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SUMMARY

The human posterior parietal cortex (PPC) is thought
to contribute to memory retrieval, but little is known
about its specific role. We recorded single PPC neu-
rons of two human tetraplegic subjects implanted
with microelectrode arrays, who performed a recog-
nition memory task. We found two groups of neurons
that signaled memory-based choices. Memory-se-
lective neurons preferred either novel or familiar
stimuli, scaled their response as a function of confi-
dence, and signaled subjective choices regardless
of truth. Confidence-selective neurons signaled
confidence regardless of stimulus familiarity. Mem-
ory-selective signals appeared 553 ms after stimulus
onset, but before action onset. Neurons also
encoded spoken numbers, but these number-tuned
neurons did not carry recognition signals. Together,
this functional separation reveals action-indepen-
dent coding of declarative memory-based familiarity
and confidence of choices in human PPC. These data
suggest that, in addition to sensory-motor integra-
tion, a function of human PPC is to utilize memory
signals to make choices.

INTRODUCTION

Retrieving long-term memories to inform ongoing behavior is

essential for many kinds of decisions. Examples of such deci-

sions include determining whether you met a person before

and, if so, recalling that person’s name. While the processes

by which perceptual decisions are made are beginning to be

understood (Gold and Shadlen, 2007; Shadlen and Newsome,

2001), little is known about how long-term memories are incor-

porated into decisions. In macaques and rodents, neurons in

the posterior parietal cortex (PPC) encode cognitive variables,

such as choices and the confidence in such choices, during a
variety of perceptual and motor decision-making tasks (Ander-

sen andCui, 2009; Churchland et al., 2008; Gnadt and Andersen,

1988; Hanks et al., 2015; Kiani and Shadlen, 2009; Raposo et al.,

2014). It presently remains unknown whether PPC neurons are

also involved in making episodic memory-based choices and

whether these neurons are distinct from those coding for

actions.

While PPC is important for sensory-motor integration (Ander-

sen and Buneo, 2002), a combination of imaging, lesion, and

electrophysiology studies have started to reveal that the PPC

also plays a role in integrating memory-based information

(Gilmore et al., 2015; Sestieri et al., 2010, 2017; Wagner et al.,

2005). For example, it has long been appreciated that subjects

with unilateral neglect due to parietal lesions show striking

spatial memory deficits (Bisiach and Luzzatti, 1978; Guariglia

et al., 2005).When asked to recall a familiar scene, these patients

ignore the neglected side of the imagined scene. However, the

patients are able to describe the previously neglected items

when asked to describe the same scene from a different imag-

ined point of view that places the objects on their non-neglected

side. Parietal lesions also cause specific recognition memory

deficits: patients with PPC lesions report lower confidence in

their retrieval decisions and are less likely to report the subjective

experience of recollection (Hower et al., 2014; Rugg and King,

2017; Simons et al., 2010). While spatial memory deficits are

most prominent after right parietal lesions, electrophysiological

and neuroimaging evidence indicates that recognition mem-

ory-related signals are particularly prominent in left PPC (lPPC)

(Gonzalez et al., 2015; Guerin and Miller, 2009; Wagner et al.,

2005). Consequently, the lPPC is now thought to be a core

component of the memory retrieval network (Olson and Berryhill,

2009; Wagner et al., 2005). Different aspects of memory retrieval

modulate different areas of PPC, a degree of specialization that

has given rise to multiple theories of the exact role of each in

memory retrieval (Cabeza et al., 2008; Sestieri et al., 2017; Wag-

ner et al., 2005). For example, blood-oxygen-level-dependent

(BOLD)-fMRI activity in the anterior intraparietal sulcus (IPS) is

larger for familiar (old) relative to novel (new) items (Hutchinson

et al., 2009; Nelson et al., 2010; Sestieri et al., 2017; Uncapher

and Wagner, 2009; Wimber et al., 2009; Yassa and Stark,
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2008; Yonelinas et al., 2005). This activity scales proportional to

memory strength for old items (Hutchinson et al., 2015) and is

independent of motor and stimulus modality (Sestieri et al.,

2014; Shannon and Buckner, 2004). In contrast, BOLD activity

in the angular gyrus (AG) is larger for high- compared to low-con-

fidence judgments for both new and old items (Hutchinson et al.,

2015) and indicates whether an item was recollected or not

(Hutchinson et al., 2014; Rugg and King, 2017; Vilberg and

Rugg, 2008; Wagner et al., 2005). Dorsal superior parietal lobule

(SPL) fMRI activity, on the other hand, is larger for low- compared

to high-confidence judgments for both new and old items, an

effect that is thought to be related to decision uncertainty (Hutch-

inson et al., 2014; Sestieri et al., 2010). While these extant data

suggest that IPS, AG, and SPL make distinct contributions to

memory retrieval, it remains unknown what signals are encoded

by individual neurons in these areas.

A role of lPPC inmemory retrieval is also supported by electro-

physiological studies. The ‘‘parietal new/old’’-evoked potential

(Rugg and Curran, 2007), which differentiates new from old

stimuli, has its putative source in left parietal cortex. While scalp

recordings cannot differentiate between different parts of lPPC,

intracranial recordings strongly support distinct roles of different

parts of lPPC. Specifically, comparing gamma-band power be-

tween old and new items has revealed a striking disassociation

between IPS and SPL: whereas gamma-band power is higher

for old compared to new items in IPS, the opposite is the case

for SPL (Gonzalez et al., 2015). In contrast, no differences of

this kind were observed in AG. However, AG gamma-band activ-

ity was highest during autobiographical memory retrieval relative

to other tasks (Foster et al., 2015), supporting its role in recollec-

tion. Together, this body of work supports the view that levels of

neural activity in different parts of lPPC correlate with distinct

aspects of episodic memory retrieval. However, little is known

about the underlyingmechanisms behind these changes in over-

all activity. In particular, it remains unknown whether lPPC

neurons encoding memory-related signals are separate from

those encoding action intention and execution signals. Also,

the functional differences between the IPS, SPL, and AG

revealed by intracranial electrocorticography (ECoG) and fMRI

studies suggest that each area is specialized to encode only

subsets of memory-related signals, but it remains unknown

whether the same conclusion holds at the single-neuron level.

We studied the activity of individual human lPPC neurons

during a recognition memory task with confidence ratings. The

recognition memory-based choices in our task are thought to

be made based on two sources of information: a sense of famil-

iarity and, in addition for a subset of stimuli, recollection of asso-

ciated details of the period of time when the stimulus was seen

the first time. In our task, high-confidence choices are associ-

ated predominantly with recollected items whereas low-confi-

dence items are mostly made based on familiarity alone (Wixted,

2007;Wixted et al., 2010). This featuremakes our taskwell suited

to test the neural correlates of declarative memory retrieval.

