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A Network Model for Learned Spatial
Representation in the Posterior
Parietal Cortex

RICHARD A. ANDERSEN
DAVID ZIPSER

Anatomists and neurophysiologists who study the cerebral cortex generally
believe that they are studying a hard-wired, genetically determined circuitry. It
is usually assumed that it is only during brief “critical periods” that the cortex
is amenable to changes dictated by exposure to the environment which fine tune
its structure. However, recent evidence suggests that the cortex is very plastic
and that this plasticity extends into adult life (see Merzenich, Recanzone, Jen-
kins, Allard, & Nudo, in press, for review). In the experiments described in this
chapter, combined neurophysiological and computational approaches were used
to investigate how the posterior parietal cortex of macaque monkeys represents
the location of visual stimuli in craniotopic coordinates (Andersen & Zipser,
1988; Zipser & Andersen 1988). A computer-generated network model was
designed to learn stimulus locations in craniotopic space based on eye and ret-
inal position inputs that were modeled on similar signals derived from the
recording data and are assumed to be inputs to the posterior parietal cortex. The
units in the network that map from input to output were found to develop the
same response properties as a large subset of cells found in area 7a of the pos-
terior parietal cortex. These experiments suggest that the spatial representation
found in area 7a is in fact learned by associating eye position with retinal inputs.

SPATIAL REPRESENTATIONS AND THE ROLE
OF THE POSTERIOR PARIETAL CORTEX

There are several reasons to believe that the brain uses representations of visual
space that are nonretinotopic and are framed in head- or body-centered coor-

dinates. One can reach accurately to the location of visual targets without visual
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272 REGULATION OF CORTICAL FUNCTION IN MEMORY

feedback and independent of eye position, head position, or the location of the
image on the retinas. Thus the motor system appears to use representations of
visual stimuli mapped in body-centered rather than retinal coordinates. There
is substantial evidence that the planning of eye movements involves a stage in
which the target of the eye movement is represented in craniotopic coordinates
(Hallet & Lightstone, 1976; Mays & Sparks, 1980; Robinson, 1975). We know
by introspection that the visual world appears perceptually stable in spite of the
fact that we are constantly making eye movements and subsequently shifting the
location of images on the retinas. All these results suggest that there exist neural
representations of space that are head or body centered.

A likely area of the brain to find nonretinotopic representations of visual space
is the posterior parietal cortex. Lesions in this area in humans and monkeys
produce visual disorientation, a syndrome in which the subjects cannot reach
accurately to visual targets and have difficulty navigating around seen obstacles
(see Andersen, 1987, for review). The patients are not blind and when tested
often have normal visual field functions. However, they appear to be unable to
associate what they see with the positions of their bodies.

RECORDING DATA FROM AREA 7

We examined the coordinate frame for visual space used by the posterior pari-
etal cortex by mapping visual receptive fields in this area with animals looking
in different directions (Andersen, Essick, & Siegel, 1985). The animals’ heads
were fixed to simplify the coordinate space examined to a head-centered coor-
dinate frame. We reasoned that if the receptive fields moved with the eyes, then
the coordinate frame was retinotopic; if they remained static in space, then they
were coding in at least craniotopic coordinates. Figure 13.1 shows an example
of this experiment. The receptive field is first mapped with a flashed visual stim-
ulus while the animal fixates a small fixation spot located straight ahead at 0,0
in screen coordinates. Figure 13.1B shows a typical receptive field mapped in
this way where the axes represent screen coordinates and the contour lines dif-
ferent levels of neural response. Once the receptive field has been mapped, the
stimulus is then presented at the retinotopic location that gave the maximum

