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ABSTRACT Many recent studies have used artificial neural
network algorithms to model how the brain might process
information. However, back-propagation learning, the method
that is generally used to train these networks, is distinctly
‘‘unbiological.”> We describe here a more biologically plausible
learning rule, using reinforcement learning, which we have
applied to the problem of how area 7a in the posterior parietal
cortex of monkeys might represent visual space in head-centered
coordinates. The network behaves similarly to networks trained
by using back-propagation and to neurons recorded in area 7a.
These results show that a neural network does not require back
propagation to acquire biologically interesting properties.

Recently neural network models have been used to model
and predict certain aspects of brain function. A criticism of
such models, however, has been their reliance on back
propagation, a learning algorithm that has been considered
‘‘unbiological’’ because it requires passage of information
backward through synapses and along axons and because it
uses error signals that must be precise and different for each
neuron in the network. Attempts to implement more biolog-
ically realistic forms of back-propagation still require unre-
alistic conditions, such as symmetrical feedback pathways
that are identical in every way, including strength of the
individual synaptic connections (1, 2). Crick has suggested
that ‘‘what is really required is a brain-like algorithm which
produces results of the same general character as back-
propagation’’ (3).

In our laboratory, we have been refining our neural net-
work models to bring them more in line with what we know
of nervous system function. This paper describes the appli-
cation of a variant of the associative reward-penalty (Ag.p)
learning rule of Barto and colleagues (4-6) to the training of
a multilayer neural network in a biologically relevant super-
vised learning task. We used this network to model the
process of coordinate transformation, believed to be com-
puted by the posterior parietal cortex (for review, see ref. 7)
and found that units in the middle layer of the network
develop response properties similar to those of area 7a
neurons. These properties are also similar to those obtained
with a previous model due to Zipser and Andersen (8), which
relied on back-propagation learning. The Ag.p rule has the
advantage of possessing several more physiological corre-
lates, such as a feedback system that transmits performance
information along explicit and plausible pathways, Hebb-like
synapses that correlate pre- and postsynaptic activity, and a
single scalar performance evaluation that is computed from
the overall output of the network and is sent to all connec-
tions in the network in the form of a reinforcement signal.

MODEL

Neurons in area 7a appear to compute head-centered loca-
tions of visual stimuli by combining retinal and eye-position
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information (7, 9). A feature of the responses of these neurons
that may be crucial for this computation is an approximately
planar modulation by eye position of the response to a visual
stimulus (10). In other words, if one records from an area 7a
neuron in an awake monkey while a spot of light is presented
at a fixed location on its retina, then as the animal looks in
various directions, the neuronal firing rate varies approxi-
mately linearly with changes in the horizontal and/or vertical
angle of gaze. A plot of this modulation of visual response by
eye position is termed the ‘‘spatial gain field.”” Andersen and
colleagues (7-10) hypothesized that an ensemble of neurons
with this response property, each with its own slope, direc-
tion, and range of planar eye position sensitivity, could
encode a distributed representation of craniotopic locations.
Zipser and Andersen (8) set up a three-layer network to
transform the coordinates from a retinotopic frame to a
craniotopic one, using retinal-stimulus location and eye po-
sition as input signals and the resulting head-centered loca-
tion as the training signal. After training this network by
back-propagation, the units in the middle layer (so-called
‘‘hidden’’ units) displayed planar gain fields remarkably
similar to those of area 7a neurons. This result suggested that
some fundamental computational feature embodied by the
network may be shared by area 7a neurons in their repre-
sentation of head-centered space.

