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Cortical neural prosthetics extract command signals from the brain
with the goal to restore function in paralyzed or amputated patients.
Continuous control signals can be extracted from the motor cortical
areas, whereas neural activity from posterior parietal cortex (PPC)
can be used to decode cognitive variables related to the goals of
movement. Because typical activities of daily living comprise both
continuous control tasks such as reaching, and tasks benefiting
from discrete control such as typing on a keyboard, availability of
both signals simultaneously would promise significant increases in
performance and versatility. Here, we show that PPC can provide
3D hand trajectory information under natural conditions that would
be encountered for prosthetic applications, thus allowing simulta-
neous extraction of continuous and discrete signals without re-
quiringmultisite surgical implants. We found that limb movements
can be decoded robustly and with high accuracy from a small
population of neural units under free gaze in a complex 3D point-
to-point reaching task. Both animals’ brain-control performance
improved rapidly with practice, resulting in faster target acquisition
and increasing accuracy. These findings disprove the notion that
the motor cortical areas are the only candidate areas for continuous
prosthetic command signals and, rather, suggests that PPC can pro-
vide equally useful trajectory signals in addition to discrete, cogni-
tive variables. Hybrid use of continuous and discrete signals from
PPC may enable a new generation of neural prostheses providing
superior performance and additional flexibility in addressing in-
dividual patient needs.
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Different cortical areas have been identified as sources for
cortical prosthetics to assist subjects with paralysis or am-

putation (1–13). Motor cortex can provide continuous control
of trajectories (3–5, 11–13), which is consistent with its normal
function of sending commands directly to the movement gener-
ating circuits of the spinal cord. More cognitive variables related
to reach goals have been extracted from the parietal reach region
(PRR) and area 5d in posterior parietal cortex (PPC) (7, 14, 15).
There are several advantages of these cognitive variables for pros-
thetic applications: (i) decodes of goals are very fast, in the order
of 100 ms, and can assist in typing applications (7); (ii) at least
two sequential goals can be represented in PRR, and this feature
can augment typing and sequential limb movements (16); (iii) goal
and trajectory information, when combined, provide better decod-
ing of trajectories than trajectory information alone (17); (iv)
bilateral arm movements to a goal are represented and can assist
in decoding bimanual behaviors from a single hemisphere (18);
and (v) the anterior intraparietal area (AIP) of PPC represents
grasp shape, which may reduce the number of cells needed to
decode grasping (19).
If PPC also encodes trajectories, then its repertoire of uses for

prosthetics control would be further expanded. Deficits in online
control of movement trajectories found in clinical studies, for in-
stance, difficulty in trajectory correction during movement (20–22),
indicate that PPC is an important site for continuous control of
movement, suggesting that movement parameters can be decoded

in PPC. Moreover, recent studies show that, under very constrained
laboratory conditions of stereotyped movements (2D center-out
movements) and with the gaze fixed, trajectory information can
be decoded from PPC neurons (17, 23). However, there has been
no demonstration that PPC can be used for the more demanding
conditions required for neural prosthetic applications that include
3D reaches from varying beginning and end points with gaze free.
The ability to use PPC for everyday prosthetics applications,

for both trajectory and goal decoding, is also an open question
given the findings that reach targets, particularly in PRR, are coded
primarily in eye coordinates (24–26). With gaze free, decoding
would, in principle, be much more inaccurate than with gaze
fixed. Thus, in the current experiments, we tested whether PPC
could provide trajectory information in the presence of natural
eye movements and under generally more realistic conditions, in-
cluding sequences of point-to-point-movements in a 3D workspace.
To investigate the feasibility of extracting prosthetic command

signals from PPC, we simultaneously recorded ensembles of single-
and multiunit spiking activity from area 5d and PRR (Fig. 1D
and Fig. S1) in two rhesus monkeys while they performed rea-
ches. First, each monkey used his hand to steer a cursor (reach
control) in a 3D virtual reality (VR) environment (Fig. 1 A and B
and Movie S1). We constructed and evaluated linear ridge re-
gression (27) and Kalman filter (28) decode models for offline
reconstruction of cursor movement from the concurrently recor-
ded neural activity (Fig. 1C). The reach sessions were followed
by brain-control sessions where VR-cursor movement was driven
by neural activity instead of hand movement to test whether the
previously identified decode model would be suitable for direct
cortical control of a prosthetic.

