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Modern societies offer a large variety of choices1,2, which 
is generally thought to be valuable3–7. But having too much 
choice can be detrimental1–3,8–11 if the costs of choice outweigh 
its benefits due to ‘choice overload’12–14. Current explanatory 
models of choice overload mainly derive from behavioural 
studies13,14. A neuroscientific investigation could further 
inform these models by revealing the covert mental processes 
during decision-making. We explored choice overload using 
functional magnetic resonance imaging while subjects were 
either choosing from varying-sized choice sets or were brows-
ing them. When choosing from sets of 6, 12 or 24 items, func-
tional magnetic resonance imaging activity in the striatum 
and anterior cingulate cortex resembled an inverted U-shaped 
function of choice set size. Activity was highest for 12-item 
sets, which were perceived as having ‘the right amount’ of 
options and was lower for 6-item and 24-item sets, which 
were perceived as ‘too small’ and ‘too large’, respectively. 
Enhancing choice set value by adding a dominant option led to 
an overall increase of activity. When subjects were browsing, 
the decision costs were diminished and the inverted U-shaped 
activity patterns vanished. Activity in the striatum and ante-
rior cingulate reflects choice set value and can serve as neural 
indicator of choice overload.

In many modern economies consumers have a dizzying variety 
of choices, even for simple goods like bottled water. A typical US 
supermarket can carry more than 30,000 items, including 285 kinds 
of cookies and 275 types of cereal1. For important lifetime choices, 
such as decisions about retirement investment, one can be faced 
with dozens or hundreds of options, with serious consequences if 
decision making is postponed or avoided entirely2.

Is having that much choice good or bad? In the simplest eco-
nomic theories, more choice is never worse because effort cost 
is neglected. In that case, the value of a choice set is equal to 
the value of its most-preferred item, which never decreases as 
the number of choice options goes up. From a social point of 
view, larger choice sets are better because they can satisfy a vari-
ety of different individual preferences. People also appear to be 
attracted by having more choices3. Having more choices is also 
associated with a stronger experience of freedom of choice4,5, and 

induces feelings of autonomy and self-control, facilitating intrin-
sic motivation6,7.

The increased value of having more choice of course ignores 
costs that can likewise increase with choice set size, such as choice-
related information processing, the fear of regret from mistakenly 
passing up an ideal choice8, discomfort due to uncertainty about 
preferences, lack of expertise, making trade-offs, and so on9. In 
addition, when faced with too many unfamiliar choices, consumers3 
and workers2 sometimes postpone decisions, which can in itself be 
a poor choice, and subjects are more likely to change their initial 
decision10. These phenomena together are often taken as evidence 
for human ‘choice overload’11.

Some behavioural studies try to directly measure the trade-off 
between the benefits and costs of choosing, as a function of choice 
set size. These studies generally show that consumers prefer choice 
sets containing 8 to 15 alternatives over choice sets that contain 
only 2 to 6 items, which is perceived as ‘too few’. Yet, if the number 
of choice alternatives increases beyond 15, choice sets are mostly  
perceived as ‘too large’1,3,12,13,15.

The results of studies on choice overload can be qualitatively 
captured by a simple explanatory model with two components (Fig. 
1a)13,14. One component reflects the costs of choosing (Uc; for exam-
ple, cognitive load, time), which are assumed to increase with the 
size of the choice set, S. The second component captures the ben-
efits of choosing (Ub; for example, the feeling of ‘freedom of choice’, 
the probability of finding an ideal choice), which also increase 
with S but at a lower rate than costs increase. If benefits increase 
slower than costs increase16, the net value of the choice set (the set 
value, Uo = Ub − Uc) will have an inverted U shape. This set value 
represents the integrated subjective ‘benefits’ of choosing net of the 
costs experienced during choosing from the set, and is reflected in 
a feeling of whether one felt deprived of choice, ‘just right’ about 
the choice, or overwhelmed with the choice options faced. We con-
ceive of this choice set value as also serving as a motivational signal 
that generally maintains cognitive and behavioural engagement in 
decision making but which—in case of choice overload—becomes 
demotivating.

It is important to note, however, that larger choice sets do not 
automatically lead to choice overload. For instance, Iyengar and 

Choice overload reduces neural signatures of 
choice set value in dorsal striatum and anterior 
cingulate cortex
Elena Reutskaja1,8, Axel Lindner   2,3,4,8*, Rosemarie Nagel5, Richard A. Andersen4,6  
and Colin F. Camerer   7

NAtuRE HumAN BEHAviouR | www.nature.com/nathumbehav

mailto:a.lindner@medizin.uni-tuebingen.de
http://orcid.org/0000-0002-8201-788X
http://orcid.org/0000-0003-4049-1871
http://www.nature.com/nathumbehav


Letters NAtUrE HUMAN BEHAvioUr

Lepper3 have demonstrated that prior to choice, large sets are often 
considered to be more attractive than smaller sets, but they become 
less motivating during the process of choosing, once decision costs 
are experienced. In this Article we focus on this latter situation: we 
study the value of the choice set once the benefits and costs of choos-
ing are experienced. Choice overload is also not experienced in all 
choice contexts17. A recent meta-analysis identified four relevant 
factors that moderate the impact of choice set size on choice over-
load11. Choice overload increases with (1) decision task difficulty 
(for example, time pressure), (2) choice set complexity (for example, 
due to the absence of a clearly preferred, dominant option18) and (3) 
preference uncertainty (for example, choice made by experts versus 
non-experts). Finally, set value is also modulated by (4) decision 
goals (for example, ‘choosing’ versus ‘browsing’19,20).

Explanatory models of choice overload should further detail the 
benefits and costs of choice, and their modulation through these 
extrinsic ((1) and (2)) and intrinsic ((3) and (4)) factors as they vary 
across individuals and choice contexts. A neuroscientific investiga-
tion of the phenomenon of choice overload might help to further 
inform these models, which thus far build only on studies engaging 
behavioural measures or self-reports. Neural observation could help 
in building more precise models of choice overload by revealing  

covert processes during decision making, and by possibly identify-
ing the ‘bottlenecks’ that reduce the value of large choice sets.

Here we report an initial approach, using functional magnetic 
resonance imaging (fMRI) to identify brain areas that represent the 
value of a set as a whole. We hypothesized that areas associated with 
set value would exhibit an inverted U-shaped activity profile as a 
function of set size S, and that the inverted U shape is further modu-
lated by choice set complexity and decision intent.

We hypothesized that the striatum and the anterior cingulate 
cortex (ACC) are likely candidates for coding choice set value. 
There is evidence that both areas represent value signals net of 
costs21 and are thought to motivate engagement in executive con-
trol and choice behaviour22,23. Yet, it is an open question whether 
these (or any other) brain areas represent choice set value, which is 
a representation that goes beyond the evaluation of individual items 
within a set (or the value of the chosen item).