As properties of the hidden units in the Zipser and Andersen
model suggested a possible connection between that model
and area 7a, it was natural to ask how crucial back-propagation
is for the development of these properties. We addressed this
question by training a neural network with an architecture
similar to the Zipser and Andersen model but using the more
biologically plausible Agp learning algorithm. Our present
network has a three-layer, fully connected, feed-forward ar-
chitecture (Fig. 1a). The input layer consists of a visual and an
eye position group of units, which were modeled according to
characteristics of area 7a neurons established in previous
studies (Fig. 1 b—c; ref. 8). The hidden and output layers
consist of binary stochastic elements (Fig. 1d), which produce
an output of 1 with a probability given by the logistic function
of the summed weighted inputs and an output of 0 otherwise.
The output layer encodes the craniotopic location that is the
vector sum of the retinal and eye position inputs and is
composed of one of two alternative formats (Fig. 1 e-f), one
analogous to the monotonic eye position representation and
the other to the retinal gaussian format.

We modified the supervised learning procedure for Ag.p
networks, introduced by Barto and Jordan (6), to train our
network. Every unit in the network receives a scalar rein-
forcement signal r (Fig. 1a), the value of which depends on
how close the current network output is to the desired output.
[Specifically, r assumes a value between 0 and 1, with 0
indicating maximum error in the output (i.e., every unit that
should be firing is not and vice versa) and 1 corresponding to

Abbreviation: Ag.p, associative reward-penalty.
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Fic. 1. (a) Network structure. Retinal input is encoded by 64 units with gaussian receptive fields (b), while eye position is represented by
32 units with linear activation functions (c). In the retinal input, each unit has an output between 0 and 1, a 1/e width of 15° and a receptive
field peak 10° apart from that of its horizontal and vertical neighbors. In the eye-position input, the output of each unit, between 0. and 1, is a
linear function of horizontal or vertical orbital angle, with random slope and intercept. These input formats reproduce properties of certain area
7a neurons that respond only to visual stimuli or to changes in eye position. The shading of each unit is proportional to its activity, with black
representing maximum activity. The hidden and output layers are composed of binary stochastic elements (d), which produce an output of 1
with probability (prob) p equal to the logistic function of the sum of the weighted inputs (s; = 2 w;;x;), and zero with probability 1 — p. The
Jth unit in the network provides input x; to the ith unit via the connection wy; m is the number of inputs to the units, and b is a bias. The network
used from two to eight hidden units. The output units encode head-centered locations according to one of two output formats. In the
*‘binary-monotonic’’ format (), each unit produces an output of 1 or 0, depending on whether the encoded location is to the right or to the left
(or, for some units, above or below) a certain reference point. For example, a typical output layer consisted of four sets of three units, giving
an output of 1 when the x (or y) craniotopic coordinate is > (or <) —40, 0, or +40 degrees. This format is analogous to the eye-position input
format, in that four groups of units encode an increase in horizontal or vertical position angle by increasing or decreasing their activation
monotonically. Another format we used is the ‘‘binary-gaussian’’ one (f), in which four units give an output of 1 when the spatial position is
within 100° of their receptive field centers, which are located at (60, +60)°. This format is analogous to that of the retinal input, in that a position
angle is encoded topographically by units with overlapping receptive fields.

optimal performance (no error in the computed head-
centered position).] The weights of all the connections are
then adjusted, after each pattern presentation, in such a way
as to maximize the value of this reinforcement. If we let x;
denote the output of the ith unit in the network, p; denote its
probability of firing, and w; denote the connection weight for
its input from the jth unit (Fig. 1d), the equation for updating
the weights is

Aw; = pr(x; — p)x; + Ap(1 — (1 — x; — p)x;, [1]

where p and A are constants. The first term in this sum
computes the reward portion of the learning rule, whereas the
second term is the penalty portion. Ignoring for the moment
the constant terms and the stochastic component, this equa-
tion changes the synaptic weights by correlating the rein-

forcement signal, presynaptic activity, and postsynaptic ac-
tivity. Thus, for instance, a correct response (large r) will
strengthen connections that were active during the response,
and an incorrect response (small r) will weaken active
synapses. The value of r is a function of the average output
error and is computed as r = 1 — ¢, with

1 K 1/n
e= { X glmz - xkl} , 2]

where k indexes the K output units in the network, x% is the
desired output of the kth unit in the output layer, x; is its
actual output, and » is a constant¥.