Results
Offline Reconstruction. Twenty-nine reach-control sessions were
analyzed in monkey R and 33 in monkey G. The offline recon-
struction performance was quantified using the coefficient of
determination, R2, for the best day (Table 1) and the average
over all recording days (Table 2). Despite free gaze, the decode
model operating in a screen-centered reference frame captured
the key features of 3D hand movement (Fig. 2 and Fig. S2) with
best-day position reconstruction performance R2 = 0.68/0.62
(monkey R/G) and average (over all recording days) position
reconstruction performance R2 = 0.61/0.52 (monkey R/G.). The
Kalman filter provided position estimates significantly more ac-
curate than the ridge filter estimates (P < 10−8 for monkey R;
P < 10−9 for monkey G; two-sided sign test).
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To assess how well trajectories could be reconstructed from
PPC neural ensembles of different sizes, we constructed neuron
dropping curves (Fig. S3). They show that the position-decoding
performance for a neural ensemble of a particular size is very
similar between the two animals, although differences in decoding
accuracy for velocity and acceleration exist. The neuron-dropping
curves also reveal that the reported decoding performance (Tables
1 and 2) is better in monkey R primarily because more neural
units were available.
Neural units in PRR are known to respond to visual stimuli

(29), which could presumably impair trajectory reconstruction
performance, particularly during the onset of high-contrast visual
target cues. We, therefore, compared our decoding results with
the performance obtained from reconstruction of the same sets
of reaches, but after elimination of all visual cue onset phases,
and found that the difference in decoding performance was small
in both monkeys (SI Results).
Furthermore, the optimal lag time (OLT), representing the

temporal offset of movement vs. neural population activity where
R2 tuning was maximal (Table 2), showed that neural population
activity led movement execution on average by ∼80 ms in both
monkeys, despite strong known proprioceptive and visual sensory
inputs to PPC.
In summary, these offline reconstruction results suggest that

(i) PPC populations of neurons allow accurate reconstruction of
3D trajectories under free gaze in a stationary reference frame;
(ii) the decoded signal is insensitive to visual perturbations; and
(iii) the neural signal leading the movement represents the animals’
intention to move rather than a sensory correlate of movement,
thus qualifying it as a potential prosthetic control signal.

Brain Control. Twenty-five reach sessions were followed by brain-
control sessions in monkey R and 15 in monkey G. In the brain-
control task, VR-cursor movement was driven by neural activity
instead of hand movement to test whether the previously iden-
tified decode model would be suitable for direct cortical control
of a prosthetic. Both animals performed the brain-control task
successfully (Movie S2). They frequently acquired targets rap-
idly, performing mostly straight reaches directed toward the goal
from the initiation of the movement (Fig. 3A), but a number of
reaches required adjustments to correct for initially erroneous
trajectories (Fig. 3B and Fig. S4). Such visual feedback–driven
error correction frequently resulted in successful target acqui-
sition. Over time, behavioral performance improved with
practice. During 19/10 (monkey R/G) ridge decode sessions, the
success rate increased significantly from 29.63% on the first day
to a maximum of 77.78% on day 17 [regression line slope m =
1.48; 95% confidence interval (CI): 0.72/2.23 (lower/upper
bounds)] in monkey R and from 37.04% to 85.19% on day 10
(m = 4.24; 95% CI: 2.08/6.40) in monkey G, while always remaining
significantly above chance level (Fig. 4). The mean time each
monkey required to acquire a target successfully decreased sig-
nificantly from 2.18 to 1.54 s (m = −0.033; 95% CI: −0.052/
−0.014) in monkey R and from 1.31 to 1.13 s (not significant) in
monkey G, whereas trajectory straightness, quantifying the goal-
directedness of the brain-control trajectories, improved (m =
0.041; 95% CI: 0.026/0.057 in monkey R; not significant in
monkey G) (Fig. 4A). To benchmark brain-control task pro-
ficiency, we compared time-to-target and trajectory straightness
in monkey R (where both variables improved significantly over
time) to the same-day performances achieved under hand-
control (Fig. S5). The comparison highlights that (i) increasing
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Fig. 1. Behavioral paradigm. (A) In daily recording
sessions, each monkey guided a cursor in a 3D VR
display to a reach target. The monkey first used his
hand to control cursor movement (reach control).
Then he steered the cursor using cortical activity
(brain control) translated to cursor movement by
the decode model identified from the preceding
reach-control phase. (B) Timeline of the reach task.
Reaches were performed in sequences of six or eight
targets. The monkey was rewarded with juice after
having completed a sequence of reaches. In brain-
control mode, the monkey was rewarded after suc-
cessful acquisition of single targets. (C) Single df tra-
jectory sample, spike trains, and processed spike bins
recorded simultaneously during the reaching task.
(D) Unlike previous approaches targeting the mo-
tor areas, here, continuous control signals were
extracted from PPC. Electrodes were implanted in PRR
in the intraparietal sulcus (yellow marker in the
coronal MRI slice) and area 5d on the cortical surface.