We further hypothesized that the increasing costs of choosing 
from large sets would be reflected in activity in task-related areas 
engaged in visual and sensorimotor processing, and by more fre-
quent eye saccades used to visually inspect available choices15,24–27.

Next we demonstrate that activity in the striatum and ACC did 
initially exhibit an inverted U-shaped activity profile as a function 
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Fig. 1 | Choice set value. a, This model describes the satisfaction with a choice set (Uo), here referred to as choice set value, as the net benefit of choosing. 
Uo reflects the difference between the benefits (Ub) and the costs (Uc) of choosing, which increase with the choice set size S. Because costs increase faster 
than benefits, the choice set value is described by an inverted U-shaped function of S. b, Difficulty rating, showing subjects’ average perceived choice 
difficulty as a function of choice set size (N =  19; data presented as mean and 95% CI; between subject-variance was removed according to the procedures 
specified in ref. 67). Differences in ratings between sets were assessed by a one-way repeated measures ANOVA (see main text) and pairwise post hoc 
comparisons (P values were Bonferroni-corrected for multiple comparisons; 6 versus 12: t(18) =  1.546, P =  0.418, g1 (95% CI) =  0.355 (− 0.114, 0.814);  
6 versus 24: t(18) =  4.147, **P =  0.002, g1 (95% CI) =  0.951 (0.397, 1.488); 12 versus 24: t(18) =  5.077, ***P <  0.001, g1 (95% CI) =  1.165 (0.568, 1.742)).  
c, Amount rating assessing subjects’ experience of the choice process (N =  19; data presented as mean and 95% CI). This was significantly influenced by 
set size (one-way repeated measures ANOVA with factor set size (see main text) and pairwise post hoc comparisons; t(18) =  5.555, ***P <  0.001, g1 (95% 
CI) =  1.274 (0.654, 1.875); 6 versus 24: t(18) =  10.240, ***P <  0.001, g1 (95% CI) =  2.349 (1.457, 3.224); 12 versus 24: t(18) =  6.215, ***P <  0.001, g1 (95% 
CI) =  1.426 (0.771, 2.061)). d, Normalized group estimate of subjects’ choice set value. This estimate was derived from the average amount rating in c 
and according to the formula shown. A value of ‘1’ characterizes a set size, which is perceived as optimal, while ‘0’ identifies least optimal set sizes. This 
normalized estimate of set value resembles an inverted U-shaped profile as a function of S, as is suggested by the model in a. Normalized set value is well 
described by the quadratic predictor used for fMRI analyses (black line is a linear fit to the data).
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of set size S that, in addition, was modulated by choice set complex-
ity and by decision intent. This inverted U-shaped profile vanished 
during later stages of a trial when decision-related fMRI activity 
instead reflected the value of the chosen item.

In our study subjects had to choose pictures from sets of unfa-
miliar landscape images. The image chosen by the subjects in one 
randomly selected trial was later printed on a product of their 
choice (for example, a t-shirt or a mug) and had to be picked up by 
them (Fig. 2a). Hence, our fMRI experiment mimicked a natural 
choice setting with actual consequences, in which subjects choose 
from sets containing different number of choice alternatives S.

Our study was completed by N =  19 subjects, which performed 
three subsequent tasks: (1) A liking rating assessing the desirabil-
ity of the available landscape photographs; (2) an fMRI experiment 
engaging a choice task in which the subject needed to select an 
image in different sized choice sets; (3) a questionnaire task, evalu-
ating one’s choice experience in the choice task (2) (Fig. 2a).

In task 1, which was performed before fMRI scanning, subjects 
rated how much they wanted each picture to be printed on the prod-
uct of their choice (procedure adopted from ref. 15). They rated 312 

pictures (52 pictures ×  6 landscape categories) twice. The final rat-
ing of each image was determined by the average rating calculated 
across the two rounds. This allowed us to create customized choice 
sets for each individual in a way that accounted for the subjective 
value of each image within a set.

In task 2, we scanned brain activity while subjects were choosing 
their preferred picture from the customized choice sets consisting of 
either S =  6, 12 or 24 pictures of the same landscape category (Fig. 2b).  
These three different set sizes S were selected based on prior resea
rch2,3,10–13,15 to create sets with high choice set value (that is, having 
‘just the right amount of alternatives’; S =  12) and with lower choice 
set value (that is, carrying ‘too few’ (S =  6) or ‘too many’ (S =  24) 
alternatives, respectively). Any brain area that would display activity 
reflecting an inverted U-shaped pattern as a function of S (Fig. 1a)  
would be considered a candidate region potentially representing 
choice set value.

To further clarify whether these candidate areas do reflect choice 
set value, we also varied whether a highly rated ‘clear favourite’ item 
(CF) was available in a set or not (‘no favourite’, NF) (Supplementary 
Fig. 1c,d). As mentioned above, choice set processing costs typically 
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Fig. 2 | Experimental design. a, Overview of the different tasks performed during the experiment. b, Exemplary choice sets, reflecting sets of small, 
medium and large size (S =  6, 12 or 24, respectively). The sets were created using images from terragalleria.com with permission from the website.  
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decrease when a highly preferred dominant option is present10,18. 
Therefore, we expected a corresponding increase in set value related 
brain activity in CF as compared to NF. Finally, these free choice tri-
als were contrasted with ‘forced choice’ (FO) trials. FO trials mim-
icked the NF condition except that subjects made an involuntary 
choice of a highly valued item, dictated by a computer. This manip-
ulation should alter subjects’ decision intent from ‘choosing’ (in free 
choice trials) to ‘browsing’ (in forced choice trials), thereby dimin-
ishing the costs of choosing and choice overload19,20. Accordingly, 
set value related brain activity in FO trials should uncover only the 
benefits of larger choice sets and thus offset the inverted U-shaped 
activity profile discussed earlier (see Ub in Fig. 1a).

All conditions had an equal share and were presented randomly 
interleaved (72 trials total, split into 4 runs). Each trial was com-
posed of an initial baseline epoch with central fixation (13–14 s), 
a fixed 10 s exposure to the choice set, a 0.5 s mask to reduce after-
image contrast, a 13–14 s delay with central fixation, and a brief 3 s 
response stage displaying the choice set a second time (Fig. 2c). 
During the response stage subjects had to guide a cursor to the 
selected image to indicate their decision. Subjects’ eye movements 
were also recorded throughout the fMRI experiment. Our measures 
of both eye movements and brain activity are chiefly reported for 
the exposure period in which subjects inspected the choice sets. 
This is because we were particularly interested in the processes that 
contribute to the evaluation of a choice set and their neural imple-
mentation. The 10 s duration of the exposure period was chosen 
based on previous research15 and a pilot experiment in an attempt to 
ensure that (1) subjects are able to make high-quality decisions and 
(2) they make use of the full length of the exposure period to inform 
their decisions. The delay served to allow a separation of choice set 
related decision activity during the exposure stage, from memory 
maintenance, motor preparation and action execution in the later 
response stage28.

