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C O G N I T I V E  N E U R O S C I E N C E

A shared neural substrate for action verbs and observed 
actions in human posterior parietal cortex
T. Aflalo1,2*, C. Y. Zhang1,2, E. R. Rosario3, N. Pouratian4, G. A. Orban5, R. A. Andersen1,2

High-level sensory and motor cortical areas are activated when processing the meaning of language, but it is 
unknown whether, and how, words share a neural substrate with corresponding sensorimotor representations. 
We recorded from single neurons in human posterior parietal cortex (PPC) while participants viewed action verbs 
and corresponding action videos from multiple views. We find that PPC neurons exhibit a common neural substrate 
for action verbs and observed actions. Further, videos were encoded with mixtures of invariant and idiosyncratic 
responses across views. Action verbs elicited selective responses from a fraction of these invariant and idio-
syncratic neurons, without preference, thus associating with a statistical sampling of the diverse sensory repre-
sentations related to the corresponding action concept. Controls indicated that the results are not the product of 
visual imagery or arbitrary learned associations. Our results suggest that language may activate the consolidated 
visual experience of the reader.

INTRODUCTION
How do words get their meaning? Although the exact architecture 
of the semantic system is still under debate, most evidence suggests 
that meaning emerges from interactions between supramodal asso-
ciation regions that code abstracted symbolic representations and 
the distributed network of regions that process higher-level aspects 
of sensory stimuli, motor intentions, valence, and internal body 
state (1–5). Engagement of the distributed network is taken as evi-
dence that the brain’s representation of the physical manifestation 
of words is an important component of their meaning. For exam-
ple, visual coding for the form of a banana, the motor act of biting 
into or peeling a banana, and its taste and texture would be compo-
nents of meaning in addition to more symbolic, lexical aspects of 
meaning such as the “dictionary definition.” Although this view is 
generally accepted, no single-unit recording evidence has demon-
strated a shared neural substrate between processing the meaning of 
a word and its visuomotor attributes within the distributed network. 
To date, supporting evidence comes from lesion and functional mag-
netic resonance imaging (fMRI) studies establishing a rough spatial 
correspondence between brain areas involved in high-level senso-
rimotor processing and areas recruited when reading text or per-
forming other behaviors that require access to meaning (1, 6). A lack 
of direct neural evidence is concerning given that neuroimaging 
and lesion results have been mixed and cannot establish a shared 
neural substrate at the level of single neurons (7, 8). Thus, how words 
get their meaning translates into two immediate questions with re-
gard to single-neuron selectivity: (i) Are words and their sensor-
imotor representations coded within the same region of cortex? (ii) Is 
there a link between words and their sensorimotor representations? 
In this paper, linking will refer to the existence of a shared neural 
substrate with individual neurons exhibiting matching selectivity 
for both a word and the corresponding visual reality.

To complicate matters, the number of sensorimotor representa-
tions that can be described by the same basic concrete word is gen-
erally very large (e.g., the visual form of a “banana” depends on 
ripeness, viewing angle, lighting, and whether it is peeled or sliced), 
and invariance is very rarely complete in high-level sensorimotor 
regions [e.g., (9, 10)]. This raises a third question: If the same object 
is coded in different ways depending on details of presentation, how 
might a word link to these varied visual representations? Stated 
more generally: What is the neural architecture that links neuronal 
responses to silently reading a word and seeing varied visual presen-
tations of what the word signifies? The answer is critical in understand-
ing how sensorimotor representations influence our understanding 
of words. Do we connect the symbolic representation of a word to 
an abstracted invariant and, therefore, universal visual representation? 
To a particular canonical example? Or to the many diverse represen-
tations that comprise our varied experiences? The question applies 
to all concrete words that describe physical reality, including action verbs. 
In this study, we look at how neural coding for action verbs relates 
to varied visual representations of corresponding observed actions.

Last, what cognitive phenomena can account for the presence of 
a link between a word and its visual representation within any ex-
perimental paradigm? The link may mediate semantic memory, re-
flecting associations between the word and its visual representations 
built over a lifetime of experience. In this view, reading words acti-
vates sensorimotor representations automatically, and these repre-
sentations are an intrinsic component of the meaning of the word. 
Second, reading a word has been hypothesized to evoke mental im-
agery. Responses in sensorimotor cortex may reflect such imagery, 
and the link could be between visual representations and mental 
imagery of the same stimuli, or the link may be the consequence of 
short-term learning such as occurs during categorization (11). Given 
these multiple possibilities, we address a fourth question: If a link 
exists, what cognitive process does the link mediate?

To address the above four questions, we recorded populations of 
neurons from electrode arrays implanted in two tetraplegic individ-
uals (N.S. and E.G.S.) participating in a brain-machine interface clinical 
trial while the participants viewed videos of manipulative actions or 
silently read corresponding action verbs. The implants were placed 
at the anterior portion of the intraparietal sulcus (IPS; see fig. S1 for 
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implant locations), a region that is part of the “action observation 
network” (AON) composed of the lateral occipital temporal cortex 
[LOTC; (12)], as well as frontal and parietal motor planning circuits 
(13, 14). These regions are involved in higher-order processing of 
observed actions (15–18), and neuroimaging and lesion evidence im-
plicate a role in verb processing (19–25). The ability to perform in-
vasive neural recordings provides us with the first opportunity to 
probe whether and how language links with corresponding visual 
representations at the level of single neurons in high-order sensory- 
motor cortex. Toward this objective, we establish four primary re-
sults relating to the four questions outlined above: First, PPC 
neurons show selectivity for action words and visually observed 
actions; second, a portion of PPC neurons link action verbs and cor-
responding visual representations; third, text-selective units in PPC 
link with all the diverse visual representations found in the neural 
population; and fourth, the link is not based on imagery or short-
term learning and thus appears to be semantic in nature. One pos-
sible interpretation is that when reading text, we replay our visual 
history as part of the process of understanding and thus ground our 
conceptual understanding in our unique experiences.

RESULTS
Participants viewed videos of five manipulative actions presented in 
three visual formats (two lateral views differing in body posture and 
one frontal view) and a fourth format, text, requiring the subject to 
silently read associated action verbs (see Fig. 1A for example stimuli). 
Five actions were used: drag, drop, grasp, push, and rotate, for which 
preliminary experiments (fig. S2) had demonstrated neuronal se-
lectivity. A total of 15 unique videos (5 distinct exemplar actions × 3 
visual formats) and 5 written action verbs were presented for a total 
of 20 experimental conditions (5 actions × 4 formats; fig. S3). Pre-
senting the observed actions in three formats allowed us to tease apart 
different models of how action verbs associate with overlapping 
(common to visual formats/exhibiting invariance across all for-
mats) and distinct (idiosyncratic to given formats/not invariant or 
only invariant across subset of formats) features of the neural code 
for observed actions. This design allowed us to answer the first three 
questions posed in Introduction. We recorded 1586 units during 
18 recording sessions in two subjects (NS: 1432 units, 13 sessions; 
EGS: 154 units, 5 sessions). For the first seven sessions in partici-
pant NS and all sessions for subject EGS, the participants passively 
watched the action videos and silently read the action verbs. To an-
swer the fourth question, for the final six sessions in subject NS, the 
participant used the action verb as a prompt to “replay” the associ-
ated action video using visual imagery from either frontal (F) or 
lateral (L0) perspectives, thus allowing us to quantify how imagery 
affects verb processing. Results from silent reading (first seven ses-
sions) and active imagery (last six sessions) were quantitatively similar 
in NS, and thus, data were pooled across sessions when addressing 
the first three questions of this paper. In addition, for question 4, we 
present a control study in which abstract symbols are paired with 
visual imagery of motor actions to better understand the effects of 
short-term associations.