YA bias b; on each unit is also adjusted (as described in ref. 11) by the
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RESULTS

The Ag.p network learned to perform the coordinate trans-
formation task to any desired accuracy. Fig. 2b shows the
general behavior of the Ag_p network, as it learns to transform
12 pairs of retinal and eye positions into craniotopic coordi-
nates. The learning curve of a corresponding back-propaga-
tion network, using the same training set, is shown in Fig. 2a.
The learning curve of the Ag.p network is much noisier than
that of back-propagation due to the stochastic nature of its
hidden units and to the type of error signal used in Ag.p
training. The two curves, however, have similar envelopes
and the times required for convergence are comparable. !

One interesting feature of artificial neural networks is their
ability to discover general solutions; once they have learned
from a particular set of examples, they can also produce
reasonably correct outputs for inputs that the network has
never experienced. We tested our network for two types of
generalization abilities. In one task we presented it with a set
of new, random input pairs of retinal location and eye
position that coded for the same output locations as the
original training set. As shown in Fig. 3 (i), both back-
propagation and Ag_ p-trained networks performed this task
extremely well. The other generalization task required the
trained networks to give the correct output for input patterns
coding for new output locations, which is a more difficult
task. Although both networks produced some error (Fig. 3 ii),
it was still considerably less than for the untrained ones,
indicating that both networks generalized to a reasonable
extent.

Using a similar approach to the one we used in neurophys-
iological experiments, we examined the dependence of the
activity of the hidden units on two parameters, eye position
and retinal stimulus location. Spatial gain fields were ob-
tained by holding retinal position constant and varying eye
position, whereas visual receptive fields were obtained by
holding eye position constant and varying retinal position
(Fig. 4). In both cases we did not measure the instantaneous
output of the unit itself (which is binary) but its probability of
firing (a continuous variable). As Fig. 4 shows, both the gain
fields and the receptive fields of the various hidden units of
the network bear a qualitative similarity to those of area 7a
neurons. The degree of similarity is approximately equivalent
to that produced by Zipser and Andersen’s back-propaga-
tion-trained network (8). In particular, the gain fields of the
hidden units are largely planar in their overall probability of
firing (Fig. 4b, outside circles), whereas the visually evoked
component (dark circles) displays a more variable depen-
dence on eye position. This result was also produced by
back-propagation training and found in 78% of spatially tuned
area 7a neurons (Fig. 4a; ref. 12). These neurons also have
unusual receptive fields (Fig. 4c; ref. 12), which set them
apart from those of many other visual areas. These fields are
very large, with diameters extending to 80°, and have com-
plex surfaces, characterized by one or more smooth peaks at
various eccentricities. These features were both reproduced
by the hidden units of the Ag.p network (Fig. 4d).

The solutions computed by Ag.p training and by back
propagation are not just similar in the qualitative sense of the

rule in Eq. 1. Typical values for the parameters in equations 1 and
2 were p = 0.5, A = 0.01, and n = 3.

| As the number of epochs becomes large (>1000) the output error of
both networks approaches 0. For the back-propagation network,
which has a continuous output, the error decreases asymptotically,
whereas for the Ag_p network, which has a binary output, the error
spends increasingly more time at the value 0, flickering occasionally
to the value of the smallest resolvable angle of the output. Neither
algorithm had serious problems with local minima (frequency of
local minima was =5% for back propagation and <1% for the Ag.p
algorithm in =200 simulations).
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FiG. 2. (a) Learning curve for a back propagation network with
three hidden units, trained on 12 pairs of retinal and eye positions,
each encoding one of four craniotopic locations. Two output units
were used, each encoding horizontal or vertical craniotopic location
as a linear function of activity, which allowed us to compute the
location encoded by the network during training and, thus, record the
output error in degrees of visual angle. Graph shows the average,
over various training inputs, of the absolute values of horizontal and
vertical differences between desired and actual craniotopic coordi-
nates, plotted against number of presentations of the input training
set. The dotted line indicates spacing between the receptive field
peaks of the retinal input units. Parameter values were 0.1 for
learning rate and 0.9 for momentum term (see ref. 11). (b) Learning
curve for an Arp network with the same architecture. Values of
parameters were p = 0.5, A = 0.01, and n = 6. The two output units
encoded whether the horizontal or vertical craniotopic location was
> or < (0. Average output error was converted into degrees by using
the same factor as for the back-propagation network, so that the two
curves could be compared.