In task 3, which was performed after scanning, subjects had to 
answer a questionnaire (Fig. 2a). Subjects had to rate the difficulty of 
choosing from each set size on a 10-point scale from 1 (‘Not difficult 
at all’) to 10 (‘Extremely difficult’; Fig. 1b). They next had to report 
whether the choice sets contained the ‘right number of items’ on a 
9-point scale, with 5 meaning ‘Yes, I had just the right amount of 
choice options’, and with lower numbers indicating too few options 
and higher numbers indicating too many options (Fig. 1c) (measure 
adopted from previous research3). Based on the across-subject aver-
age of this estimate we further derived the normalized set value as

−∣ − ∣ ∕1 5 Average amount rating 4

In other words, a set size is perceived as optimal if this index is 1 
while a set size is perceived as least optimal if this index is 0 (Fig. 1d).  
See Methods and Supplementary Methods for further details on the 
design of the study.

As we hypothesized, perceived difficulty of choosing increased 
with S (Fig. 1b; one-way repeated measures analysis of variance 
(ANOVA) with factor set size: F(1.376, 24.771) =  , P <  0.001, ηp

2 
(95% confidence interval (CI)) =  0.466 (0.1973, 0.6122)). Set size 
also had a significant influence on the amount rating (one-way 
repeated measures ANOVA with factor set size: F(2,36) =  63.220, 
P <  0.001, ηp

2 (95% CI) =  0.778 (0.6449, 0.8317)). Subjects rated the 
12-item set as having just ‘the right number of options’ while sets 
with 6 and 24 alternatives were perceived as having ‘too few’ and 
‘too many’ items, respectively (Fig. 1c). Accordingly, the group esti-
mate of normalized set value (Fig. 1d) was highest for choice sets of 
intermediate size and lower for smaller and larger sets, showing the 
predicted inverted U-shaped function (Fig. 1a,d).

Next we show that reaction times demonstrate that the exposure 
period and the delay stage are sufficiently long to allow subjects to 
make a decision in all free choice trials. If subjects indeed settled on 

one specific item in a set during the exposure period, then prepar-
ing the motor response required to choose was beneficial because of 
the brief 3 s duration of the response stage. We defined the reaction 
time (RT) as the amount of time elapsed from the appearance of 
the response screen until a subject first started to move the cursor 
towards the chosen item. If choices are made during the exposure 
period and held in memory, then RTs should be longer in the forced 
choice condition (FO) than in the matched free choice condition 
(NF)[29], as response preplanning was not possible in FO (because 
the item the subject was instructed to choose was only indicated 
during the response phase). Indeed, RTs were significantly shorter 
when subjects were freely choosing (NF; mean (M) =  562 ms ±  53 ms 
(CI)) than during forced choice (FO; M =  740 ms ±  43 ms (CI); two-
way repeated measures ANOVA with factors condition (NF versus 
FO) and set size (S); condition: F(1,18) =  50.720, P <  0.001, ηp

2 (95% 
CI) =  0.738 (0.505, 0.822)). In addition, RTs in both conditions 
did not exhibit any variation as a function of choice set size S (set 
size: F(2,36) =  1.207, P =  0.311, ηp

2 (95% CI) =  0.063 (0.000, 0.185); 
interaction: F(2,36) =  0.372, P =  0.692, ηp

2 (95% CI) =  0.020 (0.000, 
0.101); Fig. 3a). Nor did RTs differ between the two free choice 
conditions (two-way repeated measures ANOVA with factors con-
dition (CF versus NF) and set size (S); condition: F(1,18) =  1.376, 
P =  0.256, ηp

2 (95% CI) =  0.071 (0.000, 0.286); set size: F(1.383, 
24.886) =  0.603, P =  0.496, ηp

2 (95% CI) =  0.0324 (0.000, 0.177); 
interaction: F(2,36) =  1.532, P =  0.230, ηp

2 (95% CI) =  0.078 (0.000, 
0.208)). Hence, response preparation was identical in CF and NF 
and also did not vary with set size S (Fig. 3a).

Eye movement recordings demonstrate that the number of sac-
cadic eye movements was influenced by the size of the choice set S.  
The number of saccades per second increased with S during the 
exposure period of all conditions (Fig. 3b), while average saccade 
amplitudes decreased (Fig. 3c). Accordingly, a significant influence 
of choice set size S was revealed by separate two-way repeated mea-
sures ANOVAs (factors set size and condition (CF versus NF or NF 
versus FO)) for both saccade frequency (set size (CF versus NF): 
F(1.464, 26.353) =  96.812, P <  0.001, ηp

2 (95% CI) =  0.843 (0.723, 
0.886); set size (NF versus FO): F(2,36) =  74.421, P <  0.001, ηp

2 (95% 
CI) =  0.805 (0.686, 0.852)) and saccade amplitude (set size (CF ver-
sus NF): F(2,36) =  20.650, P <  0.001, ηp

2 (95% CI) =  0.534 (0.314, 
0.643); set size (NF versus FO): F(1.523, 27.418) =  11.239, P <  0.001, 
ηp

2 (95% CI) =  0.384 (0.131, 0.541)). Between conditions CF and 
NF the number and amplitude of saccades was indistinguishable 
(frequency: F(1,18) =  2.721, P =  0.116, ηp

2 (95% CI) =  0.131 (0.000, 
0.357]; amplitude: F(1, 18) =  0.666, P =  0.425, ηp

2 (95% CI) =  0.036 
(0.000, 0.222)) and their modulation with S was similar in both con-
ditions (interaction frequency: F(2,36) =  1.507, P =  0.235, ηp

2 (95% 
CI) =  0.077 (0.000, 0.207); interaction amplitude: F(2,36) =  1.202, 
P =  0.312, ηp

2 (95% CI) =  0.063 (0.000, 0.185)). The overall number 
of saccades was, however, smaller during ‘browsing’ (FO; M =  1.01 
saccades per second ±  0.14 (95% CI)) compared with ‘choosing’ 
(NF; M =  1.24 saccades per second ±  0.12 (95% CI); condition: 
F(1,18) =  20.616, P <  0.001, ηp

2 (95% CI) =  0.534 (0.229, 0.682)) 
and the increase with S was smaller in FO than in NF (interac-
tion: F(2,36) =  9.985, P <  0.001, ηp

2 (95% CI) =  0.357 (0.131, 0.497)). 
Average saccade amplitude did not differ between FO and NF (con-
dition: F(1,18) =  2.053, P =  0.169, ηp

2 (95% CI) =  0.102 (0.000, 0.325)), 
but did decrease more strongly as a function of set size S in NF than 
in FO (interaction: F(2,36) =  5.283, P =  0.010, ηp

2 (95% CI) =  0.227 
(0.036, 0.378)). Given that increases in saccade frequency rather 
than in saccade amplitude demand greater neural resources30, these 
results imply that the motor costs and attentional demands increase 
with set size, and are higher in the CF and NF conditions requiring 
a choice than in FO. An additional time-resolved analysis of saccade 
frequency during the exposure period suggests that subjects made 
use of the full length of this period to inspect the choice sets in all con-
ditions (Supplementary Fig. 2). Importantly, these data (and Fig. 3b)  
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also indicate that subjects ‘browsed’ the available choice options 
even in FO trials when there was no need to choose by oneself. This 
is further supported by self-reports in our questionnaires: most sub-
jects either always (26%) or often (63%) thought about which image 
they would have selected by themselves in the FO condition. (Two 
other subjects said they never thought about choosing during FO 
trials or gave no answer.)