Are human posterior parietal cortex (PPC) neurons selective 
for observed actions and action verbs?
Figure 1A shows the response of five representative neurons illus-
trating the variety of selectivity for both observed actions and action 

verbs at the level of individual neurons. Within a format, we defined 
units as selective if there were significant differences in neural re-
sponses to the five actions (ANOVA, P < 0.05 False discovery rate 
corrected), to the different action identities. The percentage of cells 
demonstrating selective responses was significant for each format, 
for both subjects [2 for text format, the format with the fewest 
selective units: NS: (1,N = 1432) = 503, P < 0.001; EGS: (1,N = 154) = 5.3, 
P = 0.02]. However, the percentage of selective units, as well as the 
consistency of the response, as measured by the cross-validated co-
efficient of determination (cvR2), was smaller for text than for ob-
served actions (Fig. 1, B and C). In addition, population classification 
analysis equating experimental sessions and number of units con-
firmed greater selectivity for participant NS than participant EGS 
(fig. S4). All five actions evoked significant neural responses from 
baseline across the four formats (fig. S5). The majority of visually 

Fig. 1. Human parietal neurons are selective for observed actions and action 
verbs. (A) Example neurons illustrating diverse selectivity patterns (SPs) across for-
mats. Left: Sample still frames depicting stimuli for one of the five action exemplars 
(“grasp”) in each format (see fig. S3 for all action exemplars). Right: Representative 
units illustrating diverse neural responses to the five tested actions (color-coded) 
across the four tested formats. Each panel shows the firing rate (means ± SEM) 
through time for each action for a single format. Each column illustrates the responses 
of the same unit to the four formats. See fig. S1 for recording locations. Photo credit: 
Guy Orban, Department of Medicine and Surgery, Parma University. (B) Percentage 
of units with significant action selectivity split by format [means ± 95% confidence 
interval (CI), one-way ANOVA, P < 0.05 FDR-corrected]. Zero units were selective in 
each format during the 1-s window before stimulus onset (one-way ANOVA, 
P < 0.05 FDR-corrected). (C) Cross-validated R2 of units with significant selectivity 
[units significant in (B)] split by format (means ± 95% CI). (D) Sliding-window within- 
format classification accuracy for manipulative actions. Sliding window = overlap-
ping 300-ms windows with 10-ms increments. Classification applied to data pooled 
across sessions. Black horizontal dashed line = chance classification performance. 
Blue horizontal dashed line = 97.5th percentile of prestimulus classification accura-
cy for the text condition. Horizontal colored bars indicate time of significant classi-
fication. Inset displays color code for format and associated latency estimate for 
onset of significant decoding (see fig. S7).
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selective units were increased firing during the video presentations, as 
in nonhuman primate anterior intraparietal area (AIP) (18). A mi-
nority, however, were suppressed by the video and text presentations 
(fig. S5). The mean response strength decreased smoothly from the 
action evoking the maximal response to the weakest response. Indi-
vidual units could show steep or more graded selectivity, and this 
pattern was essentially identical across formats (fig. S6). Greater selec-
tivity for action videos relative to text was reflected in a time-resolved 
decode analyses (Fig. 1D). Defining the latency of action selectivity 
as the onset of significant classification accuracy revealed shorter 
latencies for the visual formats (windows starting at 155 to 205 ms 
depending on format) than the written word (305 ms), possibly re-
flecting differences in afferent pathways (fig. S7). Our results show that, 
all formats were encoded within the population but with greater se-
lectivity and shorter latency for videos relative to text.

Is there a link between neural representations of action 
verbs and observed actions in human PPC?
Having established that PPC neurons are selective for both action 
verbs and observed actions, we now ask whether there exists a shared 
neural substrate, with neurons exhibiting matching selectivity for both 
a word and the corresponding visual representation. We addressed 
this by using two population analyses: across-format classification 
and across-format correlation. Leave-one-out cross-validation was 
used to train a classifier to predict action identity within format. On 
each fold, the decoder was also used to predict action identity from 
the three additional formats. This across-format generalization 
analysis measures how well the neural population structure that de-
fines action identity in one format generalizes to other formats (Fig. 2, 
A and B). As a control, the same values can be computed when 
shuffling action identity between formats [shuffled accuracy; red in 
Fig. 2 (A and B)]. Across-format accuracy was both above chance 
and shuffled accuracy for all pairs of formats for NS, for all visual 
pairs of EGS, and the text-visual format pairs when pooling across 
visual formats to achieve adequate power for EGS (rank-sum test, 
P < 0.05). This result demonstrates that the neuronal representation 
was not random; the population is more likely to link representations 
across formats for the same action identities. However, the results 
also demonstrate that the generalization is not perfect: The across- 
format accuracy is lower than the within-format accuracy, suggest-
ing that the neural code for action identity also depends on details 
of presentation. The strength of generalization was format depen-
dent being near perfect across body postures (same lateral view), 
still high, but reduced across shifts in viewing perspective (across 
the lateral and frontal views), and lowest when comparing observed 
actions with the written verb.

Significant generalization of action representations across for-
mats was robust to the analysis technique. We correlated neural 
population responses across formats (Fig. 2, C and D). Population 
responses were constructed by concatenating the mean response of 
all units to each action within format (fig. S8). A significant positive 
correlation was found for all format pairs while no significant posi-
tive correlation was found when shuffling action identity between 
formats. One caveat to interpretation is that the correlation between 
any pair of formats may be the consequence of the two formats be-
ing correlated with a third format. A significant link between pairs 
of formats was preserved but somewhat reduced when controlling 
for the other formats using a partial correlation analysis (Fig.  2, 
E and F). This last result indicates that text links with each of the 

visual formats directly as the significant link is preserved when the 
possible mediating factors of the other formats are removed.

The preceding population analyses established that text and vi-
sual representations are linked pairwise at the level of the popula-
tion, but the link does not perfectly generalize across formats. What 
is the breakdown of the single units that compose the population 
results? To answer this question, we compared the precise selectivity 
pattern (SP; defined as the firing rate values for each of the five ac-
tions) across pairs of formats using a model selection analysis for 
each neuron. A linear tuning model can describe the four possible 
ways that the SP can compare across two formats (Fig. 3A). (i) Both 
formats are selective in a similar manner (Fig. 3A; matched selectiv-
ity); the linear parameters (ϵR5) for each of the five actions are 
constrained to be identical for the two formats. (ii) Both formats are 
selective but with mismatched patterns (Fig. 3A; mismatched selec-
tivity); the linear parameters (,ϵR5) are different between the two 
formats. (iii and iv) Last, only one of the two formats may be selec-
tive (Fig. 3A; single format 1 or format 2 selective); a constant scalar 
offset term is used for the nonselective format (scalar term not shown 
in equation for simplicity). We identified the model that best de-
scribed the neuronal behavior using both the Bayesian information 
criteria (BIC) and the cvR2. We found that the two measures pro-
vide complementary perspectives when comparing across formats 
(fig. S9). In summarizing the results, we used the average percent-
ages provided by both measures. In line with our population results, 
we found that the percentage of cells with a similar SP across for-
mats (Fig. 3, B and C, red) was format dependent, being greatest 
across body postures (same lateral view), slightly reduced across 
shifts in viewing perspective (across the lateral and frontal views), 
and lowest when comparing observed actions with the written verb. 
These results indicate not only that text links with the visual formats 
and the visual formats link with each other but also that a percent-
age of the population codes the same action identities in different 
formats with differing patterns of selectivity.

What is the architecture that links observed actions 
and action verbs?
The preceding section demonstrated that there is a neural link be-
tween action verbs and visually observed actions. Here, we seek 
to understand the architecture of this link: to characterize how text- 
selective units link with the varied visual presentations of the same 
action. As a prerequisite, we first characterized how the different 
visual presentations were encoded with respect to each other, ignor-
ing the text format. Just as neural SPs can compare across two for-
mats in four different ways (Fig. 3A), they can compare across three 
formats in 14 possible ways (see Fig. 4A, x-axis labels and examples). 
As above, a model selection analysis was used to categorize each 
unit based on the model that best described the SPs across the visual 
formats (Fig.  4A). The population was heterogeneous, character-
ized by units with matched SPs and mismatched SPs in varied com-
binations across the different visual formats. This diversity can be 
seen in the individual unit examples of Fig. 1A; units 1 and 2 show 
matching patterns of selectivity across all the visual formats (Fig. 4A, 
L0=L1=F), unit 3 shows matching selectivity across two of the visu-
al formats and no selectivity in the third (Fig. 4A, L0=L1), and unit 
4 shows matching selectivity between two formats and mismatching 
selectivity in the third (L0=L1&F). Thus, we find that presentation 
details affect neural coding for action identity and that individual 
units link action identity across formats in an assortment of ways 
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when considering all three of the visual formats at once. This result 
is consistent with the significant but incomplete generalization of 
action identities across the visual formats shown in Figs. 2 and 3.

Having established that the same action is coded in different 
ways depending on details of visual presentation, we can now look 
at how action verbs link to these varied visual representations. We 
can frame our question in the following way: Do action verbs link 
with the entire population of cells demonstrating visual selectivity 

or specific subpopulations of cells? Figure 4B illustrates these possi-
bilities. Two primary theoretical possibilities in the literature describe 
how text can link with subpopulations of visually selective neurons. 
Overlapping describes the architecture in which verbs link specifi-
cally with the subpopulation of neurons that are invariant across the 
visual formats (5). Exemplar describes the architecture in which 
verbs link with a specific prototypical exemplar or “best example” of 
the word (5). The exemplar may be of a single visual presentation or 

Fig. 2. Action verbs link with observed actions. (A) Across-format and within-format classification of manipulative actions. x-axis labels indicate the formats used for 
classifier training and testing (e.g., for across format, train→test). Dots = single-session result. Rectangle = 95% bootstrapped CI over sessions. Gray (red): values for 
matched (mismatched) labels across formats (see inset for definitions). Dashed horizontal lines show within-format cross-validated accuracy (mean across single-session 
results). All comparisons with chance performance (dashed line) or shuffled alignment reached significance (Wilcoxon rank-sum test, P < 0.05). (B) Similar to (A) but for 
EGS. Cross-format classification significant between all visual formats and between visual and text formats when pooling visual formats (see bar with asterisk). (C) Correla-
tion of neural population responses across pairs of formats. Conventions as in (A). (D) Same as (C) for participant EGS (black horizontal bar indicates data that were pooled 
for statistical testing). (E) Pairwise population correlation while controlling for additional formats using partial correlation. Resulting correlations are above chance (part 
corr = 0) but below standard correlation values (mean = red diamonds). (F) Same as (E) for participant EGS.
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some subset of presentations. Last, we term the situation in which 
text links with all visually selective cells as Available. In this archi-
tecture, the link between text and the visual representations mirrors 
the statistics for how the visual representations are encoded within 
the neural population independent of text. Underneath each sche-
matic, we provide a prediction for how the distribution of Fig. 4A 
should change when the model selection analysis accounts for how 
text links with the visual formats.