Subjects were two tetraplegic subjects with chronically im-

planted recording arrays in lPPC, who were participating in a

brain machine interface (BMI) clinical trial (Aflalo et al., 2015).

Arrays were implanted within the putative human homolog of

the anterior intraparietal area (AIP), an area that is part of what
210 Neuron 97, 209–220, January 3, 2018
is commonly labeled as anterior IPS in human fMRI studies

(Hutchinson et al., 2009; Nelson et al., 2010; Sestieri et al.,

2017; Uncapher and Wagner, 2009; Wimber et al., 2009; Yassa

and Stark, 2008; Yonelinas et al., 2005). We found two groups

of neurons whose activity was related tomemory retrieval: mem-

ory-selective (MS) and confidence-selective (CS) neurons. There

were two types of MS neurons, the first of which increased its

firing rates for familiar stimuli and the second to novel stimuli,

respectively. The strength of activity of MS neurons was modu-

lated asymmetrically by memory strength as assessed by confi-

dence ratings. CS neurons, on the other hand, encoded retrieval

confidence symmetrically, i.e., independent of whether a stim-

ulus was familiar or novel. During error trials, PPC neurons

signaled the choicemade by the subject regardless of truth, indi-

cating that MS cells signaled choices and not ground truth. PPC

cells differentiated between new and old choices approximately

550 ms after stimulus onset, a latency similar to that of the lPPC

new/old event-related potential (ERP). Additional experiments

confirmed that the activity of MS and CS neurons did not encode

motor intentions or action signals.

RESULTS

Task and Behavior
After first memorizing 75–100 novel images, subjects performed

a recognition memory test during which they rated each image

as familiar (old) or novel (new). Simultaneously, they also

indicated how certain they were that their choice was correct.

Subjects provided verbal answers on a 1–6 confidence scale

(Figure 1A; STAR Methods). Subjects provided their reply after

a go cue, which appeared at an unpredictable point of time after

offset of the image (Figure 1A). Across all confidence levels,

subjects had good memory (Figure 1B; average area under the

curve [AUC]: 0.85 ± 0.05, ± SD). The behavioral receiver oper-

ating characteristic (ROC) curve was asymmetric (Manns et al.,

2003) as expected from a declarative memory task (Figure 1C;

average slope of z-transformed ROC was 0.79 ± 0.24, signifi-

cantly less than 1, p = 0.008). The accuracy of retrieval decisions

co-varied systematically with confidence judgments (Figures

1D–1F; mean accuracy high versus low confidence was signifi-

cantly different, p = 2.7e�13; this difference was visible for

each subject considered individually; see Figures S5A and

S5B), which shows that subjects were able to assess memory

strength. Decision times (DTs) varied as a function of both con-

fidence and familiarity (Rutishauser et al., 2015): DTs were faster

for high- compared to low-confidence judgments regardless of

familiarity, and DTs were slower for new compared to old judg-

ments regardless of confidence (Figure 1G; repeated-measure

ANOVA, significant main effect of both familiarity F(1,34) = 8.8,

p = 0.0006 and confidence F(1,34) = 49.7, p < 1e�07). Lastly,

the accuracy and confidence of decisions made in response to

old stimuli during recognition was independent of the position

at which the same stimulus was shown when it was novel during

learning (Figures 1H and 1I; repeated-measure ANOVA of binned

serial position during learning; bin size 20 trials; F(4,37) = 0.51,

p = 0.73 and F(4,37) = 0.94, p = 0.45 for true positive rate and

confidence, respectively). This result shows that the delay be-

tween the two blocks of the task was long enough to abolish
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Figure 1. Task, Behavior, and Electrode Location

(A) Task.

(B) Behavioral ROC curves for each session (gray) and average (red).

(C) Z-transformed average ROC curve.

(D) Probability of response as a function of ground truth (color).

(E) Retrieval accuracy as a function of confidence.

(F) Average confidence was higher for correct versus incorrect responses.

(G) Decision time varied as a function of both familiarity (new/old) and confidence.

(H and I) True positive rate (H) and confidence (I) of responses to old stimuli during recognition was independent of serial position during learning.

(J and K) Location of recording array, illustrated using flatmaps (J) and reconstructed gray matter surfaces (K). Anatomical landmarks indicated are central sulcus

(green), postcentral sulcus (red), and the intraparietal sulcus (cyan).
recency effects. Thus, different confidence ratings are not due

to list position during learning. Together, the described patterns

of behavior indicate that the subjectsmade use ofmedial tempo-

ral lobe (MTL)-dependent declarative memory (Kahana, 2012;

Manns et al., 2003).

Electrophysiology
We recorded from a total of 1,379 individual neurons in 12

recording days from 2 patients (8 and 4 sessions, respectively;

on average, 146 ± 11 and 61 ± 22 neurons recorded simulta-

neously, respectively; neurons recorded on different days were

treated as different; mean firing rate of neurons was

2.4 ± 2.3 Hz; see Figure S1 for spike sorting metrics; see Table

S1 for list of recording sessions). In both patients, the left PPC

96-channel recording array was located within the putative

human homolog of the AIP (see Figures 1J and 1K). Recordings

were generally stable across several hours, but not days, and we

thus treated clusters identified from the same electrodes on

different days as separate neurons. We use the term neuron to

refer to a putative single unit throughout.
Memory- and Confidence-Selective Neurons
We first tested to what extent individual neurons were sensitive

to whether a stimulus was novel or familiar. For this purpose,

we used only stimuli that were correctly identified as novel or

familiar by the subject (see below for analysis of error trials).

Following stimulus onset, the response of 166 (12%; p = 0.001

versus chance, p value from bootstrap after scrambling labels,

see Figure S2A; see Figures S5C and S5D for individual subjects)

neurons indicated whether a stimulus was novel or familiar (Fig-

ures 2A, 2B, and 2D show examples). There were two types of

such MS neurons (Figure 3A): one type increased its firing rate

selectively for novel stimuli (Type 1; Figure 2A; n = 83,

p = 0.001 versus chance) and the other for familiar stimuli

(Type 2; Figure 2B; n = 83, p = 0.001 versus chance).

We next tested whether lPPC neurons distinguished between

correct retrieval decisions made with high versus low confi-

dence. Following stimulus onset, the response of 130 neurons

(9%; p = 0.001 versus chance, p value from bootstrap after

scrambling labels; see Figure S2B) differentiated between

high- and low-confidence responses (Figure 2C shows an
Neuron 97, 209–220, January 3, 2018 211



A B C D

Figure 2. Examples of Individual Neurons that Carry Recognition Memory-Related Signals

(A–C) Raster (top) and PSTH (bottom) of three example neurons. Inset shows the average waveform of the neuron. Stimulus onset is at t = 0. Colors indicate the

stimulus type (old or new) and the confidence indicated by the subject (high or low). Only trials where the subject provided the correct answer (regardless of

confidence) are shown. (A) and (B) are MS cells of Type 1 (new > old) and Type 2 (old > new), respectively. Note the increase in firing rate for one, but not the other,

trial type (new and old, respectively). (C) is a confidence coding cell (Type 1, high > low).