An important behavioural question is how closely liking ratings 
are associated with the choices subjects made in NF and CF trials. 
To answer it we assessed the normalized value of the chosen item 
across trials and conditions according to the following equation 
(using rating minima and maxima across all images of all trials):

−
−

Liking rating of chosen item Minimum liking rating
Maximum liking rating Minimum liking rating

This normalized value of the chosen item only equals one if 
the most favourite image of all 312 possible images was selected, 
and this value equals zero if the least favourite image of all is cho-
sen. Note that all sets for a given condition and subject were cre-
ated in such a way that differences in their mean liking rating were 
minimized across the three set sizes (Supplementary Fig. 1a and 

Supplementary Methods). The value of the chosen item was sig-
nificantly higher in CF (M =  0.65 ±  0.05 (CI)) than in NF conditions 
(M =  0.46 ±  0.05 (CI)), as would be expected due to the presence 
of a more highly rated, dominant option in CF (two-way repeated 
measures ANOVA with factors condition and set size; condition: 
F(1,18) =  115.707, P <  0.001, ηp

2 (95% CI) =  0.865 (0.728, 0.908); 
Fig. 3d). The value of the chosen item decreased with increasing 
set size (set size: F(2,36) =  4.225, P =  0.022, ηp

2 (95% CI) =  0.190 
(0.016, 0.341)). However, this decrease was only apparent in CF 
and, accordingly, is reflected by a statistical trend for an interac-
tion of factors condition and set size (interaction: F(2,36) =  3.010, 
P =  0.062, ηp

2 (95% CI) =  0.143 (0.000, 0.290)). Note that the lack 
of a set size effect in the NF condition could be a reflection of the 
smaller average variability in liking ratings in NF sets (compare 
Supplementary Fig. 1b,d).

Subjects chose the image with the highest liking rating signifi-
cantly more in CF (M =  49 ±  6% (CI)) as compared to NF trials 
(M =  27 ±  9% (CI); two-way repeated measures ANOVA with fac-
tors condition and set size; condition: F(1,18) =  18.471, P <  0.001, ηp

2 
(95% CI) =  0.506 (0.199, 0.663); Fig. 3e). This suggests that choice 
was actually easier in CF trials due to the presence of a dominant 
option; the respective choice set values, encoded neurally, should 
therefore be higher in CF than in NF trials. Note that in both 
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response phase. Reaction times are shown for each experimental condition (CF, NF and FO) and each choice set size (S =  6, 12 and 24). b, Mean number 
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free choice conditions the likelihood of selecting the best-rated 
image decreased significantly with increasing set size S (set size: 
F(2,36) =  10.686, P <  0.001, ηp

2 (95% CI) =  0.373 (0.145, 0.511); inter-
action: F(2,36) =  0.486, P =  0.619, ηp

2 (95% CI) =  0.026 (0.000, 0.117)). 
The same qualitative effect held when correcting for choosing favou-
rite items just by guessing; condition: F(1,18) =  18.828, P <  0.001, ηp

2 
(95% CI) =  0.511 (0.204, 0.666); set size: F(2,26) =  3.334, P =  0.047, 
ηp

2 (95% CI) =  0.156 (0.001, 0.305); interaction: F(2,26) =  0.524, 
P =  0.597, ηp

2 (95% CI) =  0.028 (0.000, 0.122).
Next we searched for regions that exhibit blood-oxygenation-

level-dependent (BOLD) signals reflecting choice set value. We 
applied a whole-brain general linear model (GLM) in which we 
separately modelled each of our experimental conditions for each of 
our three main task stages (exposure +  mask, delay, response). We 
included parametric modulators, which captured fMRI-signal mod-
ulations that were linearly increasing with S (that is, either reflect-
ing costs or benefits) and that were reflecting an inverted U-shaped 
function of S (that is, capturing set value). The linear predictor was 
formed by convolving a canonical fMRI-response function with 
the normalized set size (Slinear(S) =  (S −  Smean) / Smean; with Smean =  14 as 
the average set size). The inverted U-shaped or quadratic predic-
tor resulted from a convolution with the negative square of normal-
ized set size (Squadratic(S) =  − Slinear(S)

2) and was orthogonalized to the 
linear predictor. This quadratic predictor fits the average estimate 
of set value (Fig. 1d) and thus is a sensible tool to detect correlated 
fMRI activity with set value on the group level. The advantage of 
this approach is that it allows us to independently assess both lin-
ear and quadratic signal components associated with set size S (see 
Supplementary Discussion for a critical assessment of alternative 
experimental approaches). A parametric modulator was included 
to capture signal fluctuations that corresponded to the liking rating 
(desirability) of the chosen item in any given trial. The initial fixa-
tion period (13–14 s) served as an implicit baseline for fMRI analy-
ses (Fig. 2c).

fMRI activity increasing linearly with S during the exposure 
stage of the pooled choice conditions (CF and NF) was exhibited in 
the left occipital cortex (lingual gyrus (LG) also encroaching fusi-
form gyrus; inferior occipital gyrus (IOG); middle occipital gyrus, 
(MOG)), left posterior parietal cortex (superior parietal lobule 
(SPL)), bilateral dorsal premotor cortex (PMd) and bilateral sup-
plementary motor area (SMA) (red areas in Fig. 4a). Most of these 
areas have been previously associated with the planning and control 
of movement (for example, reaches and saccades), the processing of 
visual scenes, or both24–27.