We extended the model selection analysis to categorize each unit 
based on the model that best described the SPs across all four for-
mats (text + all visual formats). We compared the distribution of 
the visually selective units with a matched SP to text (Fig. 4C) to the 
full distribution of the visually selective units (Fig. 4A). The distri-
bution was essentially unchanged; the subset of visually selective units 
that link with text reflects a random sampling of the visually selec-
tive units: A bootstrapped correlation analysis comparing the em-
pirical distribution of Fig. 4C with the predictions of Fig. 4B shows 
that the population best matches the Available model (correlation 
with invariant = 0.32, exemplar = 0.48, available = 0.97). This pro-
vides the answer to the question of architecture: The distribution of 
text-linked units (Fig. 4C) mirrors the statistics of how visual for-
mats are encoded independent of text, or, in other words, text forms 
links with all available visual representations. Units with a matching 
SP between text and at least one visual format (the distribution of 
4C) represent 23% of all visually selective units (Fig. 4D) and 40% of 
all text-selective units (Fig. 4E).

What cognitive process does the link between action verbs 
and observed actions mediate?
Does the link between text and the visual formats reflect a semantic 
association, visual imagery, or short-term learned associations that 

formed through the course of the experiment? Thus far, our analyses 
are based on averaging the neural response across the video dura-
tion. This large temporal window may encompass multiple cogni-
tive processes. If neural processing for action verbs specifically 
reflects bottom-up semantic processing, we would expect to find a 
shared neural response between formats very soon after stimulus 
presentation. To address this issue, we performed a dynamic, sliding- 
window, cross-validated correlation analysis to look at how the re-
lationship within and across formats evolves in time (Fig. 5, A and B). 
To understand how quickly the correlation between text and the visual 
formats emerges, the diagonal elements of the dynamic correlation 
matrices were extracted and plotted together for direct comparison 
in the inset panels of Fig. 5 (A and B). These results show that the 
cross-modal link between text and the visual formats is fast: The 
onset of the cross-format correlation between text and the visual 
formats is the same as the within-format text correlation. In other 
words, as soon as a neural response to text emerges, it immediately 
shares a common activation pattern with the observed actions.

Next, we checked whether the strength of population correlation 
changed over the course of the experiment. If neural processing for 
action verbs reflects a semantic association, we would expect to find 
the correlation between text and videos to be present from the first 
session throughout the course of the experiment. In contrast, if the 
correlation between text and action videos is a product of learned 
associations that developed over the course of the study, we would 
predict that the strength of correlation would increase over the 
course of repeated exposure to the action videos and text. We found 
that the early correlation response (cross-validated correlation over 
the first second of video presentation) between text and the three 
visual representations for each session did not depend on session 
number (Fig. 5, C and D), favoring the semantic interpretation.

Fig. 3. Single-neuron SPs link action verbs and observed actions. (A) Schematic illustrating the four possible ways the SP can compare across two formats (see 
fig. S9 for expanded description). (B) Summary of SPs across pairs of formats for participant NS (see fig. S9). Red = matched SP; gray = mismatched SP; cyan and light 
green = selectivity for a single format only [see title colors in (A)]. Photo credit: Guy Orban, Department of Medicine and Surgery, Parma University. (C) Same as (B) for 
participant EGS. “=” indicates matched SP, and “&” denotes mismatched SP.
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We performed a number of control analyses and manipulations 
to address the possibility that associations between text and ob-
served actions reflect visual imagery. In six sessions, participant NS 
was instructed to use visual imagery to “replay” the associated ac-
tion video in her mind from either the front (F) or side (L0) perspec-
tives when given the action verb prompt. If imagery were a dominant 
factor in establishing the link between text and observed actions, the 
explicit manipulation of visualizing from the F or L0 perspective 
should bias the percentage of cells with a matched SP in favor of F 
or L0. However, both the total number of significant units and the 
population-coding structure were essentially unaffected by the ex-
plicit task instruction. Neither the proportion of significant units 
[Fig. 6A, 2(1,1432) = 2.7, P = 0.1] nor the proportions of the best 
explanatory models [Fig. 6B, 2(1,1432) = 1.9, P = 0.58] demonstrat-
ed significant differences. Further, a comparison of the per-session 

population correlation did not show a significant effect of the in-
struction (Fig. 5C, Wilcoxon rank-sum test, P = .43). This result 
shows that the basic link between action verbs and observed actions 
is not dependent on the contents of visual imagery. To probe this 
result further and ensure the subject followed task instructions, we 
split the dynamic correlation analysis between the passive and ac-
tive imagery sessions. We found (Fig. 6, C to E) that correlation im-
mediately following stimulus presentation was largely unaffected by 
the behavioral manipulation, while correlation near the end or after 
stimulus presentation did show significant differences (paired t test, 
P < 0.05 on pixel values split between passive and imagery sessions). 
This result suggests that the subject followed task instructions and 
that imagery can affect neural responses, but the early responses 
(that are the hallmark of automatic semantic processing) are inde-
pendent of the contents of imagery.

Fig. 4. Text links with all available visually selective cells. (A) Histogram characterizing how the population of neurons link action representations across the three 
visual formats (F,L0,L1). “=” indicates matched SP, and “&” denotes mismatched SP. Exclusion of a format indicates no selectivity. Three schematic SPs (right, color-coded) 
across the visual formats are shown to illustrate how the SPs compare across formats. (B) Schematic models illustrating different architectures of how text relates to three 
visual representations of the corresponding action. Each oval contains the population of neurons that are selective for a particular visual format. Overlap between ovals 
indicates matching selectivity across formats. The possible patterns of overlap between ovals may be more complicated (e.g., more overlap between two of the three 
ovals) but is simplified here for schematic purposes. Yellow neurons are selective for text with matching selectivity, while gray neurons are not. Underneath each schematic 
is a prediction for how the distribution in (A) will change when the model selection analysis filters the full distribution of (A) for units with matching text selectivity. 
(C) Similar to (A), however, the histogram is limited to the subset of visually selective units with a matched SP to text [blue subpopulation in (D)]. In cases where the units 
have mismatched visual SPs (e.g., L0 & F), text can have a matched SP with one of several of the visual formats. Colored segments of histogram indicate which format has 
matched SP with text (see x-axis labels for color code). (D) Percentage of visually selective units with a matched SP to text. (E) Percentage of text-selective units with a 
matched SP to at least one visual format, mismatched SP to visual formats, or without visual format selectivity.
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In a final control, we collected a dataset in which four abstract 
symbols (snowflakes; fig. S10A) were paired with visual imagery of 
movements for over 2 months (31 recording sessions, 114 ± 11 units 
per session; fig. S10B). In this paradigm, subject NS was asked to 
visualize a movement from the first-person perspective when pre-
sented with a symbol. The subject learned this task well, as we could 
accurately decode the different symbols when the subject was in-
structed to use visual imagery (fig. S10C). We also asked the subject 
to passively view the same stimuli at sporadic intervals (fig. S10B, 
vertical orange lines) and found that the ability to decode the differ-
ent symbols disappeared (fig. S10, D and E). The differences between 
passive viewing and active imagery when cued with experimentally 
defined abstract symbols in the control task provide a stark contrast 
to the differences between passive viewing and active imagery when 
viewing action verbs in the main experiment (fig. S10, D to G). The 
differences help to clarify several points about the main experiment. 

The clear differences in classification accuracy between passive view-
ing and imagery in the control task demonstrate that the subject is 
capable of comprehending and following task instructions as they 
relate to passive viewing versus active visual imagery, two tasks used 
in the main experiment. Furthermore, the study shows that not all 
types of visually distinct stimuli elicit a differential neural response 
under passive viewing. Last, it demonstrates that the recorded pop-
ulation does not form automatic neural responses to arbitrary ab-
stract symbols, even when the different symbols have been learned 
and are of direct behavioral relevance.