FIGURE 13.1. (A) Method of determining spatial gain fields of area 7a neurons. The animal
fixates point f at different locations on the screen with his head fixed. The stimulus, s, is always
presented in the center of the receptive field, rf. (B) Receptive field of a neuron plotted in coor-
dinates of visual angle determined with the animal always fixating straight ahead (screen coordinates
0,0). The contours represent the mean increased response rates in spikes per second. (C) Spatial
gain field of the cell in (B). The poststimulus histograms are positioned to correspond to the
locations of the fixations on the screen at which the responses were recorded for retinotopically
identical stimuli presented in the center of the receptive field (histogram ordinate, 25 spikes per
division, and abscissa, 100 msec per division; arrows indicate onset of stimulus flash). (From
Andersen et al., 1985)
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response, but with the animal gazing in different directions. If the response
changes with eye position for retinotopically identical stimuli, then the cells are
not coding in strictly retinotopic coordinates. Figure 13.1A shows how the visual
response is tested at different eye positions. The dashed line rf delineates the
receptive field that was mapped in Figure 13.1B. Stimulus s is presented at the
most responsive location in the receptive field, in this case the approximate cen-
ter of the response zone. On the left the animal is first required to fixate straight
ahead at 0,0 in screen coordinates. On the right the animal has been required to
fixate to the left of straight ahead by 20° at —20,0 in screen coordinates. Since
the head is fixed the eyes are now in different positions in the orbits. The target
is again flashed in the same retinotopic location; however, since the eyes have
moved 20° to the left the stimulus has also been moved 20° to the left such that
the stimulus falls on the same retinotopic location.

In these experiments nine eye positions are tested in this manner. Results
from this cell are seen in Figure 13.1C. Each histogram is plotted at the corre-
sponding fixation location. The cell was most active for fixations up 20° and left
20°, less active for looking straight ahead, and not active at all when looking
down 20° and right 20°. The activity of the cell for retinotopically identical stim-
uli varied as a function of the angle of gaze. Plots for the nine fixation positions
as shown in Figure 13.1C are called spatial gain fields. Notice that the shape of
this particular gain field can be described by a plane tilted down and to the right.

We recorded complete spatial gain fields for 86 area 7a cells. The mean evoked
responses of these gain fields were further analyzed using a first-order linear
model with independent variables of horizontal and vertical eye position to
determine how many of these gain fields could be fit with a plane. The evoked
activity was obtained by subtracting the background activity before the stimulus
flash from the overall activity during and just after the stimulus flash. Three
types of gain fields were obtained by this analysis. Thirty-one percent of the gain
fields had a significant planar component and no significant lack of fit, indicating
that a plane was the best model for the data. Another 32% showed a planar com-
ponent but also a significant lack of fit, indicating that although a plane could
be fit to the data a plane was not the optimal model. Fully 75% of these neurons
looked very planar. Finally, another 37% showed no planar component and a
significant lack of fit. Thus a majority of cells showed planar or largely planar
gain fields (55%), but a significant number of gain fields (45%) are not planar.
When the same cells were analyzed for their overall activity rather than just the
evoked activity, it was found that a larger proportion of the cells (78%) had pla-
nar or largely planar gain fields. Thus the total signal of background activity and
evoked activity shows a greater degree of planarity than just the evoked
response. The total activity is the most likely signal used by the brain for spatial
localization since it is the output of the neurons.

A major concern is that the visual background, which is imaged at different
locations on the retinas at different angles of gaze, is influencing the responsive-
ness of the cells to the test flash. Two controls were performed to eliminate this
possibility. Many of the recordings were made in complete darkness except for
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the stimulus and the fixation point so that there was no visual background. The
second control was to change the angle of gaze using prisms; this requires the
animal to change eye position without changing the retinal locations of the
imaged background or visual stimulus. The cells showed the same gain fields
whether the eye positions were changed with prisms or without prisms by mov-
ing the fixation point. Thus we can conclude that the effect of eye position on
visual responses was not a result of background shifts.