Table 1. Single best-day offline reconstruction performance (mean ± SD) for ridge and Kalman filter

Monkey
(no. of neural units)

Kalman filter, R2 Ridge filter, R2

x/y/z combined Single-best df x/y/z combined

Position Velocity Acceleration Position Position

R (70) 0.68 ± 0.03 0.59 ± 0.02 0.33 ± 0.02 0.77 ± 0.02 0.45 ± 0.05
G (55) 0.62 ± 0.04 0.36 ± 0.03 0.11 ± 0.02 0.76 ± 0.01 0.46 ± 0.05
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performance is specific to the brain-control phase of the ex-
periment and therefore cannot be explained by generally im-
proved VR-task proficiency; and (ii) over time, brain-control
performance approaches hand-control performance. Success rate,
time to target, and trajectory straightness also showed steady
improvement during 6/5 (monkey R/G) Kalman filter brain-
control sessions. In monkey R, the success rate saturated at
100% after four sessions, and in monkey G, performance re-
covered from initially 44% to a maximum of 63% success rate

despite availability of only a few neural units from aging array
implants (Fig. 4B).
Monkey R was required not to move his limb while controlling

cursor movement during a set of nine separate sessions to test
brain-control in the absence of proprioceptive feedback modu-
lating PPC activity. The monkey was not accustomed to the
electromyographic (EMG) recording equipment attached to his
arm to monitor muscle activation; therefore, movements per-
formed while wearing the equipment (Fig. 3D) were less smooth
and targets were acquired more slowly than under regular con-
ditions under both hand-control (e.g., Fig. 2A vs. 3D) and brain
control (e.g., Fig. 3 A and B vs. 3C). Despite this limitation,
monkey R reached up to 66.67% brain-control success rate
(chance performance 23.67 ± 1.49%) in the absence of detect-
able limb movement (Fig. 3 C and D and Movie S3). This result
suggests that somatosensory feedback is not necessary to gen-
erate control signals in PPC, which will be important for clinical
applications in patients who typically have sensory, as well as mo-
tor, deficits. The algorithm was trained during actual reaching
movements, presumably accompanied by proprioceptive feedback,
whereas the brain-control results were obtained in absence of limb
movement, thus generating a mismatch between the decoding
model and the inputs it expected based on the data on which it was
trained. Results may, therefore, be even better when algorithms
are trained in the absence of proprioception from the limb, such as
in prosthetic patients for whom algorithms will need to be trained
using neural activity during imagined movements.