DISCUSSION
Our results answer the four questions raised in the introduction: 
PPC neurons exhibit selectivity for action verbs and observed actions; 
text links to visual representations of observed action; text links 

Fig. 5. Temporal features support a semantic link between verbs and observed actions. (A and B) Cross-modal match between text and visual formats occurs at low 
latency. (A) Dynamic cross-validated cross-correlation matrices demonstrating how the neural population response during stimulus presentation at one slice of time 
compares to all other slices of time, both within and across formats. Format comparisons as shown in x- and y-axis labels. Correlation magnitude as indicated by the color 
bar. Inset: The diagonal elements of the within- and across-format matrices were averaged into three logical groupings [(i) within-format visual, (ii) within-format text, and 
(iii) across-format text to visual] and normalized to a peak amplitude of 1 for comparison purposes. The temporal profile of the averaged correlations (means ± SE across 
sessions) is plotted to emphasize the similarity of onset timing for the within-format text and across-format text to visual population correlations. (B) Similar to (A) but for 
participant EGS. To compensate for the smaller number of sessions, we grouped correlation matrices for cross-modal comparisons. (C and D) Stable relationship between 
text and observed actions through experimental sessions. (C) Cross-format correlations for subject NS shown for text and the visual formats on a per-session basis (mean 
with 95% bootstrapped CI). Color code shows whether the subject was passively viewing stimuli or asked to actively imagine from the lateral or frontal perspective (see 
inset; Vis F = visualize from frontal perspective; Vis L = visualize from the lateral 0 perspective). (D) Same as (C) except for participant EGS (only silent reading).
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with a fraction of all available visual representations; and the link is 
most consistent with being semantic in nature and not due to imag-
ery or learned associations.

Answers to the four questions
First: Selectivity
Both single-cell properties and within-format decoding demonstrate 
neuronal selectivity for action verbs and observed actions in human 
PPC. The visual selectivity had short latencies (about 150 ms), while 
text selectivity emerged nearly 150 ms later. The features of the vi-
sual stimuli that determined neural selectivity remain unclear. The 
term selectivity for action identity should be interpreted as a label 
assigned to the visual stimuli rather than coding for the basic-level 
type of action, e.g., “grasp.” Manipulations of viewpoint or fixation 
point (fig. S2) changed neural coding significantly. Manipulative 
actions can differ in hand and arm postures, contact points with the 
object, and dynamics, among others; these parameters should affect 
neural coding to represent the behavioral complexity of natural actions. 
Elaborating the exact degree to which neural coding is influenced 
by action identity, its many parameters, or even low-level visual fea-
tures needs further work. Nonetheless, the link between action verbs 
and observed actions demonstrates that coding of action identity 
cannot solely be driven by irrelevant visual features. Further, not all 

visual differences are encoded by the neural population (fig. S2). Last, 
high-dimensional coding of both category-relevant and -irrelevant 
visual features is consistent with neural coding in high-level regions 
of the ventral visual stream (26, 27).
Second: Action verbs and observed actions share a common 
neural substrate
We demonstrate the shared substrate at the population level using 
cross-format decoding and population correlation between formats 
(Fig. 2) and showed the basis of this population link by modeling of 
single-cell selectivity across pairs of formats (Fig. 3). Prior neuro-
imaging evidence indicates a degree of anatomical overlap within 
the AON for processing observed actions and language (19–22). 
However, imaging evidence can be inconsistent (8), and gross ana-
tomical overlap seen in neuroimaging does not directly imply that 
the same neural populations support both tasks (7). Our evidence 
provides definitive evidence for a shared neural substrate by demon-
strating that the precise SPs for action verbs match the SPs for cor-
responding observed actions at the neural unit level.
Third: Architecture
We have established that, at the neural level, action verbs link with 
visually observed actions, suggesting that sensorimotor representations 
are an intrinsic component of verb meaning. The potential implica-
tions of this finding are hard to pin down without understanding 
the architecture of the link. There are infinite visual stimuli that 
could be considered a “grasp” or a “banana” or any basic category 
colloquially used to describe an object or action. Our results estab-
lish that neural coding for observed actions depend on presenta-
tion details (see Fig. 4), consistent with findings throughout cortex 
(e.g., 9, 10). Given the diversity of neural coding, there are three likely 
architectures (Fig.  5B), each with its own implications for how 
linking is made between symbolic and visuomotor representations. 
Text could link exclusively to the subpopulation of cells that are 
visually invariant across the different visual presentations (e.g., 
Fig. 4B, “visually invariant”). In such a case, the aspect of “meaning” 
conveyed by the sensory-motor representation would be what is 
universal or common to all presentations. In other words, sensory- 
motor meaning abstracts away the details of any particular repre-
sentation. Another possibility is that text could link to one or a subset 
of example stimuli (e.g., Fig. 4B, “exemplar”). In such a case, the 
aspect of “meaning” would constitute representative visual exam-
ples of the word. The third possibility is that text links to all avail-
able visual representations (e.g., Fig. 4B, “available”). If the visual 
representation reflects the consolidation of one’s experiential histo-
ry with observed actions (4, 28) as expected for the consolidation of 
semantic memory, then neural responses to text may be understood 
as the activation of this consolidated visual experience. This sug-
gests that a word’s meaning is uniquely rooted in an individuals’ 
experience.

The comparison between the predictions for these three models 
and the data strongly favors the available model. This architecture is 
also the easiest to implement, as a simple Hebbian mechanism will 
suffice and would predict that acquisition of verb meaning depends 
on the frequency of exposure, which has been observed for several 
languages (29). The text response links only to a subset of the full 
distribution of visually selective units (Fig. 4D). The reason for this 
is unclear but may reflect inefficiencies in the neural process that 
links verbs with visual representations and may be influenced by 
exposure or experience. In any case, reading a word does not evoke 
the same perceptual experience as viewing an action, and thus, 

Fig. 6. The effect of explicit instruction on cross-format invariance. During the 
initial seven sessions, subject NS silently read action verbs. In the six subsequent 
runs, she explicitly visualized the frontal (F, three runs) or lateral standing (L0, three 
runs) perspective in response to the action verb. (A) The percentage of units with a 
significant effect of action or action-format interaction for the format by action 
ANOVA applied to the triplet of formats pertinent to task instruction (T,F,L0). 
“Sig” = significant at P < 0.05 FDR-corrected (“NS” otherwise). Results are split by the 
task instruction. Total number of sorted units shown in title. (B) Results for the 
combined (BIC + cvR2) model selection analyses for the same triplet of actions split 
by task instruction. The percentage of T=L units was twice as prevalent as T=F units 
for passive viewing, as well as the two instructed conditions. (C) Mean dynamic 
cross-correlation between the visual formats and text split by passive viewing and 
active imagery in participant NS. Blue lines indicate video offset. (D) Pixel coordinates 
demonstrating a significant difference between passive viewing and active imagery 
(significant pixels in white, paired t test, P < 0.05.) Blue lines indicate video offset. 
(E) Cross-correlation value between text and the visual formats for the set of signif-
icant pixels shown in (D) as a function of session number. The blue line shows split 
between passive and active imagery sessions.  on D
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substantial differences at the level of neural responses should be 
expected.
Fourth: Origin of the link
Our results indicate that the link between text and the visual formats 
is not the product of imagery or learned associations that emerge 
from the task. Our results are consistent with action verbs automat-
ically eliciting a memory or visual/multisensory representation of 
an action. This could be considered a form of imagery; however, 
here, we use imagery to specifically refer to the effortful covert inter-
nal simulation of a movement (either of one’s own body or another’s 
body) such as might occur when a participant is explicitly asked to 
imagine a movement. A primary distinction between semantic mem-
ory and imagery as defined here is that semantic responses are auto-
matic; when the action verb is read, corresponding representations 
in PPC are activated without conscious effort or task dependence. 
In the control task, passive viewing of symbols associated with ac-
tions is shown to be an ineffective stimulus to drive the neural pop-
ulation. There is no automatic response. Neural responses are task 
dependent and only found when the participant actively imagines 
the actions that have been associated with each cue. This is contrast-
ed with responses to action verbs in which selectivity is found under 
silent reading with minimal impact from experimental manipula-
tion of imagery. The action verbs are processed automatically, re-
quiring nothing beyond reading to generate action-specific neural 
responses. Semantic processing should be fast and automatic, and 
we found that it is exactly the early component of the correlation 
that was unaffected by the imagery manipulation (Fig. 6D). In contrast, 
the late components of the correlation systematically differentiated 
passive viewing and imagery sessions (Fig. 6, C to E), demonstrating 
that the patient followed the instructions, a view also supported by 
the control experiment. From these considerations, the shared neural 
substrate of text and observed actions is unlikely to reflect imagery. 
A key signature of learned associations is the gradual strengthening 
of the link between text and observed actions. Yet, the correlation 
between text and the visual formats was stable across all testing ses-
sions, including the very first one (Fig. 5). In our control experi-
ment (fig. S10), passively viewing abstract symbols that had been 
paired to movement imagery did not induce selective neural re-
sponses. Thus, our results are unlikely the consequence of learned 
associations.

