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Abstract 

We describe a neural network that learns to  transform retinotopic coordinates of visual 
stimuli into a head-centered reference frame by combining retinal stimuli with eye position. 
Area 7a of primate cortex is thought to perform a similar transformation. The neurons involved 
have unique response properties (planar modulation of visual response by eye position, and large 
complex receptive fields) and appear to  represent head-centered space in a distributed fashion 
[I]. Our retwork’s architecture is similar to that of a previous backpropagation model of area Ta 
[2,17], but is trained with a gradient-descent algorithm that is more biologically plausible than 
backpropagation. This algorithm is a variant of the associative reward-penalty ( A R - P )  learning 
rule [3,5], and uses a global “reillforceitleiit” signal to  adjust the connection strengthy. Oiir 
network learns to  perform the task successfully to  any accuracy and generalizes appropriately, 
and the hidden units develop response properties very similar to those of area 7a neurons. These 
results shows that a learning network does not require backpropagation to  acquire biologically 
interesting properties. These may arise naturally from the network’s layered architecture and 
from the supervised learning paradigm. 

Introduction 

One of the most notable features of neural networks is that  the manner in which they process information 
appears in many ways “brain-like.” For instance, they can learn a mapping froin examples, they can 
work as content-addressable memories, and their performance degrades gracefully with increasing noise 
in the input signal. Even their architecture-a large number of highly interconnected, relatively simple 
elcments, collectively capable of complex computations-is reminiscent of popular notions of brain structure. 
This feature has stimulated many researchers to  develop neural network models of biological information 
processing systems, which in sonie cases has led to the discovery of biologically interesting features in the 
networks’ style of computation. 

An example of this is a neural network model of area Ta of primate parietal cortex developed by 
Zipser and Andersen [2,17]. Neurons in this region appear to  compute head-centered locations of visual 
stimuli by combining retinal and eye-position information (cf. [l] for a review). A feature of these neurons’ 
responses that may be crucial for this computation is an approximately planar niodulation by eye position 
of the response to a visual stimulus [2,17]. In other words, if one records from an area 7a neuron in an 
awake monkey while a spot of light is presented a t  a fixed location on its retina, then as the animal looks 
in various directions, the neuron’s firing rate varies approximately linearly with changes in the horizontal 
and/or vertical angle of gaze. A plot of this modulation of visual response by eye position is termed the 
“spatial gain field.” It was therefore hypothesized that an ensemble of neurons with this response property, 
each with its own slope, direction and range of planar eye position sensitivity, could encode a distributed 
representation of craniotopic locations. Zipser and Andersen set up a three-layer network to  perform the 
coordinate transformation from a retinotopic frame to  a craniotopic one, using retinal stimulus location and 
eye position as input signals, and the resulting head-centered location as the training signal. After training 
this network by backpropagation, the hidden units displayed planar gain fields remarkably similar to  those 
of area 7a neurons. This result suggested that some fundamental coniputational feature embodied by the 
network, such as its layered architecture or its supervised learning paradigm, may be shared by area 7a 
neurons in their representation of head-centered space. 

While the general computational features of neural networks, as well as distinctive ones exhibited by 
networks such as Zipser and Andersen’s, strengthen the possibility of a relationship with biological networks, 
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the manner in which they learn to  process information has generally not been very convincing as a possible 
model of biological learning. One reason for this is that we know much less about the learning mechanisms 
employed by biological neural networks than we do about their structure and response properties. Another, 
perhaps more iinportant reason is that the algorithms used to train artificial neural networks usually involve 
mechanisms that are far beyond what we consider plausible for a biological system. Implementing the 
basic version of backpropagation in the nervous system, in particular, would require processes, such as the 
retrograde propagation of detailed error signals along axons and through synapses, and the adjustment 
of synaptic strengths by nonlocal computations, that  are not accepted as likely candidates for learning 
mechanisms in the brain. Various approaches to  this quandary have been proposed, including modifications 
of the fundamental architecture of backpropagation networks (e.g., cf. [7]), but a biologically plausible 
solution remains to  be seen. As the properties of the hidden units in the Zipser & Andersen model suggested 
a possible connection between that model and area 7a, it was natural to ask how crucial is backpropagation 
for the development of these properties. 

