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Abstract— Existing brain-computer interface (BCI) control
of highly dexterous robotic manipulators and prosthetic devices
typically rely solely on neural decode algorithms to determine
the user’s intended motion. Although these approaches have
made significant progress in the ability to control high degree
of freedom (DOF) manipulators, the ability to perform activities
of daily living (ADL) is still an ongoing research endeavor. In
this paper, we describe a hybrid system that combines elements
of autonomous robotic manipulation with neural decode algo-
rithms to maneuver a highly dexterous robotic manipulator for
a reach and grasp task. This system was demonstrated using a
human patient with cortical micro-electrode arrays allowing the
user to manipulate an object on a table and place it at a desired
location. The preliminary results for this system are promising
in that it demonstrates the potential to blend robotic control to
perform lower level manipulation tasks with neural control that
allows the user to focus on higher level tasks thereby reducing
the cognitive load and increasing the success rate of performing
ADL type activities.

Index Terms— prosthetics, neural prosthetic system, brain-
machine interface, brain-computer interface, semi-autonomous,
robotic limb, computer vision, intelligent robotics, hybrid
BCI/BMI, modular prosthetic limb

I. INTRODUCTION

There are significant research efforts underway in the
area of BCI and Neural Prosthetic Systems (NPS) with
a central goal of understanding how the brain functions
and how neural signals can be used to control assistive
devices [1]–[6]. A specific focus area for many of these
efforts involves understanding specifically how the brain
maps neural activity to motor control of upper limbs [7]–
[9]. This is an important area of research for many spinal
cord injury patients (population of over 200,000 in America
alone) who lack the ability to perform activities of daily
living (ADL) due to upper limb paralysis [10].

Upper arm robotic and prosthetic limb systems are cur-
rently available that offer dexterity that is comparable to a
human arm and hand in an anthropomorphic size and weight
package, such as the Modular Prosthetic Limb (MPL) and
other sophisticated manipulation systems [11], [12]. In spite
of the technological breakthroughs in manipulation systems,
one of the main challenges is the ability to control the high
number of degrees of freedom (DOF) available, such as 17 in
the case of the MPL. Some cortical control based NPS focus
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on directly mapping neural activity to limb motion and have
demonstrated lower dimensional control [13], [14] as well
as higher dimensional control up to 7 DOF of high dexterity
systems [15]. While this level of control is revolutionary,
empowering for the patients, and typically shows proficient
decoding of whole arm movement, it can be limited in high
dimensional grasp control at the hand level. Robust hand
control over the maximum controllable DOF of a prosthetic
system would represent truly dexterous control and further
enable functional ADL by these patient populations.

Existing approaches for control of robotic devices in-
clude using conventional prosthetic controls (CPCs) (i.e.,
joysticks, chin switches, etc.), electroencephalograpy (EEG),
electrocorticography (ECoG), electromyography (EMG), and
direct cortical control through multi-electrode arrays. These
methods are matched to a patient depending on a specific dis-
ability or functional need. Each methodology has advantages
and disadvantages ranging from degree of signal extraction,
signal-to-noise ratio, invasiveness of implantation, lifetime,
and signal characteristics over time, all of which render a
one solution fits all approach impossible.

While traditional control architectures typically map pa-
tient signals to direct limb motion, interaction tasks need
not require continuous control of a device through a directed
trajectory. Several approaches look to assist neuroprosthetic
control through the addition of hybrid or semi-autonomous
control approaches using a wide variety of interfaces includ-
ing CPCs [16], eye-tracking [17], [18], EEG, or other BCI
[19], [20]. It is evident through the above approaches that
by leveraging additional sensors that can ascertain informa-
tion about the environment or from the patient, improved
control of the prosthetic device might be achieved. While
these approaches have been successful in reducing the need
for continuous user input, in most cases, they focus on
one specific patient population or a specific user interface
modality. Previously, we have developed a modular control
architecture called Hybrid Augmented Reality Multimodal
Operation Neural Integration Environment (HARMONIE)
that leverages a widely accepted open source software frame-
work (Robot Operating System, ROS) [21]. This system is
flexible not only to existing control methodologies, but also
incorporates advanced capabilities related to machine vision
and perception, object segmentation, and advanced robotic
control techniques that would likely realize an increase in
performance of neural prosthetic systems [22], [23]. This
short paper describes how elements of the HARMONIE
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Fig. 1. High-level block diagram presenting an overview of the hybrid BCI system.