We consider yet two more alternatives to semantic processing. 
The first is that neural responses to action verbs and observed ac-
tions represent implicit automatic motor plans (30). How we plan 
and execute an action is an important component of meaning. 
However, our control study (fig. S10) revealed no selectivity to passive 
observation of movement-predictive cues. The second possibility 
is that the linked SPs for observed actions and action verbs reflect 
a population of cells that are responsive to the internal act of si-
lent naming (i.e., generating the action verb). In this view, when 
viewing text or videos, the participant covertly generates the same 
word and thus produces the same activity patterns. This hypothesis 
would predict results similar to the invariant hypothesis, as generat-
ing the action verb should be consistent across the different visual 
presentations. Instead, for simultaneously recorded neural popula-
tions, we find that text responses link to the visual formats in idio-
syncratic ways (e.g., text and the lateral views, but not the frontal; 
Figs. 1A and 4C). It remains possible that neurons are selective to 
particular cue-naming pairs; however, in our prior work (31) in the 
same participants, we found no selectivity for specific cue-intention 

pairings (e.g., response for imagined movement to the right when 
cued with a spatial target, but not when cued with symbol). Thus, 
we think that the naming hypothesis is unlikely.

From the above considerations, we believe that our results are most 
compatible with the shared neural substrate mediating semantic 
memory, reflecting associations between the word and its visuomo-
tor representations that have been built over years of experience. In 
this view, reading words automatically activates sensorimotor rep-
resentations, and these representations are in a position to color our 
understanding of word meaning without our conscious effort.

Nature of neuronal representation of variables coded in PPC
The ability of small neuronal populations to encode many variables 
is consistent with the mixed-selectivity scheme in which distributed, 
nonlinear, high-dimensional representations code in a contextually 
dependent manner (32). However, at least within the cortical loca-
tions explored in the current study, we find that such encoding is 
not random, but systematically organized around stimulus proper-
ties, a scheme referred to as partially mixed selectivity (33). Neural 
populations coding the same basic-level action exemplar for different 
formats overlapped (e.g., Fig. 3 and fig. S9). Partial mixed selectivity 
may represent a general structure for representing sensorimotor as-
pects of meaning within association cortices, resulting in rich links 
between text and the diversity of overlapping and distinct compo-
nents of the visual formats that mirror the statistics of visual encoding 
independent of text (Fig. 4). It is unclear whether neural overlap 
reported for observed and performed actions in nonhuman primate 
(NHP) follows similar principles of neural architecture, in part because 
results in NHP studies have generally been reported for responsive-
ness (e.g., change from baseline) to a single action (typically grasping) 
rather than selectivity (e.g., differential responses) for multiple distinct 
actions [e.g., (18)]. The partially mixed architecture may account for 
the weak link between text and the visual formats (e.g., relatively 
low-population correlation and few units with matching SPs). If a 
cortical region encodes the many visual facets of an observed action 
(e.g., viewpoint, posture, and other untested features) and text links 
with both what is overlapping and distinct about action presenta-
tions, it follows that the link between text and any particular pre-
sentation must be relatively weak.

Cortical organization of conceptual knowledge
In understanding an action verb, we access semantic knowledge. The 
cortical organization of semantic knowledge has been contentious. 
Some theories contend that conceptual knowledge is rooted in cor-
tical regions that use supramodal symbolic processing (7), while 
other theories take the opposite perspective, that semantic knowl-
edge is encoded in the distributed sensorimotor network (6, 34). 
Most recent theories posit that meaning emerges from interactions 
between supramodal associative areas and regions directly respon-
sible for processing sensory stimuli, motor actions, valence, and in-
ternal state (1–5). Our results are consistent with these interaction 
models, given the longer latencies we observed for text-selective 
responses in PPC, relative to those reported for higher-order lan-
guage regions such as superior temporal gyrus or inferior frontal 
gyrus (35). One likely possibility is that action verb activity in PPC 
originates from supramodal regions and automatically spreads to 
PPC. This interaction model comes in many versions, primarily dis-
tinguished by which areas constitute the supramodal regions and 
the nature of the interactions. In part, a deeper understanding of the 
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organization of conceptual knowledge in the human brain has been 
limited by the general inability to record from single neurons in 
humans. We know of no single-unit recordings in supramodal re-
gions, but one intriguing possibility is that these areas may host 
neurons similar to the “concept cells” of the medial temporal lobe 
(MTL) (36), which respond to a preferred stimulus (e.g., a particu-
lar individual) largely independently of sensory modality or presen-
tation details (e.g., image, written word, and sound). While this strong 
invariance provides a model for neural coding mechanisms in 
supramodal centers, much less is known about how semantically 
related items are encoded in the distributed network. The current 
study contributes to this goal by providing the first demonstration 
of a link between words and their sensorimotor representations and 
how the neural architecture supports this link.

In the current paper, we have focused on how verbs are given 
meaning. We may also consider what our results mean from the re-
verse direction, how the neural population may contribute to naming 
an observed action. We find not only relatively high generalization 
across different views of the same observed action but also a degree 
of dependence on viewpoint and the point of fixation (fig. S2). 
These neural properties suggest that rostral PPC neurons could play 
a role in creating increasingly abstracted representations that asso-
ciate the same actions and thus contribute to the processing needed 
for naming, but, given the weakness of the link, subsequent regions, 
potentially using winner take all like mechanisms, would be needed 
for the final conversion to labeling the observed action.

The link between visual representations of actions and action verbs 
fits with current views of how infants learn action verbs by mapping 
words onto conceptualizations of events (37). Infants can distinguish 
action exemplars (running, marching, and jumping) independently 
of the actors (38) and that this ability predicts the use of action verbs 
at 2 years of age (39). Furthermore, it provides an explanation for 
why infants learn verbs later than nouns (40), as the corresponding 
visual representations are in different visual pathways. In the PPC, 
the development of observed action selectivity, which is originally 
in the service of guiding future actions (18), may only occur once 
the infant starts moving. Infants initially learn verbs corresponding 
to their own actions (41).

Limitations of the study
Stimuli
We used a restricted set of observed actions and action verbs, based 
on the category of actions that best evoke responses in neuroimaging 
(42). Thus, our results cannot support the conclusion that responses 
to written text are specific for action verbs. Neuroimaging studies 
have shown that brain regions exhibit some degree of domain spec-
ificity during language processing (43). Understanding domain spec-
ificity of responses to language at the single-unit level is an exciting 
future direction.
Visual formats
We tested only a small number of visual formats: two postures and 
two viewpoints. Thus, the visual invariance that we established may 
be an overestimation, and increasing the diversity of different pre-
sentations of the same action would lower the percentage of invari-
ant cells. Hence, while it remains possible that the visual invariant 
neurons (F=L0=L1 in Fig. 4) are akin to concept cells as described 
in the MTL of humans, this is by no means established. To this point, 
neurons exhibiting invariance in the MTL showed sparse coding (only 
active for a single basic-level category), while the invariant neurons 

tested in our study were broadly tuned, matching the tuning pro-
files of other visually selective neurons (fig. S6). The small number 
of visual formats may also partially account for text-selective units 
with mismatched or absent visual selectivity (Fig. 4, D and E) as they 
may link with other untested visual representations of the corre-
sponding action identity.
Recording site
We tested only one region of the AON. Other regions of the AON 
(e.g., premotor areas or the LOTC), based on neuroimaging and lesion, 
likely play a role in linking language with its sensory and motor 
representations. Action verbs may be associated with the kinematic 
profiles of movement, movement dynamics, the agents typically 
performing the action, the objects typically subjected to the actions, 
the desired outcome or value of the action, and the expected sensa-
tions that accompany the action, among others. The constituent 
regions of the AON likely encode these movement attributes and 
together may form the distributed network that links action verbs 
with these varied aspects of meaning.
Causality
As with all passive neural recording studies, our study cannot deter-
mine the causal role of our PPC neurons in understanding the meaning 
of action verbs. However, prior work, using word or static picture 
stimuli, has shown that damage or inactivation within the frontopa-
rietal AON, including PPC, can result in specific action comprehen-
sion deficits (23–25) consistent with the idea that neurons within 
the AON play a role in verb comprehension. Our results provide 
clarity on the presence and nature of the link between neural repre-
sentations of action verbs and visually observed actions at the level 
of single units in PPC.
Subjects
We investigated neural signals in two participants and thus cannot 
make strong conclusions about factors that influence the strength of 
action verb encoding. Participant NS demonstrated stronger selec-
tivity than EGS, even when controlling for the number of neurons 
and sessions (fig. S4). The reason for differences are unclear but may 
be the product of individual differences and could include anything 
from the degree to which the two participants attended to stimuli 
on a trial-to-trial basis to the degree to which individuals intrinsi-
cally engage sensory-motor systems during semantic processing. One 
intriguing difference is that NS is a native English speaker, while 
EGS is a fluent but nonnative speaker having learned English as part 
of a language program in primary school. One possibility is that the 
time of language acquisition may affect the degree to which words 
engage sensory-motor systems. In addition, the recorded neurons 
may come from different functional regions due to either anatomi-
cal differences in implant location or high individual differences in 
how functional regions map to cortical anatomy. A precise func-
tional correspondence of areas is unlikely; however, we note that 
functional responses were similar during functional neuroimaging 
(fig. S1), as well as during planning and execution epochs of motor 
imagery tasks at the single-unit level (31, 33).

