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Although it is appreciated that humans can use a number of visual cues
to perceive the three-dimensional (3-D) shape of an object, for exam-
ple, luminance, orientation, binocular disparity, and motion, the exact
mechanisms employed are not known (De Yoe and Van Essen 1988),
An important approach to understanding the computations performed
by the visual system is to develop algorithms (Marr 1982) or neural net-
work models (Lehky and Sejnowski 1988; Siegel 1987) that are capable
of computing shape from specific cues in the visual image. In this
study we investigated the ability of observers to see the 3-D shape of
an object using motion cues, so called structure-from-motion (SFMj}. We
measured human performance in a two-alternative forced choice task
using novel dynamic random-dot stimuli with limited point lifetimes.
We show that the human visual system integrates motion information
spatially and temporally (across several point lifetimes) as part of the
process for computing SFM. We conclude that SFM algorithms must
include surface interpolation to account for human performance. Our
experiments also provide evidence that local velocity information, and
not position information derived from discrete views of the image (as
proposed by some algorithms), is used to solve the SFM problem by
the human visual system.

1 Introduction

Recovering the three-dimensional (3-D) structure of a moving object from
its two-dimensional (2-D) projection is considered an “ill-posed” problem
(Poggio and Koch 1985) since there are an infinite number of interpreta-
tions of a given 2-D pattern of motion. Several elegant algorithms have
been formulated for computing SFM, each using a number of constraints
to restrict the number of possible solutions (Ullman 1979, 1984; Longuet-
Higgins and Prazdny 1980; Hoffman 1982; Grzywacz and Hildreth 1987).
None of them use surface interpolation. Rather these algorithms com-
pute the relative position of isolated points. Existing schemes therefore
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require that the tracked points on an object must be present continuously
over the entire duration of the SFM computation. This leads to the pow-
erful prediction that if the visual system is forced to sample a new set
of points on the same object, the old set of points should not improve
the perception of SFM since a new model of the object would have to be
computed with each new set of sample points.

An alternative approach to solving the SFM problem is to compute a
3-D surface representation by interpolating a surface between the sam-
ple points (Andersen and Siegel 1988). Such a scheme would sample
the movement of as many points as possible across the surfaces of the
object, and interpolate locally across these measurements to compute a
continuous surface. New sets of points can easily be integrated into the
representation and thereby improve its accuracy while the information of
disappearing points is preserved in the interpolated surface. (We apply
the term “surface interpolation” in a general way since the surface could
be generated in physical as well as in velocity space.)

2 Experiments

In our experiments we examined how the human visual system performs
the SFM computation when confronted with continuously changing sets
of sample points. We used novel “structured” and “unstructured” dy-
namic random-dot stimuli with limited point lifetimes (Morgan and Ward
1980; Zucker 1984; Siegel and Andersen 1988). The structured stimulus
was computed from the parallel projection of points covering the surface
of a transparent rotating cylinder (Fig. 1). All subjects, whether naive or
experienced, have reported the perception of a revolving hollow cylin-
der when viewing the structured display. The unstructured stimulus
was generated by randomly displacing the velocity vectors present in the
structured display within the boundaries of the stimulus, thereby con-
serving the population of vectors but destroying the spatial relationship
between them (see Siegel and Andersen 1988). Each point was displayed
for a “lifetime” of only 100 msec (7 frames), after which it was replotted
randomly at another position on the surface of the cylinder. In the first
frame, points were randomly assigned positions in their life cycle. Thus,
between two given frames of the stimulus only about 15% of the points
“died” and were randomly replotted (“desynchronized case”).

Under these conditions, using a reaction time task, we have found
that subjects detect the change from an unstructured to a structured dis-
play reliably (> 80% correct) but take as much as 900 msec to react as
shown in figure 2. This observation would suggest that the computation
of SFM builds up over time and that new points can be integrated into
the representation, which is partially computed by the old points. Un-
fortunately, it is not possible to determine from these data how much of
this reaction time is needed as visual input and how much of it is com-
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Figure 1. Schematic description of stimulus creation. All movies were created
off-line on a PDP 11/73 computer that was also used to run the experiments.
For the structured stimulus (E) 126 or 12 points were first randomly plotted
on a two-dimensional surface (A). They were then parallel projected onto the
surface of a transparent cylinder that was rotated at an angular rotation rate of
35°. sec™! (B). Each point existed for a predetermined point lifetime after which
it was randomly repositioned. The moving points were then parallel projected
onto the two-dimensional CRT screen (HP 1311B; P31 phosphor) (C) that was
viewed by two highly trained observers (D) (ST and MH). The resulting velocity
distribution in the structured stimulus is sinusoidal along any horizontal line
across the stimulus, with the fastest speeds in the center of the display. The
unstructured stimulus (F) was created by randomly shuffling the paths of the
points in the structured display. Observers viewed the display binocularly from
a distance of 57 cm; the stimuli subtended 6° of visual angle at the eye. The
display rate was 70 Hz and mean luminance was 1 ¢d m™2.