system were used to blend computer automation with direct
neural control from a spinal cord injured patient in order
to successfully perform a reach, grasp and place activity. In
addition, we present preliminary results from patient testing
as well as discuss the future direction of this work.

II. SYSTEM ARCHITECTURE

The system designed to accomplish hybrid BCI control
of the MPL is described by Fig. 1 and consists of three key
components: the Caltech Neural Decode Controller, the APL
Autonomous Controller, and the Arbitrator.

A. Caltech Neural Decode Controller

The Neural Decode Controller acquires neural data from
a pair of electrode arrays using a data acquisition system
(Blackrock Microsystems, Salt Lake City, Utah, USA). Con-
trol of the MPL was coupled to a state-space linear predictor
which, in its most general form, may be expressed as

x̂k = Ax̂k−1 +Bzk (1)

where k is a subscript denoting discrete time steps, x̂ ∈
R2M×1 is the predicted 2M-dimensional kinematic state of
the effector containing position and velocity for M DOF;
z ∈ RN×1 is an N -dimensional list of features derived
from neural recordings; A ∈ R2M×2M is the state-space
representation of the system dynamics of the effector motion
for M DOF; and B ∈ R2M×N addresses the influence
of each feature upon each kinematic variable in x̂. The
neural features directly estimate only the velocity for each
DOF – weights in the top row of B were zeroed out. The
state-space representation has a number of benefits including
low computational overhead, straightforward analysis and
implementation of smoothing, and the ability to adjust the
neural features’ influential strength directly.

The state-space representation of the system dynamics in
A were set by hand to directly establish the amount of
smoothing applied to the output. The weights applied to each
neural feature in B were established based on a training
sequence. The subject observed the MPL move through a

series of predefined motions, and simultaneously imagined
movement of his own arm in the same motions. A t-test
over 10-fold R2 values calculated between predicted and pre-
sumed kinematic trajectories was performed on the training
dataset, and features with p<0.1 were used to parameterize
the elements of B.

After training, the subject was given unassisted control of
the MPL endpoint position (EP). Features were calculated
as the number of threshold crossings on each of 192 chan-
nels (96 recorded from the anterior intraparietal sulcus; 96
recorded from Brodmann’s Area 5) in 50-msec intervals. On
average, about 30-40 features were retained from the training
sequence and used in the final parameterized decoder. In
this preliminary context, the subject performed 42 brain-
controlled reach-and-grasp trials in 2 sessions.

B. APL Autonomous Controller

The Autonomous Controller module is responsible for
identifying the 6 DOF pose of manipulable objects within
the MPL workspace and planning the limb trajectory and
grasp pattern for the desired object.

Identification of the 6 DOF pose of the objects is handled
by the machine vision sub-component. The primary sen-
sor used is the Microsoftr Kinect (Redmond, WA) which
contains an optical camera and an infrared-based depth
sensor. To interface with the Kinect, several packages from
the Robot Operating System (ROS) are used including the
openni camera and Point Cloud Library (PCL) packages. The
openni camera package interfaces directly with the hardware
and publishes a 3D point cloud that is consumed by the PCL
packages for post processing. Using the PCL libraries, a pass-
through cube filter is applied to remove 3D points outside
of the workspace of the MPL. The largest planar surface is
then identified using a random sample consensus (RANSAC)
algorithm. A Euclidean clustering algorithm then assigns a
group of points on the planar surface to an object using a
configurable distance threshold. Finally, objects are identi-
fied as either spherical or cylindrical through a RANSAC
algorithm which also computes geometric properties of the
object including the radius and height. The machine vision
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Fig. 2. State machine describing the Arbitrator.

sub-component publishes identified objects, the 6 DOF pose
with respect to the camera as well as the geometric prop-
erties useful for computing the optimal approach and grasp
strategy.