Conclusion
The current study provides the first single-unit evidence that action 
verbs share a neural substrate with visually observed actions in high- 
level sensory-motor cortex, thus clarifying the neural organization of 
human conceptual knowledge. Action verbs link with all the diverse 
visual representations of the related concept, suggesting that language 
may activate the consolidated visual experience of the reader.
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MATERIALS AND METHODS
Experimental design
Data acquisition
All procedures were approved by the California Institute of Tech-
nology, University of California, Los Angeles, and Casa Colina Hospital 
and Centers for Healthcare Institutional Review Boards. Informed 
consent was obtained from NS and EGS after the nature of the study 
and possible risks were explained. Study sessions occurred at Casa 
Colina Hospital and Centers for Healthcare and Rancho Los Amigos 
National Rehabilitation Center.
Behavioral setup
All tasks were performed with NS and EGS seated in their motor-
ized wheelchair. Tasks were displayed on a 28- or 47-inch liquid crystal 
display monitor. The monitors were positioned so that the screen 
occupied approximately 25° of visual angle. Stimulus presentation 
was controlled using the Psychophysics Toolbox for MATLAB.
Physiological recordings
NS and EGS were implanted with one 96-channel NeuroPort Array 
on the gyrus dorsal to the junction of the IPS and postcentral sulcus 
(PCS; fig. S1). These locations were implanted based on three con-
siderations: First, the NeuroPort Arrays used in the current study are 
not suitable for implantation within sulci given short electrode 
shank lengths (≤1.5 mm) and lack of long-term viability for direct 
implantation within sulci. Thus, implant locations must be restricted 
to gyri accessible on the cortical surface. Second, the cortical regions 
of interest are near the junction of the IPS and PCS. This consider-
ation was included as we were targeting functional responses related 
to grasping, manipulation, and other behaviors that emphasize the 
hand. Cortical regions within and around the junction of the IPS 
and PCS in human neuroimaging studies have consistently shown 
preferential responses to hand-based actions. Third, we used func-
tional magnetic resonance imaging within the individual participants 
to identify regions with a preferential response for grasping actions. 
We used two neuroimaging tasks suitable for paralyzed individuals 
to identify grasp-related responses in each individual subject. The 
resulting functional responses, combined with the constraints de-
scribed above, determined the implant locations shown in fig. S1.

Grasp-related responses around the junction of the PCS and IPS 
have typically been described as the anterior IPS or putative human 
homolog of the anterior intraparietal area (phAIP) and is generally 
assumed to be the human homolog of macaque AIP. Macaque AIP 
is a region localized to the lateral bank of the anterior portion of the 
IPS involved in the visual control of grasping actions. However, the 
medial bank of the anterior IPS contains a distinct grasp field. This 
grasp field, described as PEip (intraparietal) or Brodmann’s area 5L 
(BA5L), is characterized by distinct frontoparietal connections (AIP 
is densely interconnected with PMv (Premotor ventral), while PEip is 
connected with the rostral portion of M1), direct connections to the 
hand regions of the spinal cord, bilateral somatosensory responses, 
and functional responses related to hand and finger movements. While 
some progress has been made in the identification of the human ho-
molog of AIP (17), the human homolog of PEip/BA5L has not yet 
been established, and it may be the case that neuroimaging results 
around the junction of the PCS and IPS include both the human 
homologs of macaque AIP and PEip/BA5L. Additional work prob-
ing the single-unit properties of the arrays in the two human sub-
jects is needed to better understand the functional homologies of the 
regions investigated in the current study. In light of this uncertainty, 
we refer to the recording sites as parietal grasping regions.

Neural activity was amplified, digitized, and recorded at 30 kHz 
with the NeuroPort neural signal processor (NSP). The NeuroPort 
System, comprising the arrays and NSP, has received Food and Drug 
Administration (FDA) clearance for <30 days of acute recordings; 
for purposes of this study, we received FDA IDE (Investigational 
Device Exemption) clearance (IDE #G120096) for extending the 
duration of the implant.

Single-unit and multiunit activity was sorted using k-medoids 
clustering using the gap criteria to determine the total number of 
neural clusters. Clustering was performed on the first n principal 
components, where n was selected to account for 95% of waveform 
variance (range of two to four components). Sorting was reviewed 
and adjusted if deemed necessary following standard practice by 
merging or splitting clusters as needed.
Tasks and stimuli
Experimental stimuli consisted of five manipulative actions (drag, 
drop, grasp, push, and rotate) displayed in four different “formats”: 
three visual video formats and one text format. In two visual for-
mats, the actors were viewed from the side, but the actor was either 
standing next to a table (Lateral 0, L0) or sitting in a lotus position 
on the floor (Lateral 1, L1). In the third visual format, the actor was 
standing next to the table but was viewed from the front. Thus, L1 
differed from L0 only by body posture, F differed from L0 only by 
viewpoint (note that two video cameras were used to simultaneous-
ly acquire videos for F and L0, and thus, the timing and kinematics 
of the movements are identical), and F differed from L1 by both 
viewpoint and posture. In the text condition, the written action 
word (Arial at font size 80) was shown for 2.6 s. Experimental stim-
uli of the visual formats consisted of video clips (448 × 336 pixels, 
50 frames/s) showing one actor at a distance of 1.2 m performing 
five different hand actions (drag, drop, grasp, push, and rotate) di-
rected toward an object (four versions per action format). The ob-
jects were positioned directly adjacent to or within the hand such 
that actions predominately involved the wrist and fingers. All vid-
eos measured 17.7° by 13.2° and lasted 2.6 s (the first two and the 
last two frames being static). The edges of the videos were blurred with 
an elliptical mask (14.3° × 9.6°), leaving the actor and the background 
of the video unchanged but blending it gradually and smoothly into 
the background around the edges. We did not enforce fixation; in-
stead, we asked the subject to view the actions in a naturalistic man-
ner. The effects of fixation were documented in a separate set of 
experimental sessions described below. Each data session consisted 
of 12 repetitions of each unique video. Presentation was split into 
three runs (four repetitions per run, corresponding to the four ver-
sions). Videos were presented in a pseudorandom manner: All con-
ditions were randomly ordered and presented once before repetition. 
Video stimuli used for L0, L1, and F0 were also used in (44), which 
tested neural encoding of observed actions in nonhuman primates. 
Presentation of the videos differed, however, as before video presen-
tation, during baseline, this study used a highly blurred (full width 
at half maximum = 80 pixels) static frame (average of all video frames).

We collected these data under two different instruction sets. In 
the first instruction set, the subject was instructed to attend to but 
otherwise passively view experimental stimuli. For the text format, 
we asked the subject to read the word silently without any accompa-
nying visualization. We collected seven (subject NS) and five (sub-
ject EGS) sessions in this passive viewing paradigm. In the second 
instruction set, the subject NS (six sessions) was instructed to use the 
text as a prompt to visualize the associated action being performed 
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from either the frontal (F; three sessions) or lateral standing per-
spective (L0; three sessions). Six sessions in total were collected over 
3 days. Each session was collected in full under the same instruction. 
The sessions were collected in the following order: (F, L0), (L0, F), (F, 
L0), with () indicating that the sessions were acquired during the 
same day. Before each run, the participant was reminded of the ex-
perimental condition. Following each run, the participant reported 
which perspective she used to imagine the actions.

Information on the preliminary action observation task (fig. S2) 
to test for the presence of units selective to observed actions is de-
scribed in Supplementary Materials. Additional information is found 
in the Supplementary Materials.

Statistical analysis
Within-format individual neuron analyses
Individual unit event-related averages (Fig. 1A). For each unit, neu-
ral activity was averaged within a 750-ms window starting from −1.5 s 
before video onset and stepping to 4 s with 100-ms step intervals. 
Neural responses were grouped by the observed action exemplar, 
and a mean and SEM (n = 12) were computed for each time window 
and for each action.

Within-format one-way ANOVA for action identity (Fig. 1B). We 
defined a unit to be selective for action identity for a particular for-
mat if the unit displayed a significant differential firing rate for the 
five action types during video presentation. Firing rate was taken as 
the total spike count during movie presentation (2.6 s) starting at 
0.25 s after onset divided by the window duration. Firing rates were 
subjected to a one-way analysis of variance (ANOVA) with the fac-
tor of action identity, and significance was determined as P < 0.05 
after false discovery rate (FDR) correction. To ensure that selectivity 
was driven by the task stimuli, we repeated the analyses using the 
1-s window before stimulus onset and found that no neurons (0%) 
were selective in any format after FDR correction.