We addressed this question by training two neural networks with architecture similar t o  the Zipser and 
Andersen model using a supervised learning paradigm that is more plausible from a biological perspective 
than backpropagation. We describe one of these networks, the “All AR-P” network, in this paper (cf. [lo] for 
a more detailed description of both networks). The algorithm we used, which is a variant of the associative 
reward-penalty ( A R - P )  algorithm for supervised learning introduced by Barto and Jordan [6], trains a neural 
network by broadcasting a global “reinforcement,” or payoff, signal to  all the network’s connections. Our 
network learned to perform the coordinate transformation task to any desired accuracy, and generalized 
appropriately. Moreover, the hidden units acquired response properties very similar to  those of area ’ia 
neurons, as they did in the Zipser and Andersen model. 

N e t w o r k  S t r u c t u r e  And Training 

Our network has a three-layer, fully-connected, feed-forward architecture (fig. la) .  The inpiit layer 
consists of a visual (sensory) and an eye position (proprioceptive) group of units, which were modelled 
according to characteristics of area 7a neurons established in previous studies (fig. Ib-c) [17]. The hidden 
and output layers consist of binary stochastic elements (fig. Id) ,  which produce an output of one with 
probability given by the logistic function of the summed weighted inputs, and an output of zero otherwise. 
The output, layer encodes the craniotopic location that is the vector sum of the retinal and eye position 
inputs, and is composed of one of two alternative formats, one analogous to  the monotonic eye position 
representation, and the other to  the retinal gaussian format. Because all the connection strengths in our 
network are adjusted by the AR-P learning rule (see below), we refer to it as the A22 AR-P  network. 

We modified the supervised learning procedure for A R - P  networks, introduced by Barto and Jordan [6], 
to  train our network. The input pattern is a signal for the retinal location of a visual stinlullis paired with 
one for the current eye position. The desired output pattern is one that codes for a head-centered location 
that is the vector sum of the retinal and eye positions. The essence of the algorithm is the AR-P learning 
rule. Every binary stochastic element in a given network receives a scalar payoff (or reinforcement) signal 
T (fig. l a ) ,  whose value, in the supervised learning paradigm, depends on how close the current output is 
to the desired output. Specifically, assumes a value between 0 and 1, with 0 indicating maximum error in 
the output angle (in our network, an output angle inore than 80 degrees off target), and 1 corresponding to 
optimal performance (no error in the computed head-centered position). The weights of the input connections 
on each binary stochastic element are then adjusted, after each pattern presentation, in such a way as to 
maximize the value of this payoff. If we let xz represent the output of the ith unit in the network, pz  its 
probability of firing, and wZ3 the connection weight for its input from the j t h  unit (fig. Id ) ,  the equation for 
updating the weights is 

where p and A are constants. The bias b, on each unit is also adjusted by the rule in eq.1. Typical values 
for the parameters in this equation were 0.3 for p and 0.01 for A.  We will comment on this equation in more 
detail in the Discussion. The value of T is computed as: T = 1 - e ,  and 

Awtj = P [ T ( G  - ~ z ) z j J   PA[(^ - ~ ) ( l  - zz - ~ z ) z j ]  (1) 
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Figure 1: (a) Network structure. Retinal input, is encoded by 64 units with gaussian receptive fields ( I ? ) ,  
while eye position is represented by 32 units with linear activation functions ( c ) .  (d) Binary stochastic 
element. The output units encode head-centered locations according to  either a “binary-monotonic’’ format 
( e ) ,  in which 4 triplets of units give an output of 1 if the z (or y) coordinate is greater (or less) than -40, 0 
or $40 degrees, or according to  a “binary-gaussian” format ( f ) ,  which consists of 4 units giving an output 
of 1 when the spatial position is within 100 degrees of their receptive field centers. See [lo] for details. 

where k indexes the K output units in the network, y i  is the desired output of the l e th  unit in the output 
layer, and yk is its actual output. Values for n ranged froin 2 to  6. This expression for is slightly different 
froin the one used by Barto and Jordan [6], who computed e as the sum of the squares of the output units’ 
errors. Both expressions give a quantity nonlinearly related to  the error’s absolute value, but ours is more 
sensitive to  small errors (as the absolute error for a given unit is always less than or equal t o  one). Following 
Barto and Jordan, we refer to this learning rule as the “S-model AR-P rule.” 