response properties they confer to the hidden units. In fact,
we found that for a given training pattern, the set of weights
trained by the Ag_p algorithm may be transferred to a back-
propagation network (with continuous output hidden units
but trained with target locations in the binary output format
of the Ag.p network) without any appreciable reduction in the
accuracy of the network response to that training pattern and
vice versa. The individual values of the weights of the
connections are not the same after Ag_p and back-propagation
training, but the overall structure of these weights is such that
the solutions of the two algorithms for the coordinate-
transformation problem are functionally equivalent.

DISCUSSION

The Ag.p rule, like back propagation, trains networks of
adaptive elements by adjusting the connection strengths
along the direction of the gradient of a predefined perfor-
mance measure. It does so, however, by computing only an
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networks described in Fig. 2 before and after training with 40 input
pairs, when presented with (i) 40 new, random inputs coding for the
same output locations as in the training set, and (ii) 40 random inputs
coding for 40 new, random output locations. Error was computed for
each network as described in Fig. 2.

estimate of this gradient (6, 13). Units trained by the Ag_p rule
do not have the detailed information about the error vector
and the state of other units that is necessary to compute the
exact gradient and which back-propagation units obtain
through nonbiological pathways. Due to the random noise in
their output, however, Ag_p units can ‘‘jitter’’ their activity
during learning so as to get an estimate of how variations in
activity affect the reinforcement they receive, which, in turn,
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allows them to estimate the direction in weight space along
which to change their weights to increase reinforcement.
Although this method allows Ag_ p-trained units to properly
adjust their weights using only locally available information,
it is more random in its search for a solution than back-
propagation, as reflected in the fluctuations in the learning
curve in Fig. 2b. The precise computation through back-
propagation of the performance gradient tells the algorithm
the exact manner in which to change the weights so that the
error is monotonically decreased, resulting in the smooth
curve of Fig. 2a.

An important element of the Ag.p model, which aligns it
with many neurobiological models of learning, is the rein-
forcement signal. As in any supervised learning scheme, this
signal is computed by comparing the activities of output units
to desired activities. After these errors are averaged, how-
ever, the feedback system transmits only a single value to all
the network connections and is not assumed to provide these
connections with separate information about the activities of
individual output units. The fact that in Ag_p training a single
value is valid for all the connection weights implies that only
one projection is necessary from the reinforcement comput-
ing region to area 7a. The existence of signals originating from
a small cluster of neurons distributed to entire cortical areas
and that possibly carry information about reward has been
suggested by anatomical as well as experimental studies (e.g.,
see ref. 14). In contrast, back propagation requires as feed-
back an error vector the components of which must course to
the appropriate output units and from there to individual
hidden units along specified pathways, either retrogradely
along axons or through complicated feedback loops with
completely symmetrical connection strengths (1, 2).
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(a) Spatial gain fields recorded from four area 7a neurons (i—iv) (8). Outside thin circles represent overall activity elicited by a visual

stimulus. Each circle corresponds to one of nine eye positions, spaced 20° apart. The dark circles represent the visual contribution to the
response, while the annulus is the eye-position contribution. (b) Gain fields of four hidden units in Ag.p networks trained on various sets of four
pairs of retinal and eye positions. (c) Receptive fields of four area 7a neurons (8). The response to a visual stimulus is plotted against the retinal
location of the stimulus. (d) Receptive fields of four hidden units in Ag.p networks trained on various sets of four pairs of retinal and eye positions.