Within-format linear fit of neural responses (percent selective, 
cvR2, and coverage). We used a linear regression model for multiple 
analyses. For each neuron, we fit a linear regression model that ex-
plained neural firing rate during movie presentation as a function of 
the categorical variable manipulative action identity (five actions: 
drag, drop, grasp, push, and rotate). For some analyses, linear fits 
were performed separately for each of the four formats (e.g., written 
verb, frontal view, and the two lateral views). For others, such as the 
model selection procedure described below, we included various 
combinations of formats with constraints on the linear model pa-
rameters (described below). Firing rate was taken as the average 
unit response in a single window that extended for the duration of 
movie presentation (2.6 s) starting at 0.25 s after onset. The baseline 
response was taken as the average activity in the 1-s preceding mov-
ie onset.

Coverage (fig. S5). We computed the P value associated with the 
coefficient estimate of each action (e.g., drag, drop, etc.) and found 
the percentage of coefficients associated with each action having a 
P value less than 0.05 after FDR correction. We used a bootstrap pro-
cedure for generating 95% confidence bounds on the estimates of 
the percent selective.

We also wanted to know the frequency with which the different 
actions resulted in the peak response. To test this, we first split the 
data into excitatory and inhibitory units. Inhibitory units were de-
fined as units for which the beta coefficient for all five actions was 
negative and thus suppressed relative to the baseline response. We 

then identified the action that resulted in the largest deviation from 
baseline activity and counted the number of units that showed a peak 
response for each action.

Cross-validated coefficient of determination (Fig. 1C). To derive a 
measure of strength of selectivity, we performed a leave-one-out 
cross-validation procedure to estimate the cvR2. For each fold, the single- 
unit regression was parameterized using all but one trial, and the re-
sulting model was used to predict the firing rate of the held-out trial. 
This was repeated, and the R2 was computed using the held-out data 
as 1 − (sum of squares of residuals)/(total sum of squares). The 95% 
confidence interval was estimated with a bootstrap procedure.

Selectivity curve analyses (fig. S6). Is neural coding for observed 
actions sharp or graded? For each selective unit (within-format 
ANOVA, P < 0.05, FDR-corrected; see above) within each format, 
repetitions for each observed action were split in half to create 
training and testing splits of the data. Repetitions were then aver-
aged to create a single value per action for each of the training and 
test sets. Training set data were rank-ordered from the action re-
sulting in the highest firing rate to the action resulting in the lowest 
firing rate. This computed order was used to sort the test data. This 
process was repeated 500 times, and the results were averaged across 
folds. The result is a cross-validated measure of the response of each 
unit as a function of rank. Responses were normalized between 0 
(response to worst action computed from the training data) and 1 
(response to best action computed from the training data) before 
averaging across the population of selective units. Confidence intervals 
were estimated using a bootstrap procedure. Both the mean with 
95% confidence interval (estimated with a bootstrap procedure) and 
the full distribution (shown in a violin plot) are presented.
Within-format neuron population analyses
Time-resolved classification of action exemplars (Fig. 1D and  fig. 
S10). We performed sliding-window classification analyses to mea-
sure the strength and latency of population coding of observed 
actions and action verbs. For each time window, we constructed a 
classifier to differentiate the observed action for each format sepa-
rately. Classification analyses were performed using linear discrim-
inate analysis (LDA) with the following assumptions: (i) the prior 
probability across the action exemplars was uniform; (ii) the condi-
tional probability distribution of each unit on any given action ex-
emplar was normal; (iii) only the mean firing rates differ for each 
action exemplar (the covariance of the normal distributions were 
the same for each action exemplar); and (iv) the firing rates of each 
input are independent (covariance of the normal distribution was 
diagonal). Relaxing these constraints (e.g., allowing a full-rank co-
variance matrix) generally resulted in poorer generalization perform-
ance. The classifier took as input a matrix of average firing rates for 
each sorted unit. We did not limit analyses to action-selective units 
to avoid “peeking” effects. Classification performance is reported as 
generalization accuracy of a stratified leave-one-out cross-validation 
analysis. The average neural response was calculated within 300-ms 
windows, stepped at 10-ms intervals. Window onsets started from 
−0.75 s relative to video onset with the final window chosen to be 
+3 s. The window size was chosen to ensure that a reasonable esti-
mate of firing rate could be determined while still allowing temporal 
localization. Classification was performed on all sorted units aggre-
gated across all sessions. Mean and bootstrapped 95% confidence 
intervals were computed for each time bin from the cross-validated 
accuracy values computed for each session. To provide an addition-
al visual marker, we display as a horizontal line the bootstrapped 
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97.5th percentile averaged over all prestimulus time bins for the text 
condition.

Neuron-dropping curve analysis (figs. S4 and S10). Neuron-dropping 
curves were constructed to compare how population-level encoding 
of exemplar actions compared between the two subjects in a con-
trolled manner. To construct the random neuron-dropping curves 
of fig. S4, we computed cross-validated decode accuracy using LDA 
classification (described above) for test populations of neurons 
ranging in size from 1 to 150 units. Sampling of neurons was per-
formed separately for participants NS and EGS. Units from NS were 
restricted to the first five sessions to equate exposure (EGS sessions 
were limited to five) and experimental instruction (passive viewing). 
Thus, the neuron-dropping curve analysis controls for number of 
units, task exposure, and experimental instruction. Each test popu-
lation was generated by randomly subselecting, without replacement, 
the specified number of units from the entire ensemble of recorded 
units. For each population size, units were randomly drawn, and cross- 
validated accuracy was computed 200 times to allow estimation of 
the variability in accuracy. As a result, the actual decoding algorithm 
was trained on a subset of the total number of units as determined by 
a per-unit significance test calculated on the training data (not in-
cluding the test data) used for cross-validation analysis.

Latency analyses (fig. S7, text in Fig. 1D). Latency was estimated 
using a sliding-window within-format decode analysis: Classifica-
tion performance was computed as generalization accuracy of a 
stratified leave-one-out cross-validation analysis. To better tempo-
rally resolve the signal, accuracy was computed on data stepped in 
5-ms windows and smoothed with a 25-ms full width at half maxi-
mum truncated Gaussian smoothing kernel. Classification was per-
formed on all sorted units aggregated across all sessions. For each 
time window, significant classification performance was determined 
when true cross-validated classification was greater than 97.5% of 
values of an empirical null distribution of classification accuracies 
generated by randomly shuffling labels (250 shuffles). Latency is re-
ported as the first window with significant classification for at least 
10 consecutive time bins (50 ms). Latency measured in this way was 
computed separately for each format of the main experiment as well 
as the imagery condition of the control experiment. Latency analy-
ses were not attempted for subject EGS as decode accuracy was 
worse, and we had fewer sessions (5 sessions for EGS versus 13 ses-
sions for NS), although the general time course of decode accuracy 
was similar (see Fig. 1D).
Cross-format individual neuron analyses
Comparing SPs between formats (Figs. 3 and 4 and  figs. S9 and 
S11). How a unit codes for action identity within a format is de-
scribed by its SP defined as the precise firing rate values for all five 
action identities (see Fig. 3A). At the single-unit level, understand-
ing how a unit codes action identity across formats can be quanti-
fied by comparing SPs across formats. There are four possibilities 
when comparing SPs across a pair of formats: (i) the SPs are similar 
or matched across formats; (ii) both formats are selective, but the 
SPs are distinct across formats; (iii) only the first of the two formats 
is selective for action identity; and (iv) only the second format is 
selective for action identity. Each of these possibilities can be de-
fined mathematically within a linear model framework using four 
models of neural coding across formats

  model 1 : fr =  ∙  F  1   +  ∙  F  2   +   

  model 2 : fr =  ∙  F  1   +  ∙  F  2   +   

  model 3 : fr =  ∙  F  1   + c ∙  F  2   +   

  model 4 : fr = c ∙  F  1   +  ∙  F  2   +   

In model 1, the linear fit is constructed with the constraint that 
the weight parameters (ϵR5) for each action exemplar are the same 
across the two tested formats (F1, F2). This model describes units 
with the same SP across formats. In model 2, the weight parameters 
(,ϵR5) are allowed to be different and enable distinct SPs for ac-
tion exemplars between the two formats. In models 3 and 4, one 
format is assumed to be unmodulated by action identity, and a sin-
gle scalar value (cϵR1) describes the presumably equivalent response 
(e.g., nonselective) to all actions within the format.

To determine how SPs compared across formats, we fit the pa-
rameters of each of the four models using standard linear regression 
techniques (see above), and the results were compared. Several 
measures are commonly used to select the “best” model from a set 
of candidate models. We used both the BIC and cvR2 as our model 
selection criteria. These two methods provided slightly differing but 
reasonable notions of similarity. Heuristically, cvR2 required a near- 
exact match, while BIC was found to have a more qualitative notion 
of similarity (see fig. S9). We viewed the two measures as providing 
something akin to upper and lower bounds on whether units were 
similar across formats and do not view either method as being “correct” 
per se. We used the arithmetic mean of the percentages of units fit-
ting each model when reporting the results in the main figures of 
the paper.