Areas exhibiting fMRI activity correlated with the quadratic 
predictor in the pooled choice conditions (CF and NF) during 
the exposure stage included bilateral ACC, the striatum (bilateral 
caudate nucleus (CN) and the left putamen (PUT)), left thalamus 
(Thal), bilateral dorsolateral prefrontal cortex (DLPFC) (middle 
frontal gyrus (MFG)), bilateral anterior insula (aINS) extending 
towards the posterior orbitofrontal cortex (POG, also referred to 
as the lateral orbitofrontal cortex), left ventral and dorsal premo-
tor cortex (PMv and PMd), bilateral posterior parietal cortex (along 
the posterior part of the intraparietal sulcus (pIPS)) and occipital 
cortex (left LG, left IOG and right MOG) (green areas in Fig. 4a 
and Supplementary Table 1). The inverted U-shaped profile of the 
fMRI responses underlying this correlation is also seen when these 
areas’ beta estimates in CF and NF are plotted as a function of S 
(see Fig. 4b for a representative subset of regions). Figure 4c shows 
the respective time courses of fMRI activity in these areas for the 
pooled choice conditions and as a function of S. Visual inspection 
of the time courses clearly confirms the inverted U-shaped activity 
profile throughout the exposure period. Activity in the 12-item set 
was consistently higher than for 6- and 24-item sets. Interestingly, 
however, this inverted U-shaped activity profile vanished during the 
delay and response stages.

Due to their quadratic activity profile, the aforementioned brain 
areas were considered candidate regions that represent choice set 
value. Such neural representation of choice set value should also be 
modulated by choice set complexity and decision intent. To test this 
assumption, candidate regions were further subjected to region of 
interest (ROI) analyses (see Methods). Areas encoding choice set 
value should increase their activity in the presence of a dominant 
option (CF >  NF) (criterion (1), ‘choice set complexity’), and show a 
less quadratic activity profile when shifting subjects’ decision intent 
from ‘choosing’ (NF) to ‘browsing’ (FO) (criterion (2), ‘decision 
intent’). We would only consider those candidate areas to reflect 
choice set value that would survive these former criteria. In addi-
tion, we controlled for the simultaneous presence of a positive linear 
signal component (that is, beta values for the linear predictor are 
larger than zero) as well as for a positive linear correlation of activ-
ity with the number of saccades and with the difficulty rating in free 
choice conditions (CF and NF; Supplementary Table 1).

Criterion (1): Among our candidate ROIs, beta estimates were 
significantly higher in CF than in NF sets in bilateral dorsal striatum 
(PUT/CN), bilateral ACC, left aINS/POG, the left DLPFC (MFG), 
the left ventral premotor cortex (vPM) and left thalamus. These dif-
ferences are illustrated in Fig. 4b for left dorsal striatum (PUT/CN) 
and right ACC, in which the beta estimates were significantly higher 
whenever a dominant option was present (green bars, CF) as com-
pared to the situation when a dominant option was not present (yel-
low bars, NF) (also compare the detailed results of the underlying 
repeated measures ANOVAs with the factors condition (CF versus 
NF) and set size S (factor of no interest) shown in Supplementary 
Table 1; see Supplementary Fig. 3a for a depiction of the same quali-
tative effect in the left MFG).

Criterion (2): Shifting subjects’ decision intent from ‘choosing’ 
to ‘browsing’ further abolished the ‘quadratic’ cost-related sig-
nal component in left dorsal striatum and right ACC (that is, the 
cost-related signal is diminished in NF). Specifically, in Fig. 4b an 
inverted U-shaped activity profile as a function of S is clearly visible 
in the left striatum (PUT/CN) during ‘choosing’ (NF and CF) but 
not during ‘browsing’ (FO). Accordingly, the respective quadratic 
predictors captured significantly less variance in FO compared with 
NF, as documented in Fig. 4d. The same effect was present in right 
ACC (Fig. 4d). Similar trends can be observed also for left POG 
and left MFG (Supplementary Table 1 and Supplementary Fig. 3c). 
In contrast to the activity in the left dorsal striatum, however, this 
region in the right ACC further exhibited a positive linear signal 
component in free choice trials (one-tailed t-test: t(18) =  2.000; 
P =  0.030; effect size estimate g1 (95% CI) =  0.459 (− 0.021, 0.927)) 
and a significant correlation of its activity with subjects’ diffi-
culty ratings (linear regression: F(1,112) =  7.622, P =  0.007, r (95% 
CI) =  0.252 (0.072, 0.417)) (Supplementary Table 1). This suggests a 
simultaneous representation of decision costs in this area.

Finally, we compared how normalized set value and the value 
of the chosen item were represented throughout the different task 
stages within the latter ROIs (Fig. 4e). We expected that choice set 
value should primarily be represented during the exposure period of 
our task (that is, when subjects first face the choice sets), while repre-
sentations of the value of the chosen item should surface at the later 
task stages, namely the delay phase, when subjects need to complete 
and remember their decision, and the response phase. Indeed, the 
left dorsal striatum and right ACC exhibited a significant quadratic 
signal component capturing choice set value during the exposure 
stage only (Fig. 4e; also see Supplementary Fig. 3d for the presence 
of the same qualitative effect in left POG and left MFG). The value of 
the chosen item is, instead, only represented during the delay stage 
in right ACC and during the response stage in left dorsal striatum. 
Accordingly, an additional repeated measures ANOVA with the fac-
tors task stage and GLM regressor (quadratic predictor versus lik-
ing rating of the chosen item) revealed a significant interaction for 
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the dorsal striatum (task stage: F(1.533,27.599) =  3.745, P =  0.836, 
ηp

2 (95% CI) =  0.007 (0.000, 0.091); regressor: effect of no interest; 
interaction: F(1.508, 27.142) =  4.770, P =  0.025, ηp

2 (95% CI) =  0.209 
(0.016, 0.388)), suggesting a temporally distinct representation of 
two types of value signal within the dorsal striatum, which shifts 
from a valuation of the choice set during exposure to a valuation of 
the chosen item during the response.

Our overall results revealed a neural representation of choice 
set value in the striatum and the ACC (and potentially in the left 
DLPFC and in left POG) that is distinct from a valuation of indi-
vidual items or actions.

The phenomenon of choice overload was first established and 
explored in psychology, and later in marketing and decision the-
ory1–3,10,11,15,18,19. Many behavioural studies provided support to an 
explanatory cost–benefit model of choice set value9,12–14 that also 
guided our approach (Fig. 1a). This model hypothesizes an inverted 
U shape for valuation of choice sets.