The arm motion planning and control within this hybrid
control system is implemented as a three-level hierarchy
consisting of task selection, arm path planning, and motion
commanding. The user initiates a task using a high level
command to select which task to perform. The path planning
algorithm then autonomously calculates a set of waypoints
in the arm joint space to perform the desired task starting at
the current arm state. The hand and finger configurations are
chosen based on the object type and orientation in order to
align the hand with the object to be manipulated. Standard
inverse kinematics algorithms are used to calculate the seven
arm joints for each waypoint to achieve the desired hand
position and orientation. The null space of the seven degree
of freedom joint space is used to avoid mechanical joint
limits and minimize the elbow height.

C. Arbitrator

The Arbitrator is implemented as a state machine (Fig.
2) and is used to blend autonomous control with neural
decode control of the MPL. In its current form, the arbitrator
allows the patient to control the 3D endpoint of the MPL
using neural decode while monitoring the endpoint position
of the MPL as well as the identified objects in the workspace
determined by the machine vision sub-component. Once
a Euclidean-based distance threshold between a potential
object and the endpoint of the MPL is reached, the arbi-
trator switches control to the autonomous controller which
computes a series of waypoints to maneuver the arm from
the current location to the location of the desired object and
automatically initiates the grasp sequence. Once the object is
grasped by the MPL, 3D endpoint control is returned back to
the patient to select a desired placement point of the object.

Fig. 3. Successful completion of a reach and grasp task.

Again, once a distance threshold between the endpoint of the
MPL and the plane of the table is reached, the autonomous
controller takes over and automatically computes the tra-
jectory and grasp open sequence to place the object at the
desired location.

III. RESULTS

Utilizing the HARMONIE system, the spinal cord injury
patient was able to successfully grasp a known spherical
object (Fig. 3) and place it at a desired location on a table
97.6% of the time among the 42 trials performed over a
testing period of two days. The mean time for completion
of the grasp sequence was 42.2 seconds with a standard
deviation of 20.1 seconds. The lone unsuccessful attempt was
attributed to errors determining the true pose of the desired
object due to occlusion by the arm. Future work will be
focused on addressing this limitation.

IV. DISCUSSION

In this paper, we described the utilization of the HAR-
MONIE system to provide a collaborative framework that
allows for shared control between direct neural decode and
autonomous manipulation. While the results are only pre-
liminary, the possibilities are promising. Using a single 3D
endpoint neural decoder, an object recognition component
and a arm trajectory planning module, the patient was able
to accomplish a reach and grasp task that was previously
difficult using direct neural control at that particular point
in the training cycle. We envision that the HARMONIE
system can be used to augment existing capabilities (i.e.,
add a grasp component to existing neural 3D EP control)
that can allow for the execution of more complex tasks as
well as to provide a training tool to better develop direct
neural control. In the latter paradigm, the system can provide
ground truth of object location and idealized trajectories for
object manipulation. This idealized trajectory can be used
as assistance and slowly tuned down as the neural control
improves throughout the training cycle.

There are several directions in which we plan to continue
this collaborative effort. Initially, we would like to add
support for multiple neural decoders that are trained for
a variety of subtasks. The objective of this is to develop



building blocks that can be used for more complex activi-
ties. Also, we would like to develop a more sophisticated
arbitrator that allows for better blending of direct neural
control and autonomous manipulation instead of a binary
switch between the two modes. Finally, we plan to scale the
system to emphasize completion of activities of daily living.
This involves developing a more robust object recognition
system, developing a grasp planner that can determine op-
timal contact points for stable grasp given an arbitrary 3D
shape of an object as well as utilizing sensors on the hand
to confirm computed grasp points and force applied on the
object.
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