EYE POSITION-DEPENDENT SPATIAL TUNING

The change in visual responses for retinotopically identical stimuli with eye
position could be a result of two mechanisms. First, the cells could have been
coding locations of targets in space independent of eye position. In this situation
the cells’ receptive fields remain static in space and the retinal addresses of the
receptive fields change with eye movements to remain constant for spatial loca-
tion. Second, the receptive fields could remain retinotopic, with only the respon-
siveness of the cells varying as a function of eye position. In other words, eye
position gates the activity of the retinal receptive fields. To distinguish between
these two possibilities we mapped entire axes through the center of the receptive
fields. It was found that the responsiveness of neurons varies as a function of
eye position, but the peaks and symmetry of their receptive fields do not change.
Thus the receptive fields remain retinotopic and it is only the responsiveness of
the cells that is modulated by eye position.

The activity of parietal neurons was modeled as a multiplicative interaction
of eye position and retinal position using the equation 4 = G(e,e) X R(r,r,)
where A is the cells’ firing rate, G is a gain factor that is a function of horizontal
(e) and vertical (e,) eye position, and R is the visual stimulus response profile,
which is a function of horizontal (,) and vertical (r,) retinal locations. This mul-
tiplicative interaction produced a tuning for the location of visual stimuli in
craniotopic space, but it was dependent on eye position. A simple example of
this would be a cell that has a gain of 0 for all eye positions except looking 10°
to the right, in which case the gain is 1. This cell also has a narrow receptive
field centered at 10° to the right of the fovea. This cell will then be tuned to a
location 20° to the right in craniotopic coordinates, but only when the animal is
looking 10° to the right.

PROBLEMS TO BE ADDRESSED BY MODELS OF SPATIAL
REPRESENTATION IN AREA 7a

Cells have never been found that are spatially tuned in an eye position-inde-
pendent manner. From these experiments it must be concluded that the neural
representation of space in an eye position-independent manner is distributed.
This distributed coding presents a problem: How do you determine eye posi-
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tion-independent spatial location from the population response? One way
would be to map spatial location tuning systematically across the tangential
dimension of area 7a. Recording experiments have so far not revealed any obvi-
ous topography for spatial tuning, indicating that if such a map for craniotopic
space does exist, it will likely be crude. Moreover, the very large receptive fields
and spatial tuning fields would tend to mitigate against high-resolution mapping
like that found for retinotopy in V1.

Another unusual feature of the receptive fields of area 7a neurons is their com-
plexity. The fields are large, have approximately equal weighting to the fovea
and periphery, and can have multiple peaks. The fields generally have smoothly
varying levels for response for nearby sample points. No topographic organiza-
tion for retinal location of the receptive fields has been found. Any model for
spatial representation in area 7a should reproduce these unusual visual receptive
fields.

Another interesting aspect of the area 7a neurons is that the background activ-
ity of the cells also often varies as a function of eye position. In many cases the
background activity varies in the same direction as the gain on the visual
response. This result is not unexpected since the eye position input could
increase the visual response by depolarizing the membrane and in some cases
this depolarization would not only lower the cell’s threshold to visual stimula-
tion but may also fire the cell, leading to an increase in its background activity.
However, other cells showed background effects that went in the opposite direc-
tion to the gain of the visual response. Again, any model of spatial coding in
area 7a would need to explain this behavior.

NETWORK MODEL FOR SPATIAL REPRESENTATION

Zipser and Andersen created a parallel network model that learns to map inputs
of retinotopic position and eye position to an output of location in head-cen-
tered space (Andersen & Zipser, 1988; Zipser & Andersen, 1988). This network
consists of three layers and uses the backpropagation learning algorithm
(Rumelhart, Hinton, & Williams, 1986). The units in the middle layer that
accomplish the spatial transformation show the same eye position—dependent
spatial tuning properties that are found for area 7a neurons. This model also
generates retinal receptive fields similar to those found for area 7a neurons and
reproduces similar background activities. The remarkable correspondence
between the model and experiment suggests that the distributed spatial coding
discovered in area 7a neurons is indicative of spatial transformations carried out
using the same computational algorithm discovered by the backpropagation
learning technique.