Our design specified three sizes of choice set, creating the pos-
sibility of detecting the inverted U-shaped relation. When working 
on these sets, subjects experienced higher processing costs when 
choosing from larger set sizes. Increased cost was indicated by sub-
jective difficulty ratings (Fig. 1b), increases in the number of eye 
movement saccades (Fig. 3b), and fMRI signal amplitudes in visual 
and sensorimotor areas (Fig. 4a). Subjects’ aggregate ratings of choice 
set value in task 3 showed the expected inverted U-shaped func-
tion of S (Fig. 1d). Any region that similarly exhibited an inverted  

U-shaped neural activity as a function of S, approximated by the 
quadratic predictor, was considered a candidate area representing 
choice set value (Fig. 4). Going further, based on behavioural evi-
dence11, we tested whether those regions with an inverted U-shaped 
activity profile also showed (1) increased value for less complex 
processing (CF >  NF) and (2) diminished quadratic activity if the 
costs of choosing are removed in FO trials. Regions within the left 
dorsal striatum, namely the caudate nucleus (CN) and the puta-
men, as well as the right ACC, did exhibit an inverted U-shaped 
activity profile as a function of choice set size S in free choice tri-
als while also fulfilling the above two criteria (1) and (2) (Fig. 4). 
Importantly, the overall characteristic of the observed activity 
profiles, which correlates with choice set value, could neither be 
directly explained by differences in the stimulus material nor by 
the statistics of our choice sets (Supplementary Fig.1) or by any of 
the behavioural parameters that were assessed in our study (Fig. 3).  
In our Supplementary Discussion we further discuss various fac-
tors that, potentially, could have confounded our results. We con-
clude that explaining the overall pattern of activity in ACC and 
the dorsal striatum by choice set value is the most parsimonious  
interpretation of our data.

Earlier studies have shown that ACC contains neurons that 
reflect various decision variables such as reward probability, reward 
magnitude and physical decision costs. It was thought to also rep-
resent an integrated value signal that considers both these costs 
and benefits31,32. In fact, electrophysiological recordings from ACC 
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neurons have demonstrated a representation of both the discounted 
value of chosen items and of decision costs such as physical effort 
or temporal delay33. Accordingly, human ACC has representations 
of anticipated effort34,35, and the effort-discounted value of reward 
offers in decision-making experiments36,37. Similarly, our results 
revealed that the right ACC—as opposed to the left dorsal stria-
tum—does exhibit signal components that linearly increase with 
choice set size S and that correlate with perceived choice difficulty 
(Supplementary Table 1). These signal components could reflect the 
cost of choosing from a particular choice set. On the other hand, 
the simultaneous presence of a quadratic signal component in ACC 
suggests that it also reflected the overall value of a choice set, net 
of decision costs. As opposed to previous experiments, however, 
these putative cost and net value signals in ACC value the choice 
set as a whole. The idea that the ACC represents such a ‘global’ cost 
and value signals is also in agreement with a recent investigation 
that engaged a ‘human foraging paradigm’ where ACC reflected the 
average value of the (global) foraging environment as well as forag-
ing costs38. Finally, our findings are also compatible with the sugges-
tion that integrated value signals in ACC ‘determine whether, where 
and how much control to allocate’22, consistent with the concept of 
choice set value as a driver of motivation and cognitive engagement.

As with activity in the right ACC, areas within the left dorsal 
striatum—the caudate nucleus and the putamen—also displayed 
quadratic activity patterns that appear to represent choice set value. 
Consistent with this interpretation, striatal areas have been shown 
previously to reflect subjective value signals39 and to discount value 
information by cost factors such as anticipated physical effort21,35 
or experienced cognitive demands40. However, these studies have 
reported net value representations for the ventral striatum, whereas, 
here, we have uncovered set value related activity in dorsal striatum. 
The reason for this discrepancy could simply refer to the fact that our 
study entailed a choice task while the other studies did not require 
their subjects to choose. Yet, consistent with our findings, various 
studies have shown that activity within the dorsal striatum increases 
when subjects invest less effort21,36,41. Moreover, in a comparable 
task design, researchers have shown that overlapping areas within 
the dorsal striatum exhibit fMRI activity that scales with expected 
reward and with subjects’ motivation42–44. Hence, the reported activ-
ity profiles within the left dorsal striatum could resemble our sub-
jects’ motivation to choose from a given set: they could reflect the 
increasing attractiveness of larger sets during ‘browsing’ and the 
set-attractiveness, discounted by the decision costs for larger sets, in 
the case of ‘choosing’ (Fig. 4b). In fact, the dorsal striatum is in an 
ideal anatomical position to propagate such set value related infor-
mation to areas engaged in both cognitive control and motor behav-
iour45,46. Similar to ACC, it could motivate engagement in executive 
control23,47,48 and enable decision making from multiple alternatives, 
as long as it does not get too costly. Conceptually, this operational 
interpretation of choice set value agrees well with the concept of 
‘intensity of motivation’ of ref. 49. Based on a vast body of empiri-
cal work these authors suggest that ‘motivational arousal rises with 
increasing difficulty of instrumental behaviour up to the point 
where the required effort is greater than is justified by the motive, 
or the required effort surpasses the individual’s skills and abilities, 
at which point arousal drops to a low level’ (p. 129) (see, for exam-
ple, ref. 50 for related empirical work). This description resembles 
our own explanatory model well (Fig. 1a) and thus, at least in the 
context of our study, ‘intensity of motivation’ and ‘choice set value’ 
could reflect two sides of the same coin.

The value of the choice set was not the only value signal that 
was present in the left dorsal striatum. In fact, the nature of the 
value representation within the striatum varied across the different 
stages of our task: while set value was exclusively encoded during 
the exposure stage of a trial, a representation of the value of the cho-
sen item emerged at later task stages (Fig. 4e). This pattern further 

suggests that representations of (1) the value of the set and (2) the 
value of the chosen item are distinct and temporally separable. One 
may further conclude that the decision costs experienced during the 
process of choosing have no impact on the value signal for the cho-
sen item. Our overall findings therefore confirm and significantly 
extend previous conceptions of value coding in dorsal striatum.

Besides the dorsal striatum, the left orbitofrontal (POG) and left 
dorsolateral prefrontal cortex (MFG) also appear to reflect choice 
set value. Both areas exhibited an inverted U-shaped activity pro-
file in choice trials (CF and NF), but there were only weaker trends 
to changes in activity in those areas based on choice complexity 
and decision intent (Supplementary Fig. 3). The representation of 
choice set value in these areas could be explained by their recruit-
ment through motivational signals from the striatum or ACC: the 
orbitofrontal cortex (POG) could be engaged in representing the 
‘space of goods’ in our task and in choosing between the individual 
items51. The MFG is typically thought to play a crucial role in cogni-
tive control, attention and working memory52–55. We can therefore 
speculate that lower fMRI activity in MFG in response to the largest 
choice sets might indicate a reduction of sustained cognitive con-
trol, or ‘mental fatigue’, in the face of choice overload56.

The major contribution of our study is to demonstrate the neural 
substrates that reflect the integrated costs and overall net benefits 
of choosing from sets with multiple alternatives, namely the dor-
sal striatum and the ACC. Another important, though unexpected, 
outcome of our study was that such representations of set value and 
of the value of the chosen item are represented in a temporally dis-
tinct fashion. This has important theoretical and practical implica-
tions, as it suggests that the costs of choosing only enter into the 
value of the set, and not into the value of the chosen item. Further 
research is needed, however, to more precisely detail the actual roles 
and the interplay of all task-related areas in the process of choosing 
from multiple alternatives as well as their time course.