putation time in the brain or motor reaction time. This is an important
question since performance should improve when the stimulus is seen
for longer than the point lifetime if surface interpolation is used.
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2.1 Perceptual Buildup and Surface Interpolation. In order to ad-
dress this issue we presented equal numbers of structured and unstruc-
tured stimuli of 40 to 1700 msec duration in random order and asked
subjects to indicate in a two-alternative forced-choice paradigm whether
they saw a rotating cylinder or an unstructured noise pattern. Figure 3
(filled symbols) shows that performance peaked only after viewing stim-
uli longer than 5 times the point lifetime (> 500 msec), being hardly above
chance after one point lifetime. Current algorithms (which do not use
surface interpolation) would not have predicted improved performance
when viewing stimuli of more than one point lifetime.

It could be argued, however, that the visual system selects a number
of points from the display and needs to track their relative positions as a
group for the duration of their lifetime. Since in our stimulus the points
are not synchronized it is very unlikely that all the points in such a group
are at the same point in their life cycle, that is, their onsets and offsets do
not occur at the same time. So, because groups of dots constantly form
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Figure 2: Reaction time for detecting the transition from an “unstructured”
to a “structured” cylinder. Observers were shown movies that started with the
unstructured version of the cylinder, which after an unpredictable time changed
into the structured display. The task was to press a key as soon as the structured
cylinder was detected. (For further details see Siegel and Andersen 1988). The
arrow and dotted line indicate the point lifetime used for the two-alternative
forced-choice experiments described in the text. The regression line is a best-fit
third-order polynomial. Each data point represents the mean of about 100 trials.
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Figure 3: Percentage accuracy in a two-alternative forced-choice paradigm plot-
ted as a function of duration of display in multiples of point lifetime (point life-
time was kept at 100 msec). Observers were shown movies of different duration
containing either the cylinder or the unstructured stimulus and were asked to
distinguish between them. The dots in the display were either desynchronized
(open symbols), or the onsets and offsets of all the dots were synchronized
(filled symbols). Note that in both cases peak performance is not reached until
over 5 times the lifetime of each point, that is, > 490 msec. The regression
lines are best-fit fourth-order polynomials (» > 0.97 for both). Each data point
represents the mean of 200 to 600 trials.

and dissolve, it might be argued that it simply takes a long time before
one finds a group in which all the dots are “in phase.” Therefore, we
asked our subjects to view displays in which all the points appeared and
disappeared together, that is, they were synchronized. Figure 3 (open
symbols) shows that performance was indistinguishable from the desyn-
chronized case.

Another important consideration is that a surface interpolation may be
used only when the high density of dots in the stimulus already percep-
tually constitutes a surface. Under different conditions, when the points
are not dense enough to constitute an apparent surface by themselves,
an alternative algorithm might be used. To investigate if the percep-
tual buildup we observed occurs only with a high density of dots, we
decreased the number of points to less than a tenth of the original 126
points. Figure 4 (open symbols) shows that the time course using 12
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points is even longer, with performance peaking only after more than 10
point lifetimes.

To control for the possibility that the buildup in performance is not
due to the presentation of new points but to some other effect we per-
formed another experiment. We showed stimuli of the same duration in
which the 12 points, after living through their first lifetime, were not ran-
domly replotted but repositioned to the location they originally occupied
at the beginning of the movie. They then moved through the same path
as before and at the end of their lifetime were again replotted at their
original starting position, thus beginning the cycle again. These “oscil-
lating” stimuli therefore contained the same number of points with the
same point lifetime as used in the previous experiment but after the pas-
sage of the first point lifetime they contained no new information. The
results are plotted in figure 4 (filled symbols). It is evident that subjects
did not perform above chance under these conditions. Thus, the visual
system can improve its performance dramatically when presented with
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Figure 4: Percentage accuracy plotted as a function of display duration when
12 desynchronjzed points were used (point lifetime again 100 msec). Open
symbols show the results from the experiment comparable to Figure 3. In this
case perceptual buildup is more gradual and long-lasting. Peak performance is
not reached until a stimulus length of more than 10 point lifetimes, that is, over
1 sec. The regression line is a best-fit third-order polynomial (r = 0.96). Filled
symbols show the results from the experiment in which points were replotted
to their original position at the end of their point lifetimes (for details see text).
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new sets of points and this is not due to a requirement to view stimulj
for an extended period of time.