Discussion
The results of this study show that complex, 3D point-to-point
movement trajectories can be decoded from PPC under free gaze
and that PPC-based brain–machine interfaces (BMIs) for con-
tinuous neural control of 3D manipulators are feasible.
Prior PPC studies reported substantially lower performance

(R2 below 0.3) in two free-gaze 2D decoding studies (2, 5). These
low values may reflect the small number of electrodes implanted
in the one study (2), whereas in the other study (5), very good
grasp-decoding performance was reported, suggesting that the
actual targeted site of the PPC was more involved with grasp. R2

results comparable to those reported previously by our group in a
highly constrained 2D center-out PPC decoding study (17) sug-
gest that the removal of behavioral constraints such as eye fixation
and increased task complexity does not impair the usefulness of
PPC signals for prosthetic applications. Furthermore, the decod-
ing algorithms operated continuously, requiring neither reinitiali-
zation at the beginning of a trial or a sequence nor elimination of
visual cue onset responses (29), thus generalizing previous
findings (17) to a realistic, unconstrained 3D prosthetic limb control
scenario without compromising decoding accuracy.
R2 decoding performances reported for M1 have ranged from 0.3

to 0.7 (2, 3, 5), and, thus, the PPC offline decoding results appear to
be on par with M1 performance. Brain-control performance, com-
monly quantified by success rates, appears to be similar to the results
reported in a motor cortex–based 3D brain-control study by Taylor
et al. (4) (SI Results). Notwithstanding caution in consideration of
methodological differences, these results suggest that achievable
brain-control performance is comparable to motor cortex.

Table 2. Average (across all sessions) offline reconstruction performance (mean ± SD) for ridge and Kalman filter

Monkey
(no. of neural units)

Kalman filter Ridge filter

R2 x/y/z combined OLT (ms) R2 x/y/z combined

Position Velocity Acceleration Position Position

R (65.86 ± 6.89) 0.61 ± 0.06 0.58 ± 0.05 0.34 ± 0.07 82.35 ± 40.18 0.45 ± 0.05
G (64.29 ± 15.02) 0.52 ± 0.06 0.24 ± 0.05 0.07 ± 0.02 79.63 ± 39.43 0.36 ± 0.06

The reported performance was achieved using all neural units (single- and multiunit activity) recorded from area 5d and PRR
combined. Because 75% of the implanted electrodes were designed for surface recordings, the neural ensembles reported contained
more surface (area 5d) neural units than neural units from the deeper structures (PRR).

A

B C

Fig. 2. Offline Kalman filter 3D-trajectory reconstruction. PPC populations
of neurons allow the decoding of position, velocity, and acceleration profiles
with high accuracy in a free gaze point-to-point reaching task. (A) Position
reconstruction (black) of a previously recorded sequence of reaches (red) to
eight targets (blue). ●, discrete reconstruction points resulting from the 90-ms
sampling rate used. (B and C ) Velocity reconstruction (B) and acceleration
reconstruction (C) for the same sequence.
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At first glance, it is surprising to find that PPC encodes a trajec-
tory because it is motor cortex and not PPC that sends movement
commands directly to the spinal cord. However, computational
models of motor control, as well as lesions to patients and
recordings from animals, suggest that PPC signals represent state
estimates of ongoing movement whereas M1 signals carry motor
commands (20–23, 30–32). Thus, the signals from PPC and M1,
although serving different purposes in the brain, are equally
suitable for decoding trajectories.
Previous research suggested that neurons in PRR rely primarily

on gaze-centered reference frames to represent reach goals (24)
and that area 5d neurons use simultaneous gaze- and limb-centered
target representations (25). Thus, it appears to be counterintui-
tive that ongoing movement can be decoded from populations of
neurons in a stationary body-centered reference frame, especially
in the presence of changing hand–eye coordination patterns. The
finding that free gaze does not limit decodability raises the pos-
sibility that PPC relies on a limb or body-centered reference frame.
Many of the recordings were made from area 5d, and recent
results show that a majority of cells in area 5d codes reaches in
limb-centered coordinates (33). Another possibility is that tra-
jectories and goals are encoded in different coordinate frames, with
hand trajectory representations being affected little by eye move-
ments, whereas reach targets are. This latter possibility is analogous
to the medial superior temporal area (MST) encoding visual sig-
nals in eye coordinates and vestibular signals in head coordinates
(34). A third possibility is that spatial representations depend on
the context of the task and, although being more gaze-centered