Looking forward, it would be desirable to devise experiments 
that are able to identify representations of specific costs and benefits 
and to uncover how they contribute to set value representations (for 
example, by means of establishing functional connectivity between 
representations of the net value of a set and other areas process-
ing specific costs and benefits40). This could help to define the true 
nature and origin of those costs and benefits, which are difficult to 
uncover when using solely behavioural studies or self-reports. The 
latter is particularly true for isolating the costs of neural process-
ing, which, metabolically, are the most expensive57. Hence, based 
on brain-imaging data, new insights into various types of cost and 
benefit can be revealed and the temporary influence of these factors 
on set value versus chosen value can be identified. In cases where it 
is difficult to accurately predict the value of choice sets purely from 
behavioural comparisons or subjective reports, neural data could 
conceivably improve prediction58,59.

Importantly, although these insights are necessarily based on 
correlational analytical techniques, identification of the neural 
circuitry of choice overload invites causal experiments that can 
critically probe the developed models using non-invasive brain 
stimulation (for example, using transcranial magnetic stimulation 
(TMS) or transcranial direct current stimulation (tDCS) to increase 
or decrease particular cost–benefit calculations) or through lesion 
patient studies. This will help to further detail psychological and 
economic models of choice overload and to find the actual ‘bottle-
necks’ that delimit our ability to choose easily from multiple alter-
natives.

Knowing more about choice overload, and ideal choice set sizes, 
can be important for informing public policy. Governments and 
organizations often must decide how many options to give to citi-
zens, employees or customers in important decisions such as the 
choice of a pension scheme, a health plan or a medical option such 
as elective surgery. Knowledge of the origins of costs and benefits 
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associated with the overall array of options could enable govern-
ments to help citizens make better active decisions without appre-
ciably restricting freedom60,61.

This study only tested variation of choice overload with two fea-
tures: complexity (CF versus NF) and decision intent (choosing in 
NF versus browsing in FO). Further research should address the 
effect and neural representation of other moderators of choice over-
load. Promising variables include time pressure, possible differences 
between cultures (because autonomous, personal choice is more 
strongly valued in some cultures than in others62,63) and individual 
differences due to expertise10 or personality traits.

Given our results, it would be especially interesting to know 
whether neural activity in dorsal striatum and ACC might account 
for inter-individual differences in perceived set value. For example, 
one would expect that for people who report stronger choice over-
load in their amount ratings (Fig. 1c), the neural activity should 
also exhibit a stronger inverted U-shaped pattern than for sub-
jects experiencing less choice overload. Moreover, this difference 
should be particularly apparent in the more difficult NF condition. 
Instead, we would expect the neural activity in set value related 
areas to become more linear when a clear favourite alternative, 
alleviating choice overload, is present. While our study was not 
designed to show such interrelations (Supplementary Discussion), 
we offer some preliminary results on inter-individual differences 
(Supplementary Fig. 4). In brief, based on the individual amount 
ratings of sets (Fig. 1c), subjects were divided into two groups: sub-
jects showing a weaker sensitivity of the amount rating to S were 
assigned to the ‘low slope’ group and those with higher sensitivity 
to the ‘high slope’ group. The two groups did not differ in any of 
the other behavioural measures obtained. As expected10, the neural 
activity profile was more steeply quadratic in the high slope group 
in the NF condition. Consistent with our prediction, the activity in 
CF changed from a quadratic to a linear profile in the high slope 
group. Surprisingly, however, the low slope group maintained the 
inverted U-shaped activity profile in both free choice conditions. 
These preliminary results highlight discrepancies between the 
subjective experience of choice (which differs across groups) and 
objective choice performance (which is similar), and highlight the 
potential use of neural measurement as an objective means that 
could capture this explanatory gap42 and that could provide new 
and stimulating insights.

Our results are also relevant to an emerging value-and-com-
pare view in decision neuroscience, in which choices are made 
by valuing all the objects in a choice set, then comparing them 
and choosing the best one64. Evidence that supports this view 
includes a wide range of data from neural firing rates accompa-
nying binary choices of monkeys51 to fMRI responses in humans 
expressing values of many types of goods with multiple dimen-
sions65. However, most of these studies have used a small number 
of choices (typically 2–3). Such small choice sets cannot be used 
to identify U-shaped value components, and are too limited to 
separate decision costs, item valuation and choice set valuation. A 
complete neuroeconomic account of choice could emerge by syn-
thesizing evidence for the value-and-compare model with heuris-
tic approaches when there are many choices, accounting for how 
choice difficulty enters when people choose from multiple items 
or among sets of choices.

In summary, we have demonstrated that activity in left dorsal 
striatum and right ACC reflects choice set value and could serve 
as a neural indicator of choice overload. Moreover, we suggest that 
these areas integrate costs and benefits of choice sets to motivate 
the recruitment of cognitive and behavioural resources during deci-
sion making. More research is certainly needed to reveal when and 
why there are too many alternatives, and for specifying how differ-
ent contextual and personal variables contribute to the quality and 
experience of choice.

methods
Subjects. Nineteen individuals (12 males; age (mean ±  s.d.) 26.2 ±  4.9 years) 
completed the study. All subjects were right-handed and had normal or corrected 
to normal vision. Participants signed the informed consent form before 
participating in the experiment. The study was performed in accordance with the 
Caltech Institutional Review Board guidelines. Initially we recruited 20 subjects. 
One subject reported verbally that he was indifferent about landscape images, was 
not interested in choosing any of them, and even rejected the customized item as a 
reward at the end of the experiment. His ratings of the landscape images indicated 
the same: there was no variability in the liking ratings of different images that he 
reported. Over 84% of images were given a rating of ‘0’ (meaning that the subject 
did not like the images at all), and the remaining 16% of ratings were distributed 
between 0 and 1.8 on the 11-point scale (M =  0.1, s.d. =  0.28). The data clearly 
indicated that the task was not engaging for that particular subject. Therefore, 
the data from that subject were not included in further analysis (behavioural 
or fMRI). Sample size was guided by a previous behavioural study on choice 
overload13 and built on a power-analysis (α  =  0.05, power =  0.8)  
(see Supplementary Methods for details).

Experimental procedures. Further experimental procedures are provided in  
the Supplementary Methods.

fMRI. A 3 T Siemens TRIO scanner and an eight-channel head coil (Siemens) were 
used to acquire MRI images. A T1-weighted MP-rage anatomical scan  
(176 slices, slice thickness =  1 mm, gap =  0 mm, in-plane voxel size =  1 ×  1 mm, 
repetition time (TR) =  1,500 ms, echo time (TE) =  3.05 ms, field of view 
(FOV) =  256 ×  256, resolution =  256 ×  256) as well as T2*-weighted gradient-echo 
planar imaging scans (EPIs: slice thickness =  3.5 mm, gap =  0 mm, in-plane voxel 
size =  3 ×  3 mm, TR =  2,000 ms, TE =  30 ms, flip angle =  90°, FOV =  192 ×  192, 
resolution =  64 ×  64, 32 axial slices) were obtained for each subject. In total, 1,512 
EPIs per subject were collected during four consecutive runs lasting 13 min each.