These results suggest that the brain uses surface interpolation in com-
puting the shape of 3-D surfaces from motion. As predicted, the accuracy
of the object representation rises to some maximum value with the pre-
sentation of new data points, and the performance of the system is not
influenced by whether the points are synchronized or not (cf. Fig. 3).
Moreover, given less points, it predictably takes longer to compute an
accurate surface representation (cf. Fig. 4). As expected, the surface repre-
sentation integrates information over space, since performance was better
with larger numbers of points, and over time, since several point lifetimes
were required for the computation.

2.2 Position- versus Velocity-Based Computation. A second issue is
whether the visual system measures position or local velocities in com-
puting SFM. Position-based algorithms sample position information de-
rived from a few discrete image views of a moving object and attempt
to reach a rigid 3-D interpretation from the 2-D sample frames (Ullman
1984; Grzywacz and Hildreth 1987; Grzywacz et al. 1988). Velocity-based
algorithms measure the local velocities of points on an image and use the
global velocity field to compute 3-D SEM (Longuet-Higgins and Prazdny
1980; Hoffman 1982; Grzywacz and Hildreth 1987).

To date, neither position- nor velocity-based algorithms have used
surface interpolation and all velocity-based algorithms have used instan-
taneous velocity whereas the nervous system requires 50-80 msec to mea-
sure velocity accurately (McKee and Welch 1985; Nakayama 1985). A
modified position-based scheme could incorporate measurements from
new sets of points to improve performance by smoothing over the com-
puted 3-D locations of points to interpolate a surface (E.C. Hildreth and
S. Ullman, personal communications).

However, there are several reasons to believe the nervous system uses
a velocity-based algorithm with surface interpolation. In our displays the
angular extent of the individual movements is quite small, approximately
3.5°, since they are of finite point lifetime. Position-based algorithms re-
quire large displacements of 30-50° (Grzywacz and Hildreth 1987). Other
experimental support from our laboratory for the velocity-based surface
scheme comes from the finding that the minimum point lifetime required
for perceiving SFM (Treue ef al. 1988) corresponds to the minimum view-
ing time required to measure accurately the velocity of a moving stimulus
{(McKee and Welch 1985). This correspondence is preserved with changes
in stimulus velocity: the point lifetime threshold falls in parallel for both
tasks as velocity is increased. This correlation is further strengthened
by the fact that subjects can detect motion in our displays with point
lifetimes lower than the ones required for comparative performance in
detecting SFM, suggesting that the perception of motion per se is not
sufficient but that an accurate velocity field has to be measured. Finally,
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our laboratory as well as other investigators have shown that lesions of
area MT, a region in primate visual cortex that contains neurons tuned
to global stimulus direction and velocity (Movshon et al. 1985; Allman
et al. 1985), impair perception of both coherent motion (Newsome and
Paré 1988) and SFM (Siegel and Andersen 1986, 1988).

3 General Discussion

There are two possible levels at which a surface interpolation of the ve-
locity field might occur. One is at a 2-D level in which the velocities of
points moving on the 2-D retinal image are computed and an interpo-
lation process fills in to form a dense 2-D velocity field from which a
3-D interpretation will be computed by a later process. In the second
possibility the 3-D surface is immediately computed from the local 2-D
velocities and the interpolation process operates on the 3-D image rep-
resentation. At present we do not have evidence to distinguish between
these two possibilities.

A large number of algorithms for 2-D velocity measurement have been
proposed that perform some velocity integration, averaging, or smooth-
ing (Hildreth and Koch 1987; Horn and Schunk 1981; Zucker and Iverson
1986; Yuille and Grzywacz 1988; Biilthoff ef al. 1989). Some of these algo-
rithms have also been implemented in neural networks (Wang et al. 1989).
Since all these algorithms integrate motion over local spatial neighbor-
hoods they can account for a number of perceptual phenomena. Unfor-
tunately, they cannot deal with transparent objects such as our rotating
cylinder since vectors (with opposing direction) from the front and rear
surface would be assigned to one surface, and the averaging of velocities
over a patch would yield zero velocity. Evidently, an additional require-
ment for the successful application of these algorithms to transparent
objects is the segregation of surfaces prior to the smoothing operation.
For our stimulus, a simple solution is to assign motion in one direction
to one surface. To investigate this issue we are presently recording from
visual cortex in awake macaque monkeys. Preliminary results indicate
that transparent motions in different directions are already separated at
the level of VI (Erickson et al. 1989).
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