Results 

The A R - P  network learned to perform the coordinate transformation task to any desired accuracy. 
Fig. 2a shows the network’s general behavior during training and compares it t o  that  of a backpropagation 
network learning from the same training set (fig. 2b). The AR-P network’s learning curve is much noisier 
than backpropagation’s, due to  the stochastic nature of their hidden units and to  the type of error signal used 
in A R - P  training (see Discussion). The two curves, however, have similar envelopes, and the times reqiiirrd 
for convergence are comparable. As the number of epochs becomes large (> 1000) the output error of both 
networks approaches 0. For the backpropagation network, which has a continuous output,  the error decreases 
asymptotically, while for the AR-P network, which has a binary output,  the error spends increasingly more 
time a t  the value 0, flickering ever so seldom to the value of the output’s smallest resolvable angle. Neither 
algorithm had serious problems with local minima (the frequency of local minima was around 5 percent for 
backpropagation, and less than 1 percent for the AR-P algorithm, in approximately 200 simulations). 

One is the ability to  perform the 
correct vector addition of random new input patterns that code for one of the fixed spatial locations in the 
training set. As shown in fig. 2c, both backpropagation- and AR-p-trained networks performed this task 
extremely well. The other generalization task required the trained networks to  give the correct output for 

We tested our network for two types of generalization abilities. 
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Figure 2: (a) Learning ciirve for the A R - P  network. The difference between the angular spatial position 
coded by the output layer and the desired one is plotted against the number of presentations of the training 
input  set. The dotted line indicates the retinal input’s resolution. (b )  Learning curve for a backpropagation 
network of siinilar structure. ( c )  Output error produced by backpropagation and A R - P  networks when 
presented with (i) 100 random inputs coding for the game spatial locations as in the training set, and with 
(ii) 100 random inputs coding for 100 random spatial locations. 

input patterns coding for new spatial locations, which is a more difficult task. Although both networks 
produced some error, it was still considerably less than for the untrained nets, indicating that the networkq 
generalized to a reasonable extent. 

Following the experimental approach [2 ,1 i ] ,  we examined the dependence of the hidden units’ activity on 
t w o  parameters, eye position and retinal stimulus location, obtaining spatial gain fields and visual receptive 
fields, respectively (fig. 3). In both cases we did not measure the unit’s instantaneous output itself (which 
is binary), but its probability of firing (a continuous variable). As fig. 3 shows, both the gain fields and 
the receptive fields of the network’s various hidden units bear a qualitative similarity to those of area 7a 
neurons. The degree of similarity is approximately equivalent to that produced by Zipser PL Andersen’s 
backpropagation-trained network. In particular, the hidden units’ gain fields are largely planar in their 
overall probability of firing (fig. 3b, outside circles), while the visually evoked component (dark circles) 
displays a more variable dependence on eye position. This result was also produced by backpropagation 
training [li], and found in 78 percent of spatially tuned area i a  neurons (fig. 3a; [2]). These neurons also 
have unusual receptive fields (fig. 3c; [2 , l i ] ) ,  which sets them apart from those of most other visual areas. 
They are very large, with diameters extending to 80 degrees, and have complex surfaces, characterized hv 
one or more smooth peaks a t  various eccentricities. These qualitative features were both reproduced by the 
A R - P  network’s hidden units (fig. 3d).  