(D) Average response in a 2 s window following stimulus onset for the neurons shown in (A)–(C).
example; a similar percentage qualified as CS cells in both

patients, see Figure S5). Similar to the MS cells, there were

two types of CS neurons (Figures 3B and 3C): one type that

increased its firing rate for low-confidence decisions (Type 1;

n = 66, p = 0.001 versus chance) and one that increased its firing

rate for high-confidence decisions (Type 2; n = 64, p = 0.001

versus chance). Note that most CS neurons signaled retrieval

confidence irrespective of whether the stimulus was old or new

(Figure 3C). We thus found two types of signals relevant for

recognition memory decisions that are represented by neurons

in the lPPC: stimulus familiarity and retrieval confidence. We

next tested whether MS cells are, in addition, also modulated

by confidence.

MS Neurons Are Modulated by Memory Strength
If the response of MS cells is related to memory retrieval

processes, the signal carried by MS cells should be modulated

by memory strength. In contrast, if MS cell responses are purely

reflective of familiarity (i.e., whether the stimulus has been seen

before or not), their signal should be independent of memory

strength. To evaluate these two alternatives, we next investi-

gatedwhether the response ofMS cells wasmodulated bymem-

ory strength, which here is operationalized as confidence. First,

we separately averaged the confidence preference of MS cells

that preferred novel (Type 1) and familiar (Type 2) items. This

comparison is independent of the selection criteria used for

MS cells because the selection is blind to confidence
212 Neuron 97, 209–220, January 3, 2018
(see STAR Methods). We found that the confidence preference

for both groups was significantly larger than 0 for their preferred

stimuli (p = 0.006 and p = 0.004, respectively; see Figure 3D).

Thus, both types of MS cells fired more to their preferred stim-

ulus (new or old) if the stimulus was retrieved with high compared

to low confidence. Second, we confirmed this result at the

single-trial level using ROC analysis. We found that the degree

to which the response of an MS cell allowed an ideal observer

to differentiate between new and old stimuli was significantly

larger for high- compared to low-confidence trials (Figure 3E;

AUC high 0.61 ± 0.06 versus AUC low 0.58 ± 0.08, ±SD, signifi-

cantly different p = 0.002, paired sign test). This finding was

applicable for both Type 1 and Type 2 MS cells (Figure 3F).

Crucially, the response of MS cells was modulated by memory

strength only for a cell’s preferred stimulus, i.e., either an old or

a new stimulus (Figures 4A–4C; no significant difference

between non-preferred high and low confidence). For this

reason, the large majority of MS cells were not selected as

CS cells when using all trials (Figure S2C).

We also confirmed the sensitivity of MS cells to confidence

using a different approach: we fit different generalized linear

models (GLMs) separately to all neurons of either MS Type 1

or 2.We then compared the goodness of fit between the different

models. A comparison between models with and without an

interaction term between novelty/familiarity and confidence

revealed that the model with interactions explained significantly

more variance for both cell types (Figure S6A; log likelihood
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Figure 3. Population Summary of Recognition Memory Signals in PPC
(A) Distribution ofmemory preference across all recorded neurons. SignificantMS neurons (n = 166) are indicated in orange and non-significant in blue. The sign of

the preference indicates which stimulus each cell preferred (Type 1 versus Type 2).

(B) Distribution of confidence preference across all recorded neurons. Significant CS neurons (n = 130) are indicated in orange and non-significant in blue. The

sign of the preference indicates which stimulus each cell preferred (Type 1 versus Type 2).

(C) Memory versus confidence preference across the population shows groups of neurons that code stimulus familiarity (red), confidence (green), or both

(magenta).

(D) MS neurons have a significantly positive confidence preference (p = 0.0057 for old > new and p = 0.0041 for new > old).

(E) MS neurons provide a stronger memory signal for high- compared to low-confidence choices (AUCmirror histogram high versus low; p = 3.02e�5 all neurons;

new > old p = 0.014; old > new p = 0.00033).

(F) AUC of high versus low confidence for each neuron, independently for MS neurons that prefer familiar (red) and novel (blue) stimuli (sign test; p = 0.0023,

102/164 above diagonal).

See also Figures S2, S4, and S6.
ratio-based comparison; see legend for statistics). However,

critically, the interaction term was of opposite sign for MS cells

of Types 1 and 2 as expected if the modulation is specific to

the preferred stimulus of a cell (Figures S6B and S6C). We also

tested whether DT, which co-varies with both confidence and

familiarity, might explain the modulation of MS cells. However,

a GLMcomparison revealed that after taking into account DT dif-

ferences, the effects of confidence on MS cell activity remained

(see Figures S6D and S6E for details). Together, our analysis

shows that MS cells are modulated by confidence, but only for

their preferred stimulus.

The ROC analysis reported above is based on the same trials

that were used for selection of the cells. The confidence or famil-

iarity of the stimulus is not used for selection of MS and CS cells,

respectively, making the ensuing ROC analysis independent.

However, the number of trials of each type is not the same. To

assess the potential effects of a larger number of high-

compared to low-confidence trials, we next confirmed the

ROC analysis using trials independent of those used for selec-

tion. For this, we randomly selected 50% of trials for selection

and used the remainder for evaluation. We then repeated this
procedure 1,000 times (see STAR Methods). On average,

123 ± 9 MS and 124 ± 9 CS cells (±SD) were selected (Figures

S4A and S4E), which is a smaller number of cells selected

compared to when using all trials (as expected). We then

computed the ROC-based metrics using the trials not used for

selection. The memory preference index of MS cells was signif-

icantly negative and positive for Type 1 and Type 2 MS cells,

respectively (Figure S4B; 0.08 ± 0.02 and �0.10 ± 0.02, respec-

tively; p < 0.0001 versus 0). Also, the confidence preference of

MS cells for their preferred stimuli was significantly larger than

0 for both groups (see Figure S4C; p < 0.0001 for both, t test),

and the degree to which MS cells differentiated between new

and old stimuli was larger for high- compared to low-confidence

trials (Figure S4D, mean AUC 0.56 ± 0.01 versus 0.52 ± 0.01;

significantly different p < 0.0001, pairwise t test, mean difference

0.04 ± 0.01). Note that the mean AUC difference using all trials

was comparable (0.03 ± 0.1). Similarly, for CS cells, the confi-

dence preference was significantly positive for Type 2

(Figure S4F; 0.06 ± 0.01, p < 0.0001 versus 0, t test) and signifi-

cantly negative for Type 1 cells (�0.04 ± 0.03, p < 0.0001 versus

0, t test). As an additional control, we repeated the same analysis
Neuron 97, 209–220, January 3, 2018 213
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Figure 4. PPC Neurons Encode Memory-Based Choices

(A) Group PSTH of all MS neurons, pooled according to their preferred and non-preferred stimulus (Pref and NP, respectively). Tuning preference is defined

according to ground truth. Note that during error trials, neurons signal according to their non-preferred stimulus (the choice). Also note modulation by confidence

only for the preferred, but not non-preferred, trials.