We used SPM 5 (Wellcome Department of Cognitive Neurology, London) to 
perform functional image analyses. First, all images of each subject were realigned 
to the first scan of the first run. Next, we co-registered the mean image of the 
realigned functional scans to the anatomical image. The latter was then normalized 
to the SPM T1-template in Montreal Neurological Institute (MNI) space (mean 
brain). The resulting nonlinear 3D transformation was applied to all EPI images. 
Finally, we spatially smoothed the normalized functional images using a Gaussian 
kernel (7 ×  7 ×  7 mm³ full-width at half-maximum), then applied a high-pass filter 
(cutoff period 128 ms). Note, that we did not perform slice-time correction because 
scans were acquired in an interleaved fashion.

Subsequent fMRI analyses were first performed at the individual and then at 
the group level (note that we used the canonical analytical approach in SPM 5, 
which assumes normality; only for our behavioural performance measures was the 
assumption of normality confirmed statistically; see ‘Statistical analyses’ section in 
Supplementary Methods). On the individual level we used two different models. In 
model (1), nine experimental conditions were modelled separately (3 tasks (CF, NF 
and FO choice) ×  3 task stages (exposure and mask, delay, and response periods)) 
in the GLMs for a given subject. Each model also included six motion correction 
parameters obtained from a rigid-body transformation during image realignment, 
as well as three further parameters that served as additional parametric modulators 
for each of the 3 ×  3 condition-by-stage regressors of the GLMs: (1) a linear 
predictor, (2) a quadratic predictor (orthogonalized to the linear term) and (3) 
the liking rating of the chosen item. Parametric modulators are explained in more 
detail in the main text. Thus, there were a total of 6 motion regressors and 27 
parametrically modulated condition-by-stage regressors (3 ×  3 ×  3 =  3 tasks ×  3 
task stages ×  3 parametric modulators). To analyse model (1) at the group level, we 
restricted our calculations to task-related areas (across-subject activity increases 
in the exposure phase in either of the choice conditions, CF or NF, at P <  0.01 
uncorrected (one-tailed t-test; null hypothesis (H0): µ >  0)). Then, contrast images 
for the various regressors of the exposure phase were analysed using one-tailed 
t-tests, allowing us to map brain regions that displayed an activity pattern in 
the pooled choice conditions NF and CF that was positively correlated with the 
quadratic predictor (H0: µ >  0; P <  0.05 false discovery rate (FDR)-corrected for 
multiple comparisons) or with the linear predictor (P <  0.01 uncorrected; note 
that this liberal threshold was chosen to ensure high sensitivity for detecting any 
additional presence of a positive linear signal component in quadratic areas). Areas 
revealed by the latter contrast were considered potential candidates for being a 
neural correlate of choice set value. The beta estimates revealed for these areas were 
further subjected to ROI analyses (see below).

In model (2) the individual subjects’ GLMs included regressors for each of our 
3 ×  3 experimental conditions (3 tasks (CF, NF and FO choices) ×  3 choice sets S 
(6-, 12- and 24-item sets)) and for each stage of the task (exposure and mask, delay, 
and response period), amounting to 27 regressors per session. As in model (1), the 
six motion correction parameters obtained from the rigid-body transformations 
during realignment were included as additional regressors to capture any residual 
movement artefacts. The respective beta estimates, which were assessed by model 
(2), were subjected to additional ROI analyses (see below).
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We also performed an explanatory group analysis in which we searched for 
voxels of task-related areas that would exhibit a positive linear correlation between 
the beta estimates of the pooled free choice conditions of the exposure phase 
and individual estimates of choice set value. However, this analysis did not reveal 
any significant result (threshold criterion: P <  0.05 FDR-corrected for multiple 
comparisons (one-tailed t-test; H0: µ >  0)). In the Supplementary Discussion  
we discuss this null result, along with the suitability of alternative analytical and 
experimental approaches to assess neural correlates of choice set value.

ROI analyses. We used the SPM2 Volumes Toolbox v1.21 (Volkmar Glauche) 
to extract the normalized beta weights for the exposure period regressors of 
both model (1) and model (2) for a 3-mm-radius sphere that was centred on our 
functionally defined ROIs (see above).

We subjected the normalized beta weights revealed by model (1) to several 
analyses. First, we probed for the presence of a significant linear signal increase in 
the fMRI activity estimates of the exposure stage in the pooled choice conditions 
(CF and NF; one-tailed t-tests; H0: µ >  0). A paired t-test was performed on the  
beta estimates capturing the quadratic signal component in NF versus FO to probe 
for reductions of this signal component due to diminished decision costs  
in FO (paired t-test; H0: µFO <  µNF; Supplementary Table 1). Finally, we performed 
a two-way repeated measures ANOVA with the factors task stage (exposure, delay, 
response) and predictor (quadratic predictor versus value of the chosen item) 
on the beta values of our main ROIs (Fig. 4e and Supplementary Fig. 3d). This 
analysis was exclusively performed to reveal any potential interaction between the 
two factors, namely a temporally distinct representation of set value (quadratic 
predictor) and the value of the chosen item. We did not consider a main effect 
of the factor ‘predictor’ as the respective beta estimates between the two GLM 
predictors are not directly comparable (due to the varying range of the respective 
parametric modulators). In addition, we performed one-tailed t-tests on these beta 
estimates for each respective factor combination (regressor ×  task stage) to probe 
for any positive correlation of these regressors with the fMRI signal (H0: µ >  0; 
Supplementary Table 2).

The normalized beta weights of model 2 were subjected to a regression 
analysis in which we correlated the beta weights of the pooled choice conditions 
(CF and NF) for the exposure stage with (1) the number of saccades and (2) 
subjects’ difficulty ratings (Supplementary Table 1). We also performed a two-
way repeated measures ANOVA with the factors condition (CF versus NF) 
and set size (S; effect of no interest) on these beta estimates to exhibit signal 
changes due to the availability of a dominant option (in CF but not in NF) 
(Supplementary Table 1).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. In this study we utilized standard software and published 
analytical routines, as specified in detail in the Methods and in the Supplementary 
Methods. Related Matlab code is available from the corresponding author upon 
reasonable request. All landscape images were obtained from www.terragalleria.
com with the permission of the author and cannot be made available with our 
stimulus code.

Data availability
The data that support the findings of this study as well as the data underlying our 
power calculations are available from the corresponding author upon reasonable 
request. Unthresholded statistical maps of our main fMRI-results are available at 
NeuroVault.org66 (https://neurovault.org/collections/4117/).
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