during gaze fixation (23, 24), could be mostly limb-centered during
gaze free, thus always being in the coordinate frame that is most
pertinent at the current stage of the task (35). Additional studies
will be needed to distinguish between these or other explanations.
These findings, strongly suggesting that continuous prosthetic

command signals from PPC are on par with continuous signals
extracted from the motor areas, have implications for future
approaches to BMIs. Their performance may be enhanced by
simultaneous extraction of complementary continuous trajectory
signals and a variety of high-level goal signals simultaneously,
without requiring surgery and implantation of additional recording
devices in other brain areas.
This wide array of control signals in PPC is perhaps indicative

of its being a bridge between sensory and motor areas and, thereby,
providing a broad pallet of sensorimotor variables.

Materials and Methods
General Methods. Two rhesusmonkeyswere used in this study. All experiments
were performed in compliance with the guidelines of the Caltech Institutional
AnimalCareandUseCommitteeand theNational InstitutesofHealthGuide for
the Care and Use of Laboratory Animals. Chronic recording electrode arrays
(Floating Microelectrode Arrays; MicroProbes) (36) were implanted stereo-
taxically using magnetic resonance imaging (MRI) to guide the implantation.
Four arrays with 32 recording electrodes each were placed in the medial bank
of the intraparietal sulcus (IPS), a portion of PRR, and area 5d (Fig. 1D and Fig.
S1). The differentially recorded neural signals from all electrically intact elec-
trodes were band-pass filtered (154 Hz to 8.8 kHz), analog to digital converted
(40-kHz sampling rate), spike-sorted using window-discriminator spike-sorting
(Multichannel Acquisition Processor; Plexon), and stored to hard disk. The
neural activity used for offline and online decoding included well-isolated
single units and multiunit activity from all electrodes (Fig. S1). All neural units
from the cortical surface (area 5d) and from the PRR (medial bank of the
intraparietal sulcus) were processed identically and grouped to create the
neural ensemble. The spike sorting was adjusted on a daily basis to capture
changes in the neural activity available from the recording electrodes. The total
number of neural units in the neural ensemble, therefore, fluctuated be-
tween days (Tables 1 and 2). All experiments were conducted in a VR en-
vironment providing closed-loop, real-time visual feedback (SI Materials
and Methods).

The monkey performed reaches by steering his cursor to the target using
hand movement during the reach-control phase and using cortical activity
during the brain-control phase. The manual reaches were performed in
sequences of eight or six, after which the animal received a fluid reward (Fig.
1B), whereas individual reaches were rewarded in brain-control mode. Each
sequence startedwith the presentation of one target chosen pseudorandomly
from the pool of 27 possible target locations. Themonkey had 10 s tomove his
cursor to the target in the reach-control task and 4 s (monkeyG) or 8 s (monkey
R) in the brain-control task. After successful target acquisition, the target
extinguished, and the next target appeared at a different location, chosen
from the pool of the 26 remaining targets, and so on. A reach was successful if
the animal kept the center of the hand cursor within <20 mm of the center of
the target for a minimum of 300 ms (reach-control, both monkeys) and <30
mm for 90 ms (brain-control, monkey G) or <30 mm, 180 ms (brain-control,
monkey R). Brain-control accuracy requirements were less stringent for animal
G than for animal R because an early version of the array implant used in
monkey G provided fewer neural channels than the later, revised version of
the array implant in monkey R, thus making it harder for monkey G to meet
the same accuracy requirements.