(B and C) Single-trial analysis confirms choice coding during error trials (error non-preferred is significantly larger than error preferred p = 9e�6; high versus low

confidence p = 5e�5). Shown is the full distribution (B) and the mean (C) of the single-trial response.

(D) Choice (CP) versus memory (MP) probability for all neurons.

(E) CP is significantly larger than MP for both new > old (p = 5.9e�5, red) and old > new (p = 0.008, blue) MS neurons.

(F) Time course of CP.

(G) CP varies as a function of confidence, with more reliable signaling for high confidence responses (1 3 3 repeated-measure ANOVA, F = 19.8, p = 7.19e�9,

n = 166).

See also Figure S5.
after randomly scrambling the trial labels (ground truth) and the

responses given (behavior). This control abolished the differ-

ences between high and low confidence for both MS (Fig-

ure S4G) and CS (Figure S4H) neurons, confirming an absence

of selection biases (Figures S4G and S4H). Together, this series

of control analysis shows that the tuning of cells remained

consistent between selection and evaluation trials and that the

effects of confidence onMS cell activity remained of comparable

size. Therefore, the high versus low comparison was not biased

by selection.

MS Neurons Signal Memory-Based Choices
We next considered the response of MS cells during error trials,

which were trials where subjects did not remember a previously

shown stimulus (false negative, FN) or wrongly identified a novel

stimulus as familiar (false positive, FP). If MS cells signal

memory-based choices, the response during error trials should

indicate the subjective choice made regardless of its truth. Alter-

natively, MS cells in the PPC might signal the ground truth

regardless of the decision, similar to the response of hippocam-

pal cells (Rutishauser et al., 2008, 2015). In this case, we expect

the response during error trials to diverge from the decision

made. To differentiate between these two hypotheses, we

compare the response during error trials to that during correct
214 Neuron 97, 209–220, January 3, 2018
trials. We pooled the two types of MS cells according to their

preferred stimulus, defined as the stimulus (new or old) resulting

in the maximal response. By definition, we refer to the preferred

stimulus of a cell according to ground truth (i.e., whether a stim-

ulus is old or new regardless of behavior). Pooling the mean

response of all MS cells according to these categories revealed

that during error trials, MS cells increased their firing rate for error

trials that corresponded to the non-preferred stimulus of the cell,

but not for the preferred stimulus (Figure 4A). This pattern of

response was also visible at the single-trial level: the response

was stronger for non-preferred error trials compared to preferred

error trials (Figure 4B shows the distribution of single-trial re-

sponses and 4C the mean, p = 9e�6 for Pref. Error versus NP

Error, Kolmogorov-Smirnov [K-S] test; this pattern of response

was similar for each patient considered separately; see Figures

S5C and S5D). This pattern of response shows that novelty-

and familiarity-preferring cells increased their response only for

FN and FP trials, respectively. We next directly assessed

whether MS cell responses better predicted ground truth or

choices. For this, we performed an ROC analysis to assess

how well firing rate predicted either ground truth (memory prob-

ability, MP) or choices (choice probability, CP). We found that CP

was significantly larger than MP (Figures 4D and 4E; p = 2e�6,

paired sign test; this effect was true for both Type 1 and Type
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Figure 5. Neurons Encode Memory Strength and Not Action Choices

(A) Control task.

(B) Mean single-trial response shows no strength gradient (p = 0.94 for high [++] versus low [+] confidence indicating responses).

(C) Time course of CP does not vary as a function of confidence (1 3 3 repeated-measure ANOVA, F = 0.79, p = 0.45, n = 65).

(D) Control cells have no confidence preference (p = 0.20 and p = 0.23, respectively).

(E) Control cells do not provide more information for high- compared to low-confidence decisions (p = 0.23).

(F) Effect size for new versus old (1–3 versus 4–6) for the control task (x axis) and the memory task (y axis). Effect sizes were not correlated (r =�0.04, p = 0.82 for

NS cells; r = 0.16, p = 0.36 for MS cells; and r =�0.02, p = 0.65 for all cells recorded in both tasks), and the same neurons did not differentiate the same choices in

the two tasks. Only cells recorded in both tasks are shown.

(G and H) Population decoding performance in memory (G) and control (H) task. Decoding of confidence was more accurate for high versus low confidence

(p = 9e�8) (G). New versus old decoding was more accurate for high versus low confidence (p = 0.0064). Decoding performance did not differ for decoding

confidence (left, p = 0.64) and new/old (right, p = 0.77) (H).

See also Figure S3.
2 MS cells with p = 5.9e�5 and p = 0.008, respectively). Further-

more, CP varied systematically as a function of confidence

(Figures 4F and 4G; repeated-measure 1 3 3 ANOVA,

F(2,330) = 5.1, p = 0.006). In conclusion, we found that MS cell

responses signaled choices rather than ground truth. This choice

signal was modulated by confidence, indicating that the

response of MS cells was related to memory strength.

MS Neurons Signal Memory Strength Asymmetrically
fMRI studies have generally found that the PPC BOLD signal

measured in IPS increases monotonically as a function of famil-

iarity but that it does not differ as a function of the degree of nov-

elty (Sestieri et al., 2014). In contrast, here we found MS cells of

both types (Types 1 and 2). Critically, each MS cell was modu-

lated by confidence (memory strength) only for its preferred,

but not its non-preferred, stimulus (Figures 4A–4C; preferred

high versus low p = 5.2e�05 whereas non-preferred high versus

lowwas not significantly different; this difference was also visible

when considering Types 1 and 2 separately, with p = 0.018 and

p = 0.0014, respectively). MS cells thus coded memory strength

asymmetrically because they were specialized for either novel or
familiar stimuli. Consequently, a readout mechanism for mem-

ory-based decisions would require access to both sub-types.

Memory Strength Coding Is Distinct from Action Coding
To confirm that the response of MS cells was related to memory

strength, we next conducted a control experiment in which pa-

tients were shown numbers rather than images (Figure 5A).

