X

c

βcXc þ β0:

Linear analysis was performed over a sliding window throughout the interval of
the task. Windows were 750 ms in duration and window start times were stepped
every 500 ms. Significance of each fit was determined using the p-value of the F-test
of overall significance for the linear analysis (p < 0.05, FDR corrected for number of
units). Units that were found to be significant in this analysis were then determined
to be selective and further analyzed in the reference frame analysis.

Reference frame analysis: gradient analysis (Fig. 2). Gradient analysis was used
to quantify how changes in the behavioral variables changed the firing rate of each
unit when comparing across each unique combination of variable pairs (Hand-
Gaze (HG), Target-Gaze (TG), and Target-Hand (TH))11,12: For each tuned unit
(based on the p-value of the linear regression model described above) we created a
four by four matrix (response matrix) representing neural activity for each unique
combination of two behavioral variables; thus, for example, the value at the HG
response matrix location [x,y] would be the neural activity recorded for hand
position x and gaze position y averaged across trial repetitions and repetitions
acquired for the different target positions. Gradients were determined using the
gradient function in Matlab 2019a (Mathworks Inc, Natick, MA). For each gra-
dient, a resultant angle and length was computed to summarize the net direction
and magnitude of change across the entire response matrix (Supplementary Fig. 1).
However, gradients often show a symmetrical pattern that would result in can-
cellation of symmetrical angles (Supplementary Fig. 1a). To avoid this, we double
each angle in the matrix and represent each angle from 0° to ±180°. Therefore, the
summed resultant angle is represented by 0° for gradients oriented left and right,
±180° for gradients oriented up and down, and −90° for gradients oriented along
the diagonal (Supplementary Fig. 1a). The summed resultant angle and length
however cannot be mapped directly onto the response matrix; thus, we have
notated the appropriate variable and combinations of variables to help with
interpretation. For example, in Supplementary Figure 1a hand only (H) modula-
tion would be found at ±180°, gaze only (G) modulation is seen at 0°, H+G at 90°,
and H-G at −90°. Therefore, we can use the angle of the resultant angle as a proxy
for overall orientation bias for a variable or variable pair.

Population reference frame analysis (Fig. 3). We used population-level
dimensionality reduction analyses to determine the most common modes of
reference frame encoding over time. This was done in a three-stage process (see
Supplementary Fig. 2): (1) Initial principal component analysis (PCA) on the time-
varying activity of the neural population, (2) reference frame analysis on each time
point of the resulting principal components, (3) complex principal component
analysis (cPCA) on the resultant angles and magnitudes. The initial PCA was used
to denoise and improve the calculation of reference frames at the level of the
population. In order to perform PCA analysis we constructed a matrix of neural
data D that was (n) by (t * c) in size, with n being the number of neurons, t being
the number of time points, and c being the number of conditions. For each neuron,
activity was averaged across repetitions of the same condition within a 100 ms
window. The reference frame analysis was then applied to each temporal window
for the first 20 principal components. Note that following the initial PCA, the
population activity still carries detailed information about neural selectivity
properties unrelated to the reference frame proper (e.g. preferred directions of
movement or preferred hand locations). Thus multiple principal components may
have the same reference frame, but simply prefer a different movement direction.
Computing the reference frame at this stage extracts the population level reference
frame, abstracting away tuning preference differences. The final cPCA was then
used to capture the main reference frame modes once the detailed aspects of tuning
(e.g. such as preferred direction of response) were abstracted away by the reference
frame analysis. We used cPCA given the fact that dimensionality reduction was
performed on the resultant vectors, values with both a magnitude and angle. We
converted all resultant angles and lengths into complex numbers to apply cPCA13.
We used parallel analysis to determine which components from this dimensionality
reduction were significant.

Discrete classification (Fig. 3b, Suppementary Figs. 3, 4). Offline classification
was performed using linear discriminate analysis. The classifier took as input a
vector comprised of the number of spikes occurring within a specified time epoch
for each sorted unit. The following assumptions were made for the classification

model: (1) the prior probability across the classes was uniform, (2) the conditional
probability distribution of each feature on any given class was normal, (3) only the
mean firing rates differ for each class (the covariance of the normal distributions
were the same for each class), and, (4) the firing rates of each input are independent
(covariance of the normal distribution was diagonal). Reported performance
accuracy was based on leave-one out cross-validation. To compute the temporal
dynamics of classification accuracy, the neural data were first aligned to a beha-
vioral epoch (e.g. cue execution onset). Spike counts were then computed in 500 ms
windows spaced at 100 ms intervals. Classification accuracy was computed inde-
pendently for each time bin and bootstrapped resampling was used to compute
95% confidence bounds. In the supplementary materials (S3, S4), we performed a
number of classification analyses on a single time window. This window used
average neural activity from 0.25 seconds to 1.25 s after the go cue to capture the
neural response during the period of motor imagery.

Neuron-dropping curve analysis (Supp Fig. 4). Neuron-dropping curves were
constructed to understand the strength of neural coding for movement direction as
a function of neural yield. To construct the random neuron-dropping curves of
Supplementary Figure 4, we computed cross-validated decode accuracy using LDA
classification (described above) for test populations of neurons. Each test popula-
tion was generated by randomly sub-selecting, without replacement, the specified
number of units from the entire ensemble of recorded units. For each population
size, units were randomly drawn and cross-validated accuracy was computed 100
times to allow estimation of the variability in accuracy. Results are shown as the
individual accuracies, mean, and bootstrapped confidence interval.

Statistics and reproducibility. Multiple regression analysis for determining if a
unit was significantly fit was done using a linear model (fitlm in MATLAB).
Coefficients of the linear model were then determined to be significant using an F-
test (coefTest in MATLAB). Significance was then corrected for using the false-
discovery rate (p < 0.05).

Gradients were determined using the gradient function in MATLAB. For each
gradient, a resultant angle and length were computed to summarize the net
direction and magnitude of change across the response matrix. Due to symmetrical
patterns that would result in cancellation of symmetrical angles we double each
angle in the matrix and represent each angle from 0° to ±180°.

Dimensionality reduction analysis was done using the PCA function in
MATLAB. For subsequent complex PCA analysis each respective resultant angle
and magnitude was then converted into a complex number: c is the desired
complex number, r is the magnitude of the resultant angle, i is an imaginary
number equal to

ffiffiffiffiffiffi�1
p

, and θ is the resultant angle in radians. c ¼ r ´ eði ´ θÞ
Parallel analysis is a Monte-Carlo based simulation that compares observed

eigenvalues with those obtained from uncorrelated variables14,15. Components
were retained if the associated eigenvalue was larger than the 95th percentile of the
distribution of eigenvalues, derived from the randomization of data
(10,000 shuffles).

Data availability
All primary behavioral and neurophysiological data are archived in the Division of
Biology and Biological Engineering at the California Institute of Technology and are
available from the corresponding author on reasonable request. Source data underlying
plots shown in figures are provided in Supplementary Data 1.

Code availability
All custom-written analysis code is available from the corresponding author on
reasonable request.
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