General Decoding Methods. The spike events were collected in 90ms non-
overlapping bins, separately for each neural unit (Fig. 1C). The firing rates
were then standardized by first subtracting the neurons’ mean firing rates
and then dividing by their SDs. Neural and kinematic data starting from the
appearance of the first reach target in a sequence until completion of the
last reach in the same sequence were isolated for further processing,
whereas recordings from in between sequences (reward and resting phase)
were discarded. A total of 216 reaches, i.e., 27 reach sequences consisting of
8 reaches or 36 sequences consisting of 6 reaches, were used for decoding
algorithm identification and validation for both ridge and Kalman filter.
The sequences recorded during the reach-control segment were shuffled.
Eighty percent of the shuffled data were used for training and 20% were
used for validation. The shuffling, training, and validation procedure was
repeated 100 times to obtain a mean ± SD offline reconstruction per-
formance. Velocity and acceleration signals for Kalman filter algorithm

A B

C D

-0.1

-0.1

P
os

iti
on

 (m
)

x
y

z

E
M

G
 a

ct
iv

ity

Biceps

Triceps

Deltoid

Trapezius

0.1

0

0.1

0

0.4

0.3

0.2

Time (s) 1s Time (s) 1s

-0.1

-0.1

0.1

0

0.1

0

0.4

0.3

0.2

Time (s) Time (s)
1 121 4321 50000

P
os

iti
on

 (m
)

x
y

z

Fig. 3. Online 3D brain-control. (A) Samples of direct brain-control trajecto-
ries resulting in target acquisition without requiring correction (reach target:
blue; brain-control trajectory: black). (B) Samples of brain-control trajectories
resulting in target acquisition after correction for initially wrong direction. (C)
Brain-control trajectories in the absence of limb movement verified by the
lack of visible EMG activity (lower four graphs) recorded simultaneously
from biceps, triceps, deltoid, and trapezius. (D) For comparison: same-ses-
sion reach-control showing characteristic EMG bursts on all four channels.
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training were obtained through numerical differentiation after con-
volving the position trajectory with a Gaussian kernel (σ = 12 ms) for
smoothing.

Offline Ridge Filter. The linear regression ridge model (17, 27) reconstructed
instantaneous 3D cursor position as a function of the standardized firing
rates r(t) of N simultaneously recorded neural units. Each sample of the
behavioral state vector, x(t), was modeled as a function of the vector of
ensemble firing rates measured for four successive 90-ms bins. Only the four
causal bins immediately preceding the movement were used; i.e., the firing
rates used in conjunction with the behavioral state x(t) were centered at
(t − 315 ms), (t − 225 ms), (t − 135 ms), and (t − 45 ms). An estimate of the 3D
cursor position, x̂ðkÞ, was constructed as a linear combination of the ensemble
of firing rates, r, sampled at the four leading binning intervals according to

x̂ðkÞ = β0 +
XN

j

βj rjðkÞ + εðkÞ; [1]

where k denotes the discretized 90-ms time steps, ε represents the ob-
servational error, and N represents the total number of neural inputs each
incorporating four successive bins. β, representing the regression coef-
ficients, was determined using linear ridge regression (SI Materials and
Methods).

Offline Kalman Filter. The discrete Kalman filter implementation (17, 28, 37)
estimated the current state of the movement, including velocity and ac-
celeration, in all three degrees of freedom from single causal 90-ms bins of
firing rates. Two equations govern the recursive reconstruction of the hand
kinematics from the firing rates: an observation equation that modeled the
firing rates (observation) as a function of the state of the cursor, xk, and a
process equation that propagated the state of the cursor forward in time
as a function of only the most recent state, xk−1. Both models were assumed
to be linear stochastic functions, with additive Gaussian white noise:

xk = Akxk−1 + Buk−1 + wk−1 ðprocess equationÞ; [2]

rk = Hkxk + vk ðobservation equationÞ; [3]

The control term, u, was assumed to be unidentified and was, therefore, set
to zero in our model, excluding B from the process model.