The experiment was identical in all other respects, allowing us

to determine whether there are intrinsic differences in the way

PPC neurons encode numbers and action plans for converting

numbers into oral speech. We recorded 684 neurons across 5

recording days (in 3 of which we also performed the memory

task). We then selected for cells which differentiated the

numbers 1–3 from 4–6 using methods identical to those used

to select for MS cells (which, identically, differentiate 1–3 from

4–6 choices in the memory task, but which in that task indicate

confidence). We identified n = 65 (9.5%, p = 4e�07 versus

chance) such ‘‘number-selective’’ (NS) cells (see Figure S3 for

examples). Like for MS cells, we assigned the preferred stimulus

as the category to which the NS cell had a larger response (either

1–3 or 4–6). We then proceeded to split trials according to their
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A B Figure 6. Latency of Memory Signal

(A) Cumulative firing rate for MS neurons.

(B) Difference of cumulative firing rate. First sig-

nificant point of time was t = 553 ms. (Same

analysis for control task: 262 ms.)
numerical response into levels of confidence, which, in this

instance, were simply different numbers without further meaning

of actual confidence. We then computed the same metrics we

used for MS cells for the NS cells (Figures 5B–5E). This analysis

revealed that NS cells did not preferentially encode the numbers

we had used to indicate high or low confidence: there was no

significant difference in response between high- and low-confi-

dence-associated responses for either the preferred or non-pre-

ferred stimulus (Figure 5B; p = 0.94 and p = 0.32, respectively).

Similarly, CP was high but did not differ as a function of which

numbers were compared (1 versus 6, 2 versus 5, 3 versus 4; Fig-

ure 5C; repeated-measures ANOVA F(2,128) = 0.79, p = 0.45),

the confidence preference index for NS neurons was not

different from chance (Figure 5D; p = 0.20 and p = 0.23, respec-

tively), and neurons did not differentiate 1 versus 6 contrasts

better than 2–3 versus 4–5 contrasts (Figure 5E; p = 0.24). This

finding shows that the preferential encoding of strong memory

items was not related to the numbers used to report confidence

and that the generic encoding of numbers in lPPC did not follow

the pattern we observed during the memory task.

Did the same neurons signal memory strength and numbers in

the two tasks? We next compared the extent to which neurons

differentiated between the new and old choices (1–3 versus

4–6) in the two tasks for all neurons recorded in both tasks.

This analysis revealed that the tuning of neurons in the two tasks

was not related: most MS neurons that signaled memory

strength did not also differentiate between the same choices

(1–3 versus 4–6) during the control task and vice versa (Figure 5F;

effect sizes between the two tasks were not significantly corre-

lated; r = 0.16 [p = 0.36] and r = �0.04 [p = 0.82] for MS and

NS neurons, respectively; r and p values are a Pearson correla-

tion). Effect sizes for all recorded neurons were similarly not

significantly correlated (Figure 5F; r = �0.02, p = 0.65). The

representation of numbers was thus distinct from that of memory

retrieval-associated processes.

Lastly, we utilized a population decoder to assess the amount

of information available in groups of simultaneously recorded

neurons in the two tasks (see STAR Methods). We trained one

decoder to differentiate between high- and low-confidence trials

and one to differentiate between new and old trials. We found

that decoding performance was significantly better when the

decoder had access to high- compared to low-confidence trials.

This result held for both confidence decoding (Figure 5G, left;

p = 9e�8) as well as new versus old decoding (Figure 5G, right;
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p = 0.0064). In contrast, during the con-

trol task, decoding performance was

overall reduced and did not differ as a

function of the same contrasts for which

decoding differed during the memory

task (Figure 5H). The ability to decode
actions was thus directly related to underlying memory strength

but not to differences in the numbers used to communicate

memory strength. Hence, the pattern of responses associated

with memory strength signals could not be observed during

the control task and were thus specific to memory retrieval.

Latency of Memory Strength Response
Memory-based choices take more time compared to perceptual

choices, leading to the prediction that MS cells should respond

relatively late after stimulus onset. Indeed, the cumulative firing

rates of MS neurons (Figure 6A) first diverged between their

preferred and non-preferred stimulus 553 ms after stimulus

onset on average (Figure 6B). In contrast, in the control task,

NS cells first differentiated between 1–3 and 4–6 responses after

262 ms following stimulus onset on average.

Population Response
Was there a difference in the average firing rate across all

neurons as a function of memory strength or confidence? This

question is of interest for comparison with data acquired from

the same area with other methods. Averaging all MS neurons re-

vealed little change in activity due to familiarity of the stimulus:

averaging all MS neurons regardless of their tuning revealed a

significant difference only due to memory strength (high versus

low, paired t test, p = 0.00087) but not due to familiarity (new

versus old, paired t test, p = 0.55). Similarly, averaging all re-

corded neurons (n = 1,379) shows no significant difference in

the mean response between novel versus familiar or high versus

low confidence trials (paired t test, p = 0.94 and p = 0.20,

respectively).

DISCUSSION

The area of PPC we recorded from forms the putative human

homolog of macaque AIP. In macaques, AIP is primarily a grasp

area with neurons encoding both trajectory and goal information

(Andersen and Buneo, 2002). Indeed, in one of our human sub-

jects, we also documented tuning to hand shape (Klaes et al.,

2015). However, neurons in human AIP also code for other goals

and intentions, including whether to move the shoulder or arm in

a limb-specific manner (Aflalo et al., 2015). Here, we now show

that neurons in anterior IPS (where the human homolog of AIP

is located; Grefkes and Fink, 2005) also encode two memory

retrieval signals: familiarity of stimuli and retrieval confidence.



This finding provides direct single-neuron evidence for the long

hypothesized role of the left human PPC in declarative memory

retrieval (Sestieri et al., 2017; Wagner et al., 2005) and suggests

that lPPC neurons signal declarative memory-based new-old

choices in a manner compatible with the mnemonic accumula-

tion hypothesis (Wagner et al., 2005).

Our data reveal that memory-based choice signals are carried

by two specialized groups of MS neurons, one of which signals

only new and the other only old-based choices. This result is a

critical new insight different from that derived from fMRI and

ECoG (Gonzalez et al., 2015; Hutchinson et al., 2014) studies,

which show that BOLD and high gamma-band power ECoG ac-

tivity in anterior IPS increases as a function of ‘‘oldness’’ of the

items (Wagner et al., 2005). In contrast, in the SPL, the reverse

pattern was revealed by intracranial recordings: gamma-band

power was higher for novel compared to familiar items (Gonzalez

et al., 2015). Here, we identified two groups of neurons in IPS that

were intermixed, one preferring familiar items (MS cells Type 2)

and one preferring novel items (Type 1). Within the small patch

of IPS that we recorded from, we thus identified distinct neurons

that each encode either familiarity- or novelty-based choices.