Radius of sampling circle is 40° for the plot in ¢ and d.
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Another ‘“‘biological’’ feature of learning by Ag.p units is
the use of information locally available to the synapse the
strength of which is being adjusted. The Ag.p learning rule
(Eq. 1) is a sum of two terms, each containing the following:
(i) the reinforcement signal r (and the corresponding penalty
value, 1 — r); (if) information regarding the current state of
the unit (x; — p;); and, (iii) the input (x;) from each unit
connecting to this unit. We have already discussed r. The
variable x; is the output of the unit (0 or 1), and p; is the
probability that this output will be 1 given the current net
input, which depends on the weights of the unit. The quantity
pi could be interpreted as the rate at which the unit will fire,
given the present input. These two values, as well as x;, are
directly available at the connection between the input, or
‘‘presynaptic,”’ unit and the given (‘‘postsynaptic’’) unit.
With back-propagation, on the other hand, changes in
strength at one connection require information about the
activities and error signals for all units in the following layers.
The Ag.p rule, therefore, embodies a fundamental feature of
Hebbian learning—that is, the proportionality of a change in
synaptic strength to both presynaptic and postsynaptic sig-
nals (ref. 15; for reviews, see refs. 16 and 17). Indeed, the
connections in an Ag.p network fit a modern definition of
Hebbian synapses introduced by Brown and coworkers, in
that they embody ‘‘a time-dependent, highly local and
strongly interactive mechanism to increase synaptic efficacy
as a function of the conjunction or correlation between pre-
and postsynaptic activity’’ (16). Hebbian learning remains
one of the more plausible mechanisms for synaptic strength
modification, both on theoretical (18) and experimental
grounds (e.g., refs. 15, 16, and 19). The reinforcement signal
in the Ag_p rule does not alter the Hebbian character of the
algorithm; indeed, it has been suggested that such ‘‘global
control signals . . . may enable the induction or consolidation
of changes at synapses that have met the . . . criteria for a
Hebbian modification . . . and thus control Hebbian plastic-
ity in a large population of activated synapses’’ (16).

The last feature that adds some biological flavor to the Ag_p
unit is the probabilistic nature of its output. The unpredict-
ability of the exact firing rate produced by a neuron for any
given presentation of a certain input has long been recognized
as a feature of nerve cells. In fact, this stochastic aspect of
activity is one of the reasons neurophysiologists usually
present data as summed histograms of several trials (20). This
is a feature not included in the deterministic units of back-
propagation networks. In the Agp network, moreover, the
noise of the units is an essential component of the learning
process, as it produces the variability in the output necessary
to direct the search for a solution in an environment that
provides limited feedback information. Similarly, the noise in
neuronal activity may play an important role in biological
learning.

We have not examined in our study the issue of how the
Ag.palgorithm behaves for networks with considerably larger
numbers of hidden units and training locations. We expect
learning to be significantly slower for such networks (6). It is
possible, however, that the algorithm could be modified to
address the scaling issue, for example, by embodying more
specificity—perhaps of a topographic nature—in the rein-
forcement signal. In this sense one could view our use of a
single scalar feedback signal as a worst-case scenario that
does not exclude more specialized signals that may be used
by biological systems.

Overall, we have shown that a number of features of the
Ag-p algorithm bring it closer than back-propagation to what
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is known about biological learning. The fact that a more
biologically plausible algorithm produces hidden unit re-
sponse properties like those of area 7a neurons supports the
validity of neural-network models as tools for studying the
computations by populations of neurons in cortical areas. We
must emphasize, however, that the focus of our interest at
this point is not in how literally Ag.p networks reproduce
individual neurophysiological processes; it is rather the fact
that the Ag.p rule, back-propagation, and perhaps other
supervised learning algorithms may form a family of training
procedures that yield similar functional representations when
applied to parallel networks and that some of these algo-
rithms can do so by using mechanisms not excluded and,
perhaps, suggested by neurophysiological evidence.
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