Figure 13.2 presents a schematic diagram of the network. The input layer con-
sists of a 10 by 10 retinal array and four eye position units. The retinal receptive
fields are Gaussian in shape with 1/e widths of 15°. This input is designed to be
similar to the receptive fields that are found in area 7a that do not show eye
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position effects and are assumed to be the retinal inputs to area 7a. The centers
of the 100 receptive fields are equally spaced over the 10 by 10 grid with §°
spacings. The four eye position units consist of two units coding vertical position
and two horizontal position using opposite, symmetrical slopes. Each unit used
either a linear or, in later simulations, a squared function to approximate the
signal coming from eye position cells. The rationale for using a squared function
is to approximate the cumulative response of a group of eye position cells. Eye
position inputs are assumed to be those cells in area 7a that have only eye posi-
tion signals and no visual response. These cells generally code horizontal and/
or vertical position in a linear fashion (Andersen & Zipser, 1988). We ran sim-
ulations with both square functions and simple linear functions and got indis-
tinguishable results, indicating that the exact representation of the eye position
does not appear to be crucial as long as it is a monotonically increasing function.

The intermediate layer receives inputs from all 104 input units and in turn
projects to two or four output units. The output units code position in head-
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FIGURE 13.2.  Backpropagation network used to model area 7a. The input to the network consists
of retinal position and eye position information. The activity of the output units is a monotonic
function of the location of the visual stimulus in craniotopic coordinates. The middle or *‘hidden’’
layer units map input to output. The details of the network are explained in the text.
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centered space as a linear function of spike rate. There are four output units with
pairs of opposite slope for horizontal and vertical position. As in the case with
the eye position inputs, the exact form of the function did not appear to matter
as long as it was monotonically increasing; also, whether only one unit of posi-
tive slope or two units of opposite slope were used did not seem to be important.
The rationale for using a monotonic function for the output was that the eye
position cells could be used as a teaching signal if the animal saccaded to fixate
the stimulus. In later experiments we also tried mapping to Gaussian represen-
tations of head-centered location; the interesting results are listed below.

The output of each cell in the network is calculated by first summing all
inputs, both inhibitory and excitatory, and then calculating the output as a sig-
moidal function of the input. A sigmoid is chosen as an output function since it
is similar to the operation performed by actual nerve cells that sum inputs, have
a threshold, and saturate at high levels of activity. There is also a threshold term
that can be either trained or set, and simulations using both of these options will
be discussed.

The network begins training with all the connections set to random weights
and completes training when the output units accurately indicate positions in
head-centered space for any pair of arbitrary retinal and eye position inputs. The
network learns by subtracting the output vector from the desired output vector
for each input pattern to generate an error. This error signal is then propagated
back through the network to change the weights in the network. The back-
propagation algorithm ensures that the weights will change to reduce error in the
performance of the network. The actual equations and derivation of the back-
propagation procedure are discussed in Rumelhart et al. (1986). This cycle is
repeated until the network reduces error to desired levels. The spatial transfor-
mation network learns quickly and always settles to very low error values.
Within 1000 trials the network shows accuracy that is better than the spacing of
the distance between the centers of the retinal receptive fields. For large numbers
of trials the network continues to show improvement to vanishingly small
errors.

After training is complete the middle-layer units have receptive fields that
remain retinotopic, but their activity becomes modulated by eye position in a
manner similar to that seen in the recording data from area 7a neurons. The
receptive fields remain retinotopic but the responsiveness changes with eye posi-
tion. The change in responsiveness is roughly planar and similar to a majority
of the gain fields recorded from area 7a neurons. Moreover, the receptive fields
are large and can have peculiar shapes, not unlike the cells in area 7a.