This result disagrees with the prevailing view derived from fMRI

and ECoG studies (also see Nelson et al., 2013), which suggests

that, in IPS, there is a firing rate increase of old compared to new

stimuli. While MS cells of Type 2 show this pattern, Type 1 MS

cells show the opposite response pattern. Apart from the com-

plex and poorly understood relation between single-neuron

activity and the BOLD and gamma-band power signal, it should

also be noted that our recordings were located near the border of

themedial IPS and the SPL (see Figures 1J and 1K). It is therefore

possible that in the more lateral IPS or moremedial SPL, the pro-

portion of tuned MS neurons is more heavily biased to old > new

and new > old, respectively.

We found that the response of neurons was modulated by

the confidence of the retrieval decision, a variable which

does not commonly co-vary with IPS BOLD activity. Instead,

it is AG (high > low) and SPL (low > high), which differentiate

between different levels of retrieval confidence (Cabeza et al.,

2008; Hutchinson et al., 2014). Here, we show that MS cells

of both kinds are modulated by confidence (memory strength).

In addition, we identified both high- and low-confidence

signaling neurons, which signal confidence regardless of

whether an item is new or old. We thus identified signals

that, with fMRI, were previously identified only in other parts

of PPC: AG for high > low and SPL for low > high. Similar to

MS cells, the findings derived from single-neuron recordings

thus reveal a considerably more fine-grained representation

within this small patch of PPC than that suggested by fMRI.

An important future experiment will be to investigate whether

this discrepancy is due to complexities of the BOLD fMRI

signal or rather due to the anatomical location of the recording

array in a border zone between IPS and SPL. A potential exper-

iment suggested by this result is to use multi-voxel pattern

analysis of the BOLD signal from this transition area to test

whether all four signals that we identified are decodable from

this area.

Our patients provided their answer verbally rather than by

pressing a button. Nevertheless, we found that subjects showed
all the behavioral patterns that subjects who utilize button

presses exhibit. In particular, the decision time (which here is

the time elapsed between question screen onset and speech

onset) varied systematically as a function of familiarity and con-

fidence as expected (Kahana, 2012). Of note, our task was not a

reaction time task because subjects had to wait to provide their

reply until the question screen appeared (Figure 1A). Neverthe-

less, we observed the expected decision time patterns, which in-

dicates that the enforced delay was short enough to not absorb

reaction time (RT) differences caused by familiarity and confi-

dence. The same result also holds for button presses

(Rutishauser et al., 2015). Hence, using verbal instead of button

press responses is a valid way to measure declarative memory

judgments.

Our error trial analysis revealed that PPCMS neurons signaled

the choice made by the subject regardless of whether it was true

or false. We found this pattern of response for both old and new

decisions, which were each signaled by a specific type of MS

neuron (Types 1 and 2). fMRI studies of parts of lPPC in which

BOLD activity is higher for old compared to new items have simi-

larly revealed that such activity indicates the choice made

regardless of its truth (Wagner et al., 2005;Wheeler andBuckner,

2003). Here, we confirm this important distinction between

choice- and ground truth-based signals.

We found that MS cells represent the strength of a memory in

a continuous fashion, i.e., MS cells modulated their response as

a function of confidence. This finding has two important implica-

tions: first, it supports that the signals carried by MS cells are

memory related rather than action signals. Second, this type

of representation is what is predicted by signal detection

theories of recognition memory (Wagner et al., 2005; Wixted,

2007). These theories predict an underlying continuous decision

variable that is related to the oldness of an item. In turn, the

decision variable is thresholded to make a decision about

whether an item is familiar and, if so, what the confidence is of

the judgment. Similar familiarity signals have also been

observed in IPS with BOLD-fMRI as well as ECoG (Gonzalez

et al., 2015; Hutchinson et al., 2014). Here, we, in addition,

identified a similarly graded signal also for novel items. Less is

known about how choices about the ‘‘newness’’ of an item

are made. For example, it is unclear whether an item is judged

as new simply due to the absence of a familiarity signal. How-

ever, the presence of MS cells that signal the novelty of an

item suggests that the neural substrate for new decisions in-

volves more than the absence of a familiarity signal. Note that

activity in area AG, an area of PPC that we did not record

from here, has been proposed to signal whether an item was

recollected or not (Nelson et al., 2010; Rugg and King, 2017;

Yonelinas et al., 2005). For a recollected signal, neurons should

only respond to high-confidence decisions. While we did not

directly test whether subjects recollected information or not,

the 1–6 confidence ratings we used are commonly used to

contrast recollected (high-confidence) with not recollected

(low-confidence) items. Using this approach, we found that

neurons that signal high-confidence items also signaled low-

confidence items (but less reliably so). It thus seems likely that

MS cells were modulated by information derived from both

recollection and familiarity processes. Future work is needed
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to directly contrast these two different theories with respect to

PPC single-neuron recordings.

The responses of some neurons in macaque PPC are tuned to

numerosity (Nieder and Miller, 2004). While indirect evidence for

number tuning has similarly been observed in human PPC (Dast-

jerdi et al., 2013; Harvey et al., 2013), no number-encoding

neurons have so far been shown in humans. Here, we asked sub-

jects to indicate their choice by verbally vocalizing a number

between 1 and 6. This approach raises the question of whether

the signals we reported might represent aspects of numbers

rather than memory-based choices. However, the comparison

with our control task revealed that MS cells did not also repre-

sent numbers. Recognition memory-based signals are expected

to have specific properties, including continuity across confi-

dence levels for either novelty or familiarity and signal strength

that scales as a function of confidence (Wixted, 2007). None of

these properties were present during the control task, showing

that the continuous representation formed by MS cells was not

present during the control task. Also, while we did identify

‘‘spoken number’’-coding cells in the control task, these cells

were largely distinct from those encoding memory strength

because most MS cells were not also NS cells and vice versa

(see Figure 5F). Together, these results show that the PPC cells

we described are related to memory retrieval processes rather

than a numerosity representation. In addition, these findings

also show that MS cells did not signal planned actions related

to the vocalizations.

In macaques, the activity of PPC neurons differentiates be-

tween different categories in tasks that require the categorization

of sensory stimuli according to learned task rules (Freedman and

Assad, 2006, 2016; Rishel et al., 2013). Here, we now show that

the activity of human PPC neurons differentiates between novel

and familiar stimuli. The concepts of ‘‘novel’’ and ‘‘familiar’’ can

be regarded as categories, making our task an instance of a

categorization task. However, notice that here categorization

was based on an internal memory-based signal rather than the

sensory input, a type of categorization that has so far not been

known to involve PPC. In addition, note that the MS neurons

were not a categorization signal alone because their response

was also modulated by underlying memory strength as

measured by confidence, but only for their preferred category.

Future work will be needed to determine whether sensory- and

memory-based categorization involves the same or different

mechanisms and whether the types of categorization performed

by PPC are domain specific or universal to all instances of

categories.