This analysis was extended to three formats (Fig. 4A) requiring 
the creation and evaluation of 15 models for all the unique ways that 
the SPs can be expressed across formats. The 15 models are enu-
merated in fig. S11 (models 1 to 15) as the set of coefficients for each 
format where, following the description for pairwise comparisons, 
equivalent Greek letters indicate matched SPs across formats, a con-
stant c indicates no selectivity to action exemplar for the associated 
format, and multiple Greek letters indicate significant but idiosyn-
cratic SPs across formats. We performed this analysis for all combi-
nations of three formats. Last, the analysis was extended to four 
formats requiring the creation and evaluation of 51 models for all 
the unique ways that the SPs can be expressed across formats. These 
models were constructed by enumerating all the possible configura-
tions that the “fourth” format can take relative to the 15 models 
described above (see fig. S11). This analysis pooled data from sub-
jects NS and EGS given the relative paucity of data for EGS. For 
Fig. 4C, we explicitly restricted the distribution of neurons to those 
that included matching selectivity between text and the visual for-
mats. This includes the subset of visually selective neurons shown in 
blue in Fig. 4D.
Cross-format neuronal population analyses
Cross-decoding analyses (Fig. 2). We used two methods to measure 
the similarity of population responses across formats: cross-format 
classification accuracy and population correlation. Classification 
analyses were performed using LDA with assumptions and cross- 
validation procedures as described for within-format decoding 
above. For cross-format results, classifiers were trained within for-
mat and applied to alternate formats. More precisely, for each fold 
of the within-format cross-validation procedure, the classifier was 
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applied to the neural data associated with each of the three other 
formats. All predictions across folds of the cross-validation proce-
dure were used to compute decode accuracy. This enables us to un-
derstand how well the neural representation of the different action 
exemplars generalize to a novel format when the definitions of the 
actions are preserved across the two formats. This approach further 
introduces directionality to the comparisons: e.g., how well do defi-
nitions established for the text format generalize to the visual for-
mats and vice versa. To verify that the ability to generalize from one 
format to another required correctly aligning the action exemplars 
across formats, we repeated the analyses but now using “mis-
matched” labels. In the mismatch analyses, the action identity labels 
were swapped between action exemplars, and accuracy was recom-
puted on the basis of these reassigned labels. For the mismatched 
condition, we performed all possible shuffles for which no action 
exemplar was matched across formats (N = 44).

Cross-format population correlation analyses (Figs. 2, 5, and 6). To 
compute the population correlation measure, we organized the 
neural response data into four vectors, one for each format (fig. S8). 
Each vector had five values per unit, one value for each of the five 
actions. This value was computed as the mean firing rate recorded 
during the 2.6 s of stimulus presentation offset by 0.25 ms, averaged 
across trial repetitions. The mean response across these five values 
was subtracted, and the five values per unit were then concatenated 
across units to create a population response vector for each format. 
The same procedure was performed for each format ensuring that 
the same units and actions were aligned across the format vectors. 
The Pearson correlation was computed across format vectors to 
quantify the population-level similarity. Note that subtraction of 
the mean response across the five actions before concatenation was 
done to ensure that a positive correlation value across formats re-
flected similarity in the pattern of responses to the five actions and 
not general offsets in the mean response of the different neurons. 
This was necessary as some units were activated above baseline for 
all actions, and some were inhibited below baseline for all actions 
biasing the population toward a positive correlation that was not 
driven by the patterns of selectivity for the different actions. To en-
sure that a significant correlation was specifically the product of 
comparing the responses to the same actions across formats, we 
performed a shuffle control analysis. The population correlation 
was computed using the same procedures except that the five values 
computed per unit, one for each action identity, were misaligned 
(shuffled) between formats. The same shuffle order was applied to 
all units. All possible ways of shuffling action identities between for-
mats (e.g., reordering five values) were tested, and the resulting 
shuffled correlations were averaged in reporting the results. The fi-
ducial and shuffled correlations were computed separately for each 
session. Significant population correlation was determined on the 
basis of the P value resulting from a one-sided t test to determine 
whether the distribution of correlation values computed for each 
session was greater than 0. The correlation values for each session 
are also shown separately for each session with 95% confidence in-
tervals computed using a bootstrap procedure (see Fig. 5).

The correlation analysis was also performed using a sliding- 
window approach to look at the time scale of positive correlation be-
tween formats (Fig. 5). The approach was similar as described with 
the following modifications: (i) Because we computed within-format 
correlation in addition to across-format correlations, we used a 
cross-validation approach for computing the correlation values. 

The same procedure as described above was performed; however, 
the process began with splitting trial repetitions into training and 
testing sets (six trial repetitions each) and concluded with computing 
the correlation across the training and test splits. (ii) The training 
and test sets were computed from windowed data. Windows cen-
tered on time x were computed using a pseudo-Gaussian weighting 
function with mean = x and an SD of 200 ms. This allowed for a 
relatively smooth and temporally precise measure of the neural re-
sponse. Correlations were computed between training and test sets 
for all combinations of windows starting from 500 ms before movie 
onset to 500 ms after movie offset.

We further asked whether the correlation between any two for-
mats was mediated by the remaining two formats. For instance, the 
correlation between the text response and the frontal view could be 
the consequence of a text being correlated with the lateral view and 
the lateral view being correlated with the frontal view. To address 
this possibility, we performed a partial correlation analyses with the 
neural data from all four formats, thus looking at the correlation 
between two formats while regressing out the shared variance with 
the remaining formats.
Control analyses and tests
Understanding the effect of explicit visual imagery (Fig. 6). Can the 
text response be understood as the consequence of visual imagery, 
replaying the visual stimuli by imaging the visual sequence of events? 
In analyzing the visual formats, we found that the frontal and later-
al views were encoded in a distinct manner. For instance, only 
roughly half the units had a matched SP across the frontal and later-
al perspectives, while the remaining population of selective units had 
a distinct SP. If the neural responses depend on the contents of vi-
sual imagery, then visualizing from the frontal perspective should 
tend to activate the SPs for the frontal view, while visualizing from 
the lateral perspective should tend to activate the SPs from the lat-
eral perspective. To understand the impact of visual imagery, we 
split the data based on the task instructions given to the subject be-
fore each session. In comparing the results of the model selection 
analysis, we compared the percentages of cells classified into each 
category (e.g., the percentage of cells with matched selectivity across 
all formats, a single format, etc.) using a chi-squared test.

In addition, we split the dynamic correlation results into sessions 
in which the participant was instructed to passively view (seven ses-
sions) or actively imagine movements (six sessions) when presented 
with the action verb. We performed a paired t test between these 
two groupings at each pixel location to test for significant changes 
in correlation value as a function of task instruction (significance 
tested at the P < 0.05 level). The correlation values at the significant 
pixels were averaged and plotted to visualize the shape of temporal 
trends in correlation values.

Supplemental control task (fig. S10). We performed a sensory- 
motor association learning task to test whether repeated presentation 
of abstract stimuli, when paired with motor imagery of an action, 
would result in neural selectivity under passive viewing conditions. 
In the context of the current paper, this helps to constrain the inter-
pretation of a shared neural substrate for action verbs and visually 
observed actions. We instructed the subject to use visual imagery to 
imagine finger movements when presented with fractal-like images 
of snowflakes. We used five images. Three of the images were asso-
ciated with visual imagery of finger flexion movements of the thumb, 
index, and ring fingers. These movements were chosen as they re-
sulted in especially robust neural selectivity in preliminary testing. 
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Two additional images were used as controls; the subject was instruct-
ed to passively view the stimuli without accompanying visualization. 
These two control images were used to test whether differential re-
sponses might emerge between the two images based on repeated 
exposure, even in the absence of any overt behavior on the part of 
the subject. We found that no such differential tuning emerged, and 
thus, for the current study, only one of the control images was used 
in the analysis.

The experiment began with a passive viewing session in which 
the subject viewed the stimuli before any motor association to test 
for baseline visual selectivity. Then, for the first 16 repetitions of each 
condition during the first two session days, the snowflakes were 
presented along with a key instructing which action should be per-
formed (or no action in the case of the control images). For all other 
trial repetitions, the key was removed, and the subject performed 
reaction time and delayed imagined movements when presented with 
the visual stimuli. At varied intervals (fig. S10), we asked the subject 
to passively view the same set of stimuli. The experiment was per-
formed twice, sequentially, with each experiment similar in structure 
but using a different set of visual stimuli. Experiment 1 consisted of 
328 total repetitions per stimulus presented over 14 session days in 
a 49-day period. Experiment 2 consisted of 264 total repetitions per 
stimulus presented over 10 session days in a 56-day period.

We used a time-resolved classification analysis on the passive and 
reaction time trials separately to quantify selectivity for the cued stim-
uli. Classification methods were the same as described above (time- 
resolved classification of action exemplar) with windows beginning 
at −0.5 s and stepping to 2 s. For decode accuracy of the passive 
stimuli as a function of session number, we used the average firing 
rate within a 1-s window offset by 250 ms from stimulus onset.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/43/eabb3984/DC1

View/request a protocol for this paper from Bio-protocol.
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