One simplifying assumption was that the process noise (w ∈ℜ9×1), ob-
servation noise (v ∈ℜ9×1), transition matrix (A∈ℜ9×9), and the observation
matrix (H∈ℜN×9) were fixed in time, thus simplifying Eqs. 2 and 3 to

xk = Axk−1 + w; [4]

rk = Hxk + v; [5]

where A and H were identified using least squares regression.
To estimate the state of the cursor, at each time-step k, the process model

produced an a priori estimate, x̂−k , which was then updated with measure-
ment data to form an a posteriori state estimate, x̂k . More specifically, the a
priori estimate was linearly combined with the difference between the output
of the observation model and the actual neural measurement (i.e., the neural
innovation) using an optimal scaling factor, the Kalman gain, Kk, to produce
an a posteriori estimate of the state of the cursor:

x̂k = x̂−k + KkðRk − Hx̂−k Þ; [6]

minimizing the a posteriori estimation error.
The entire two-step discrete estimation process of a priori time update and

subsequent a posteriori measurement update was iterated recursively to
generate an estimate of the state of the cursor at each time step in the
trajectory. Both the Kalman gain, Kk, and the estimation error covariance
matrix, Pk, have been shown to converge rapidly, decaying exponentially,
in <1.5 s (17), and then to remain stable throughout the decoded segment.

Brain Control. The identified decoding models (ridge filter, Kalman filter)
were used to guide cursor movement during the brain-control phase of the
experiment, allowing the animal to use cortical signals instead of hand
movement to guide the cursor. Cursor position was updated every 90 ms and
visualized continuously, without reinitialization, throughout the brain-control
session. To assess behavioral performance, daily success rates were computed.
Although both animals typically performed brain-control reaches to all 27
targets multiple times, the success rate for the most successful set of 27
reaches was reported in Fig. 2. The average success rate over all trials in a
session was typically biased (lower) because it frequently included sets of
targets where the monkey chose to rest instead of attempting to perform a
brain-control reach, making the best set of 27 brain-control reaches the
more appropriate measure to assess success rates.

Tocalculatethechancelevelsforsuccessrates,firingratebinsamplesforagiven
neural unit recorded during brain control were shuffled randomly, effectively
preservingeachneural unit’smeanfiring ratebutbreaking its temporal structure.
Chance trajectories were then generated by simulation, iteratively applying the
actual decoder to the shuffled ensemble of firing rates to generate a series of
pseudocursor positions. The criteria used during actual brain-control trials were
applied to these pseudocursor positions to detect successful target acquisition by

A B

Fig. 4. Learning brain-control. Im-
proving behavioral performance in
both monkeys for consecutive brain-
control days shows that the monkeys
learned to use PPC spike activity
driving the decoding algorithm to
direct cursor movement. Top graphs
show daily success rates and chance
performance ± SD (gray band) for
ridge (A) and Kalman filter decode
(B). Middle graphs show time-to-
target for successful reaches. Bottom
graphs show trajectory straightness.
The trajectory straightness describes
the ratio of the shortest (straight)
distance from initial cursor location
to target location and the actual
distance the cursor traveled during
the target acquisition, i.e., increasing
straightness values indicate more
direct trajectories. The trajectory
straightness was normalized for first-
day performance.
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chance. This procedure was repeated 50 times to obtain a distribution of chance
performances for each session, from which a mean and SD were derived.

The time-to-target reported quantifies the average duration of all successful
reaches in a session, measured from target cue appearance to successful
target acquisition.

The trajectory straightness was assessed by calculating the ratio of tra-
jectory lengths: the shortest possible (straight) trajectory to acquire a target
and the actual distance the cursor traveled. Trajectories were analyzed from
when the target cue appeared (initial cursor position) until detection of
successful target acquisition (final cursor position). The trajectory straightness
results, reported as daily averages for all reaches completed successfully, were
normalized for first day performance.

Because PPC receives projections from S1 (40, 41) that carry proprioceptive
signals, it is unclear whether the movement representation decoded from PPC
persists when proprioceptive feedback from the limb is compromised. This was

tested by (i) mechanically immobilizing the limb during the brain-control de-
code session and (ii) monitoring the EMGactivity of themuscle groups typically
involved in reaching movements in monkey R. EMG recordings were made via
small percutaneous hook electrodes (paired hook-wire electrode, 30 mm × 27
gauge; VIASYS Healthcare). Recordings were taken simultaneously from the
deltoid, trapezius, biceps, and triceps muscles. To verify proper placement and
function of the EMG electrodes, recordings were taken before and after the
brain control session during a series of reach sequenceswhere themonkeywas
required to move his limb to control cursor movement.
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