In our task, differences in confidence were due to internal vari-

ability in the strength of the memory representation. Variability in

the representation of the memory made decisions easier or

harder, making the confidence judgment a measure of choice

difficulty. In contrast, in sensory tasks, difficulty is modulated

by modifying stimulus properties, making difficulty vary largely

due to variation in sensory signal quality (Kiani and Shadlen,

2009). Here, in contrast, we show that PPC neurons are sensitive

to internally generated variability in memory strength while keep-

ing external signals unchanged. This meta-memory signal is the

result of a significantly more complex process compared to that

of assessing sensory signal strength (Metcalfe, 2008). An impor-
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tant future experiment will be to determine whether the same

PPC neurons can indicate both sensory- and memory-based

choices and whether such neurons are modulated by both

sensory- and memory-based choice difficulty. If so, this finding

would indicate a commonmechanism for choice difficulty. Alter-

natively, memory strength might be encoded in a fundamentally

different manner.

How do our findings relate to the left parietal new/old ERP

visible in the scalp EEG? This potential is thought to originate

in left parietal cortex and differentiates new from old stimuli in

the time period of 500–800 ms following stimulus onset (Rugg

and Curran, 2007). The latency of PPC MS cells of, on average,

553 ms fell within this time range, indicating that MS neurons

might contribute to the parietal new/old ERP. The response

latency of PPC neurons was approximately 100 ms later than

hippocampal MS neurons, which we previously determined

had an average differential latency of 461 ms following stimulus

onset in the same task (Rutishauser et al., 2015). Of note, differ-

ences in broadband gamma power between old and new stimuli

have been found as early as 300 ms in IPS (Gonzalez et al.,

2015). A possible explanation for the earlier onset might be

that the gamma-band power primarily reflects synaptic input,

whereas we measured spiking activity within PPC. An important

future experiment will be to simultaneously record left parietal

scalp EEG and either PPC neurons or LFP (or both) to further

elucidate the contribution of individual neurons and the LFP to

this ERP.

While we used visual stimuli, fMRI studies using auditory and

visual stimuli in the same experiment have given rise to the pro-

posal that the involvement of lPPC in memory retrieval is modal-

ity independent. In addition, other experiments have shown that

lPPC memory retrieval activity is independent of motor output

modality (eye versus hand) as well as whether a motor response

is required at all (Sestieri et al., 2014; Shannon and Buckner,

2004). It will be important to confirm these observations using

single-neuron studies of PPC to determine whether individual

MS neurons are indeed independent of motor output and sen-

sory input modality.

We hypothesize that PPC MS cells integrate memory-based

evidence provided by the MTL (Rutishauser et al., 2015). In

contrast to the PPC, individual MS cells in the MTL signal the

ground truth of a memory regardless of the choice made about

the memory (Rutishauser et al., 2015). These MTL cells differ-

entiate between new and old items approximately 100 ms

before PPC cells. In macaques, the presubiculum and parahip-

pocampal gyrus provide connections to the PPC (Andersen

et al., 1990; Clower et al., 2001; Insausti and Muñoz, 2001;

Lavenex et al., 2002). This potential pathway might convey

memory-based evidence to the PPC from the MTL. Whether

these connections exist in humans and whether they target

the specific area of PPC we recorded from remains to be

confirmed (see Uddin et al., 2010 for functional connectivity

evidence). A critical open question is how information flow

from the MTL to the PPC is coordinated. Intriguingly, theta os-

cillations measured in PPC and MTL transiently synchronize

during autobiographical memory retrieval (Foster et al., 2013),

but it remains unknown whether hippocampal theta oscillations

modulate PPC neurons.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two tetraplegic subjects (NS and EGS; NS is female, age 59; EGS is male, age 36) chronically implanted with a 96-channel Utah elec-

trode array in the lPPC took part in the study. Both subjects were enrolled in an ongoing BMI study, as part of which they had already

consented to the surgical procedure. We received FDA IDE clearance (IDE #G120096, G120287) to extend the duration of the implant

for the purpose of our ongoing clinical study. This study was approved by the institutional review boards of the California Institute of

Technology, UCLA, and Casa Colina Centers for Rehabilitation.

METHOD DETAILS

Memory Task
The experiment consisted of two separate blocks: a learning block, followed by a recognition block. Each image belonged to one of

five visual categories, such as animals, people, food items, places, and objects. All images were initially novel, i.e., for each testing

session a new set of images were used (Table S1). Thus, novel images were truly novel because each was seen for the very first time

by the subject. During the learning block, subjects viewed 75-100 novel (never seen before) and unique images. After each image,

subjects were asked whether the image contained an animal (yes/no). After a delay of on average 36min length (see Table S1), sub-

jects then performed the recognition block. Subjects were shown the original 75-100 images seen during learning (now familiar)

randomly intermixed with an equal number of novel images (total 150-200 trials). Each image was displayed for 1 s, followed by a

delay period lasting 1.1-1.6 s (randomized). At the end of the delay period, the question screen appeared prompting subjects to indi-

cate with a verbal response (1-6 confidence scale) whether they thought they had seen the image before or not (old or new) and how

confident they were of their decision. Subjects were instructed to use the following response mapping: 1 = new confident, 2 = new

probably, 3 = new guessing, 4 = old guessing, 5 = old probably, 6 = old confident. The experimenter entered a number between 1 and

6 as soon as it was possible to determine which number was spoken by the subject. Subjects were asked to only respond by saying a

single number (1-6) and to only respond after onset of the response screen. No trial-by-trial feedback was provided. The task was

implemented in MATLAB using Psychophysics toolbox (Brainard, 1997). Subjects sat in a motorized wheel chair in front of a 27inch

LCD monitor occupying approximately 40 degrees of visual angle.

Control Task
The experiment was identical to the recognition block of the memory task, except that the images were replaced with a randomly

chosen number in the range of 1-6. Subjects were instructed to remember the number and provide it as an answer after the question

screen. Each session of the control task consisted of 60 trials.

Electrode Placement and Electrophysiology
Arrayswere targeted to theputative humanhomolog ofmacaque areaAIP as identified using aprevious fMRI study (Aflalo et al., 2015).

The electrode locations were (�36,�48, 53) and (�38,�53, 46) for NS and EGS, respectively (Tailarach coordinates). Details on EGS

havebeenpublished before (Aflalo et al., 2015). Similarly, details onNShavebeenpublished before (Zhang et al., 2017). Neural activity

was amplified, digitized at 30kHz, and recorded with a Blockrock Neuroport system as described before (Aflalo et al., 2015).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Spike Detection and Sorting
The raw signal was filtered with a zero-phase lag filter in the 300-3000 Hz band and spikes were then detected and sorted with the

semiautomatic template matching algorithm ‘OSort’ as previously described (Rutishauser et al., 2006). We used rigorous metrics to

quantify spike sorting quality and to identify putative single units. Criteria that we used (see Figure S1 for actual values) were: i) per-

centage of interspike intervals (ISIs) shorter than 3ms, ii) signal-to-noise (SNR) of themean waveform, iii) pairwise projection distance

in clustering space (Pouzat et al., 2002), iv) modified coefficient of variation of the ISI (CV2), and v) isolation distance (Harris et al.,

2000) of each cluster versus all other spikes detect on that same channel. We treated neurons recorded on different days as different

neurons. Recording sessions were spaced out by multiple weeks to increase the chances that neurons recorded on the same chan-

nel differed between sessions.