In Figure 13.3 the retinotopic visual receptive fields from recording experi-
ments are compared with retinotopic receptive fields generated by the model. It
should be emphasized that these comparisons are intended to be qualitative and
show only that they are similar; obviously they will not be exactly the same, just
as no two area 7a neuron receptive fields will ever be identical. Surfaces have
been fit to the recording and model data using a Gaussian interpolation algo-
rithm. Each receptive field is 80° in diameter. The fields have been categorized
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FIGURE 13.3. Visual receptive fields from the data and the model compared. The receptive
fields were divided into three classes: class I cells have a single, smooth peak of activity; class II
cells have one peak of activity but also other smaller peaks or depressions in the receptive field;

class III cells have multiple peaks of activity. Note the close correspondence between model- and
data-receptive fields.
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by complexity into three classes: class I has the simplest receptive fields with
each having a single peak of activity; class II fields are of intermediate complex-
ity with each field having a single greatest peak of activity and one or more
smaller peaks of activity; class III receptive fields are the most complex with
each having multiple peaks of greatest activity. The most complex fields are sim-
ilar to fields of the untrained model. The trained model seldom produces such
complex fields.

Next we compared gain fields generated by the model with data gain fields.
Figure 13.4 shows gain fields from recording data and Figure 13.5 gain fields
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FIGURE 13.4. The spatial gain fields of nine cells recorded from area 7a using the technique
shown in Figure 13.1. The diameter of the inner, dark circle is proportional to the magnitude of
the visually evoked response. The outer circle diameter is proportional to the total rate (visual
response and background activity). The white annulus represents the firing rate in the absence of
visual stimulation.
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FIGURE 13.5. Hidden unit spatial gain fields generated by the network model, in the same
format as Figure 13.4. All the fields illustrated resulted from 10,000 training trials. Units g, h,
and i are from runs in which the craniotopic Gaussian format for the output layer was used. The
remainder of the cells were using a craniotopic monotonic format.

generated by the model’s hidden unit. The nine pairs of circles for each data or
model unit represent the activity for the same retinotopic stimulus delivered at
nine different eye positions. The dark inner circle’s diameter is proportional to
the response to the visual stimulus alone, and the outer circle’s diameter is pro-
portional to the entire activity, both background and evoked.

Three basic types of planar gain fields were found from the recording data.
For 28%, the background and evoked activities changed in a parallel fashion
(Figure 13.4b,e,f). In the largest proportion of cells (43%), the evoked activity
changed while the background activity, if any, remained constant (Fig.
13.4a,c,d); 75% of these cells had low rates of background activity. For the
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remaining 28% of the neurons the background and evoked activities changed in
different directions, so the activity of either alone was grossly nonplanar, but the
overall activity was planar (Fig. 13.4g,h,i).

Figure 13.5 shows gain fields generated by the model; the arrangement shows
the close correspondence between recording and model gain fields. Both mono-
tonic and Gaussian output representations were used in the training that gen-
erated these fields. Either output representation generates total response gain
fields that are planar. However, when the training is made to monotonic output
function the visual response gain fields are generally planar (67%; Fig. 13.5a-f),
whereas training to the Gaussian format produces only 13% in this class. These
figures compare to the 55% found in the experimental data. If the thresholds are
trained along with the synaptic weights for monotonic outputs, then the back-
ground and evoked activities almost always change in a parallel fashion. How-
ever, if the threshold is held constant and at high values, the background activity
is low and does not change with eye position, similar to the largest proportion
of parietal cells. Finally, if training is done using a Gaussian format output, then
the visual evoked response is usually grossly nonplanar but the combination of
background and evoked responses is planar (Fig. 13.5g,h,i).