The solutions computed by S-model A R - P  training and by hack-propagation are not just similar in  the 
qualitative sense depicted in fig. 3. In fact we found that for a given training pattern, the set of weights 
trained by the A R - P  algorithm may be transferred to a back-propagation network (with continuous ontpnt 
hidden units and same output forriiat) without any appreciable reduction in the accuracy of the network’s 
response to that training pattern, and vice versa (cf. [IO] for details). The individual values of the weights 
are not the same after training by the two procedures, but their distribution over the network is such that 
their overall solutions to  the coordinate transformation problem are quantitatively equivalent. 
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Figure 3: (a) Spatial gain fields recorded from 4 area 7a neurons (i-iv) [17]. The outside thin circles represent 
t h e  overall acitivity elicited by a visual stimulus. Each circle corresponds to  one of nine eye positions, spaced 
2 0  deg. apart .  The dark circles represent the visual contribution to the response, while the annulus is the 
eve position contribution. (b )  Gain fields of 4 hidden units in the A R - P  network. (c )  Receptive fields of 4 
area 7a neurons [I?']. The response to  a visual stimulus is plotted against the stimulus' retinal location. (d )  
Receptive fields of 4 AR-P network hidden units. 

Discussion 

The S-model A R - P  algorithm, like backpropagation, trains networks of adaptive elements by adjusting 
the connection strengths along the direction of the performance measure's gradient. While backpropagation, 
however, computes the exact value of the error's gradient for a given input pattern, the A R - P  rule computes 
only a n  estimate of that  gradient [6,16]. Units trained by the A R - P  rule do not have the detailed information 
about the error vector and the state of other units which is necessary to  compute the exact gradient and 
which backpropagation units obtain through non- biological pathways. Due to  the random noise in their 
output, however, A R - P  units can "jitter" their activity during learning so as to get an estimate of how 
variations in activity affect the payoff they receive, which in turn allows them to estimate the direction in 
weight space along which to change their weights in order to  increase reinforcement. While this method 
allows AR-p-trained units to properly adjust their weights using only locally available information, it is 
more random in its search for a solution than backpropagation, as reflected in fig. 2a. Backpropagation's 
precise computation of the performance gradient tells the algorithm the exact manner in which to  change 
the weights so that the error is monotonically decreased, resulting in the smooth curve of fig. 2b. 

A crucial requirement for our choice of a learning algorithm was a greater plausibility of biological 
implementation than backpropagation. We must point out a t  the outset, however, that  A R - P  networks 
were not designed as literal models of biological neural networks. Because of the poor knowledge we have 
of the mechanisms of information processing used by the nervous system, the most useful connection be- 
tween artificial and biological neural networks is presently limited to  the description of abstract processes in 
simplified models and the investigation of the possibility of implementation in the biological hardware. In 
other words, the AR-P element was not designed by collecting scattered known facts of neurobiology and 
molding them into a computationally interesting unit capable of supervised learning, but rather as a sim- 
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ple, “neurally inspired” element with a few theoretically motivated features that give it interesting learning 
abilities. We will discuss biological plausibility, therefore, in its literal sense of suggesting that the abstract 
computing processes performed by the AR-P unit during learning are more in keeping with possible neural 
mechanisms proposed and partly demonstrated by experimental neuroscientists than the mechanisms used 
by back-propagation networks (cf. also [3,4]). 

The first and most important element of AR-P models which aligns them with many neurobiological 
models of learning is the scalar payoff signal. This has the attractive features of being computed from 
an average of the error of the output units, and of being transmitted as a single value to  all the units in 
the network. In an analogy with how an animal may learn the coordinate transformation task, the input 
pattern would correspond to  a visual stimulus seen with the eyes a t  a known angle of gaze (sensed by 
proprioceptive or corollary discharge pathways). The animal may then guess where the stimulus is in head- 
centered space by foveating it, and any discrepancy could be used to generate an error signal. This error 
could be detected as a function of the angular difference between an object in space and the end position 
of a reaching arm movement to that object. After successful training, this difference would be nil and 
reinforcement would be maximal. The reinforcement signal could thus be computed by a part of the nervous 
system that monitored the animal’s behavior with no information about the activity of area 7a neurons. In 
contrast, backpropagation requires as feedback an error vector that  takes into account the actual and desired 
activities of each output unit and compares them individually. The fact that  in AR-P training a single value 
is valid for all the units implies that  only one connection is necessary from the reinforcenient computing 
region to  area 7a. The existence of signals originating froin a small cluster of neurons and distributed to 
entire cortical areas has been suggested by anatomical as well as experimental studies (e.g., cf. [12]). In the 
backpropagation algorithm, on the other hand, the individual error signal must course from the output layer 
to  individual units in the hidden layers along specified pathways, either retrogradely along axons or through 
rather complicated feedback loops [ll]. 