Behavioral Analysis
For the decision time we used the time that elapsed between question onset and onset of speech, as marked by an experimenter.

Each recognition trial was categorized into one of four categories: true positive (old stimulus rated as 4-6), true negative (new stimulus

rated as 1-3), false positive (new stimulus rates as 4-6), and false negative (old stimulus rated as 1-3). We pooled medium (2 or 5) and

guessing level (3 and 4) confidence trials together as ‘‘low confidence’’ trials for all analysis except where noted (analysis that involves

the ‘‘medium’’ rating is not pooled). We used a 2x2 repeated-measure ANOVA with fixed factors familiarity (new/old) and confidence

(high/low) and random factor session ID to assess the relationship between behavior, memory, and decision time.

Single-Neuron Analysis
Weused the firing rate in a 2 swindow starting 200ms after stimulus onset to select neurons and perform single-neuron ROC analysis.

We did not use the first 200ms after stimulus onset because none of the neurons responded in this early period and to maintain

consistency with earlier work. MS neurons were selected if the mean firing rate between new and old trials that were correctly iden-

tified by the subject (regardless of confidence) differed significantly (p < 0.05, two-tailed, bootstrap comparison of means with

1000 runs). Note that this selection does not have access to the confidence of the choice, making this variable statistically indepen-

dent after selecting cells (see Figure S4 for a test of this assertion). Confidence-coding neurons were identified by comparing high-

and low confidence trials (regardless if new or old) for correct trials only (p < 0.05, two-tailed, bootstrap comparison of means with

1000 runs). For all PSTH plots, we used non-overlapping bins of 250ms width. For plotting purposes only, single-neuron PSTH

diagrams were smoothened with a Gaussian kernel of 200ms s.d. Normalized firing rates were estimated by dividing the response

by the average overall firing rate of a neuron throughout the entire experiment.

Single-Neuron ROC Analysis
We used ROC analysis to quantify how well the activity of a single neuron differentiated between two conditions. We summarized

each ROC by its area under the curve (AUC). Based on the AUC, we then defined a neurons preference index as 2*(AUC-0.5) (Raposo

et al., 2014). For MS and CS neurons, we refer to this preference index as ‘memory preference’ and ‘confidence preference’, respec-

tively. Preference index values varied between�1.1. For ‘memory preference’, we assessed whether old > new and for ‘confidence

preference’ whether high > low. Positive preference index values thus indicate higher firing rates for old and high confidence trials,

respectively. Negative preference index values, on the other hand, indicate higher firing rates for new and low confidence trials,

respectively. We counted spikes in a 2 s window starting 200ms after stimulus onset for all ROC analysis, with the exception of

time courses, where we used a 500ms time window moved in steps of 100ms.

Independence of Cell Selection and ROC Analysis Bootstrap
For each bootstrap run (executed 1000 times), we selected a random subset of 50%of the trials for each session for cell selection and

used the remaining 50% of the trials to perform the single-neuron ROC analysis (see above). For each run, we then averaged the

observed AUC for high-and low confidence trials and the confidence preference index for all selected MS and CS cells. These

AUC values were computed based only on the test trials not used for selection. For chance controls, we randomly scrambled the

order of the responses given and the ground truth labels. Otherwise, everything was identical.

Choice and Memory Probability Analysis
The choice probability (CP) of a neuron is equal to the AUC of a neuron when comparing new versus old choices regardless of

whether they were correct or incorrect. Similarly, thememory probability (MP) is equal to the AUC of a neuronwhen comparing stimuli

according to their ground truth (new versus old), regardless of the decision made by the subject. This strategy is similar to that used

previous in comparing choice-and sensory probability (Kwon et al., 2016). To compare CP as a function of confidence across the

population, we used a repeated-measure 1x3 ANOVA with cell ID as a random factor and confidence (high, medium, low) as a fixed

factor and CP as the predictor.
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Population Analysis
We used a series of mixed-effect generalized linear models (GLM) to further analyze groups of selected cells. Only correct trials were

included. As fixed effects we used subsets of familiarity (New or old), confidence (high or low) and decision time (DT, in seconds).

Familiarity and confidence were categorical variables. All models listed below include as random effects cell ID nested within session

ID. To assess the effect of interactions between confidence and familiarity, we compared model 1 (Fixed effects familiarity and

confidence) with model 2 (model 1 plus an interaction term between familiarity and confidence). To assess the effects of DT, we

in addition added the fixed effect DT to model 1 and 2 and then compared the two. Model comparisons were performed based

on the Akaike information criterion (AIC), expressed as a log likelihood ratio. GLMmodels were fit and compared using the MATLAB

functions ‘fitglme’ and ‘compare’, respectively. The link function was poisson.

Decoding
We used a regularized least-square decoder as previously described (Rutishauser et al., 2008). We trained on 60% of all available

trials and tested on the remaining 40%. The 60/40 split was randomized and decoding performance was averaged across 10 boot-

strap runs. We trained one decoder for each session, i.e., the decoder had access to all simultaneously recorded neurons. Only

correct trials were used for all decoding analysis.

Latency Analysis
Latency was estimated based on the cumulative sum of the spike train as previously described (Rutishauser et al., 2015). For each

neuron, we first computed the cumulative sum of each trial in 1ms steps. We then averaged the cumulative sums of all trials of the

preferred and the non-preferred stimulus type of each MS cell and then averaged the preferred-and non-preferred average

cumulative sums across cells. To estimate the first point of time where the two cumulative sums diverged, we performed a paired

t test at every point of time (p < 0.05). The latencywas defined as the first point of time after which this comparison remains significant.

Note that due to the pairwise test, this method is not sensitive to differences in baseline firing rates.

Bootstrap Statistics
Bootstrap statistics were run with B = 1000 iterations. We used p = 1/B in cases where no example of the null distribution exceeded

the observed value.

DATA AND SOFTWARE AVAILABILITY

The spike detection and sorting toolbox OSort was used for data processing, which is available as open source. Data and custom

MATLAB analysis scripts are available upon reasonable request from Ueli Rutishauser (urut@caltech.edu).

ADDITIONAL RESOURCES

This study was conducted as part of NIH clinical trial NCT01958086.
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