DISCUSSION OF THE MODEL

The simulation results show that training a parallel network to perform coor-
dinate transformations produces the same type of distributed code that is found
in area 7a. This similarity should be pursued to determine if it represents a fun-
damental outcome of using parallel networks to perform coordinate transfor-
mations. One line of research would be to make the model more complex by
incorporating features analogous to those found in the brain such as Hebb learn-
ing and reciprocal pathways for error feedback. It will be interesting to see if
these more complex and brainlike models still produce the same distributed
code. Another avenue would be to see if this model generalizes to three-dimen-
sional space- and body-centered coordinates by collecting data under these con-
ditions for parietal neurons and comparing the results to predictions made from
the model.

These results suggest that the posterior parietal cortex learns to associate body
position with respect to visual space. Thus the parietal lobe appears to form
associative memories for performing spatial transformations. A learning theory
for parietal spatial functions seems in order, since it would not be practical to
hard-wire spatial representations during development when the body is chang-
ing size. Moreover, distortions of space with prisms lead to rapid recalibration
in adults, suggesting that, unlike ocular dominance, there is no critical period
for spatial representations and they remain plastic in adults. ’

It is important to note that the model by definition does not have a topo-
graphic organization. Thus there is no requirement for topographic organization
in the brain. The reason topography is not necessary is that the organization of
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the network is distributed and the information is contained in the weights in the
synapses. It would be interesting to determine whether putting a crude topog-
raphy into the connections of the network would accelerate learning.

If the spatial representation in area 7a lacks topography, this does not of
course mean that there is not topographic organization in this area. We imagine
that learning spatial localization can occur within the dimensions of a typical
cortical column, 1 mm? Recordings made within an area of parietal cortex of
this size contain a complete complement of receptive fields, eye position signals,
and gain fields necessary for a complete representation of craniotopic space
(Andersen, Essick, & Siegel, unpublished observation, 1985). Thus spatial loca-
tion can be mapped over and over again in many repeating units in the cortex
and may overlie some as yet unknown functional repetitive architecture that
would need in each of its modules the complete machinery for coordinate
transformations.

The rather large receptive fields suggest that every posterior parietal neuron
has access to the entire retina and the particular shape of each receptive field is
a result of competitive learning. This competition produces in both the parietal
neurons and the model units receptive fields that, although they are complex,
tend to coalesce so that they are smoothly varying rather than random in struc-
ture. The large receptive fields are presumably due to the cascading divergence
that occurs in the multistage corticocortical projections from V1 to area 7a.

The fact that many fewer eye position synapses than retinal synapses were
requried at the convergence onto the hidden units in the model has interesting
parallels to the anatomy of the parietal lobe connections. It is believed that the
source of eye position information comes from lower brain stem centers and is
relayed through the intralaminar nuclei (Schlag-Rey & Schlag, 1984). However,
these nuclei are small compared to the cortical areas relaying visual information
to area 7a.

There is the question of where the output units of the model might exist in
the brain. Cells showing the expected eye position-independent behavior have
not been found in area 7a. Another possibility is that this distributed coding is
used throughout all brain regions that need spatial representations. The final
spatial output might be seen only in the eventual motor output. The final spatial
output may be pointing the eye or a finger accurately to a location in space and
no single cell in the brain might be found that codes the location of visual space
in an eye position-independent fashion.

Finally, there is the question of whether this form of model of distributed cod-
ing in parallel networks, which appears to explain the parietal data rather well,
will be useful in other brain regions. Recently the response of area V4 cells was
examined in a task in which the monkey must match the orientation of a visual
or somatosensory cue grating with the orientation of a visual test grating
(Haenny, Maunsell, & Schiller, in press). They find cells that respond to the cue
that are orientation tuned, cells that respond to the test stimulus that are ori-
entation tuned, and cells that show facilitated activity for a particular combi-
nation of cue and test stimulus. Thus the activity of some V4 neurons shows a
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multiplicative interaction between two inputs that is similar to the interaction
for eye and retinal inputs for area 7a neurons. It would be useful to construct a
similar network in which the inputs were the cue and test stimuli and the output
the correct match. Would the hidden units develop properties like those of V4
neurons?
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