Another “biological” feature of learning by A R - P  units is the use of information that is locally available 
to  the synapse whose strength is being adjusted. The AR-P learning rule (ea. l ) ,  is composed of two main 
terms (in square brackets), one assigning the “reward” part and the other the “penalty” part of the associative 
reward-penalty concept. Ignoring the constants, the components of these terms are: i) the payoff signal T 

(and the corresponding penalty value, 1 - r ) ;  ii) information regarding the current state of the unit (zi - 212); 
and iii) the input ( z ~ )  from each unit connecting to  this unit. We have already discussed F. r; is the unit’s 
output (0 or l) ,  and p ,  is the probability that the unit’s output will be one given the current net inpiit, 
which depends on the unit’s weights. pi could be interpreted as the rate a t  which the unit will fire given the 
present input. These two values, as well as z j ,  are directly available a t  the connection between the input, 
or “presynaptic” unit and the given (“postsynaptic”) unit. The AR-P rule therefore embodies one of the 
most important element of Hebbian learning, that  is, the proportionality of a change in synaptic strength 
to  both presynaptic and postsynaptic information. Hebbian learning remains one of the more plausible 
mechanisms for synaptic strength modification, both on theoretical [9] and experimental grounds (e.g., [lfj]). 
With backpropagation, on the other hand, changes in strength a t  one connection require information about 
the activities and error signals for all the units in the following layers. 

The last feature that adds some biological flavor to  the A R - P  unit is the probabilistic nature of its 
output. The unpredictability of the exact firing rate produced by a neuron for any given presentation of a 
certain input has long been recognized as a feature of nerve cells. In fact, this stochastic aspect of activity is 
one of the reasons neurophysiologists usually present data  as summed histograms of several trials [14]. This 
is a feature that is not included in the deterministic units of backpropagation networks. 

Conclusion 

Our results represent a step toward establishing the validity, from a physiological perspective, of parallel- 
architecture learning networks with distributed representations as models of cortical area 7a. We have shown 
that the AR-P algorithm can train a network with the Zipser and Andersen model’s structure to perform a 
coordinate transformation task, producing solutions that give hidden unit response properties (planar gain 
fields and large visual receptive fields) very similar to  those of area 7a neurons presumed to  code for spatial 
location. These properties, therefore, are not a specific result of backpropagation, but seem rather to arise 
from the network’s layered architecture and supervised learning paradigm. The fact that  backpropagation 
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and A R - P  compute equivalent solutions for the coordinate transformation task implies that  the details 
of implementation of the learning procedure are not important from a computational point of view. The 
ability of networks trained with either algorithm to generalize appropriately from a small training set shows 
that these networks indeed learn to  perform coordinate transformations, and do not merely act as content- 
addressable memories. 

We have shown that an AR-P network can learn to  compute coordinate transformations, and that in 
doing so its hidden units develop gain fields and receptive fields qualitatively similar to  those of area 7a 
neurons. We have also pointed out a number of features of the A R - P  algorithm that bring it closer than 
backpropagation to  what is known about biological learning. We must emphasize again, however, that  the 
focus of our interest a t  this point is not in how literally AR-P nets reproduce individual neurophysiological 
processes. It is rather on the fact that  these algorithms form a family of training procedures that yield 
similar functional representations when applied to a class of parallel distributed networks, and that they can 
do so using mechanisms not excluded, and perhaps suggested, by neurophysiological evidence. 
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