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Microstimulation of many saccadic centers in the brain produce;
not consistent with either a strictly retinal or strictly head-centerec

(Zipser & Andersen 1988; Andersen & Zipser 1988). Here we show tizat microstimulation of

this trained network, achieved by fully activating single units in the middle layer, produces
‘saccades” that are very much like the saccades produced by sumuiatmg the brain The

' nits can be considered to code the desired location of the eyes in
head.centered coordinates; h er, stimulation of these units does not produce the saccades
_predicted by a classical hea ntered coordinate coding because the location in space appears
1o be coded in a distributed fashion among a population of tnits rather than explicitly at the

Ievei of single cells.

Introduction

A fundamental problem for achieving motor coordina-
tion under visual guidance is how to transform infor-
mation from visual coordinates to body-centered coor-
dinates. The visual scene is imaged on the retina and de-
fined in retinal coordinates. A more or less point-to-point
mapping of these inputs at the lower levels of the visual
system maintains this retinotopic representation. How-
ever, movements are made to locations in space. Thus,
at some point in the nervous system, the location of the
eyes in the orbits and location of the head on the body
must be integrated with visual inputs of retinal location
to code the location of the stimulus with respect to the
body. Since information is also available to the motor
system about the position of the limb, motor commands
can then be formulated to move the limb to the correct
location of a visual target in space.

In the present study we have concentrated on the sac-
cade system, a simpler system than the one responsible
for limb movements. However, the problem of coordi-
nate transformation is still fundamentally the same; visual
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targets for eye movements are provided in retinal coordi-
nates, yet the motor command must specify the desired
locations of the eyes in the orbits. Thus, the program-
ming of visually guided saccades requires a transforma-
tion from retinal to head-centered coordinates by com-
bining retinal and eye position information. We have
employed two variations of our neural network model
of area 7a neurons (Zipser & Andersen 1988; Andersen
& Zipser 1988) and have stimulated them varying only
the eye position information. We have compared our
network results with recording data and have found sig-
nificant similarities. Finally, we have examined the in-
teractions of the hidden units to gain insights regarding
how the brain computes transformations from retinal to
head-centered coordinates using a distributed processing
code.

The classical head-centered coordinate coding scheme
of Robinson (1972, 1975) predicts that microstimulation
of saccade centers in the brain that code desired loca-
tion of the eye in orbital (head-centered) coordinates

~should produce eye movements that drive the eye to-

ward a single orbital position regardless of the initial eye

317



position. For instance, stimulating a small number of
cells coding for the straight-ahead position should move
the eye to the left if the animal is looking right and to
the right if the animal is looking left, i.e., the direction of
the eye movement can actually reverse at different initial
orbital positions (see Figure 1a.) On the other hand, cells
coding eye movements in strictly retinal (occulocentric)
coordinates should produce eye movements to stimula-
tion that are always of the same direction and amplitude
(fixed vector) regardless of initial eye position (Figure 1b
and ¢©). In fact, stimulation of some saccade centers, in-
cluding the superior colliculus parafoveal representation
(Robinson 1972; Schiller & Stryker 1972) and the frontal
eye fields (Robinson & Fuchs 1969), produces eye move-
ments that have been interpreted to be of this fixed-vector
type. Stimulation of other areas such as the supplemen-
tary eye fields (Schlag & Schlag-Rey 1987; Mann et al.
1988), posterior parietal cortex (Shibutani et al. 1984),
cerebellum (Noda 1988), and peripheral field represen-
tation of the superior colliculus (Seagraves & Goldberg
1984) in the monkey, and the primary visual cortex (Mcll-
wain 1988), cerebellum (Ohtsuka et al. 1987), and supe-
rior colliculus (Roucoux & Crommelinck 1976; Guitton et
al. 1980; Roucoux et al. 1980; Mcllwain 19806) in the cat,
produces eye movements that do change direction and
amplitude as a function of eye position. However, these
eye movements usually do not behave in a manner fully
consistent with the above predicted head-centered coor-
dinate representation. While these eye movements may
converge on a single location in head-centered space,
their movements rarely reverse direction (Figure 1d). At
initial eye positions where one would predict the direc-
tion of movement should reverse, often the eye does not
move at all (Figure 1d). For other stimulation sites, the
directions of the eye movements do not change but the
amplitude does. Usually the saccades become smaller in
amplitude as the saccades are made from more eccentric
eye positions that are in the direction of the evoked eye
movements (Figure 1le). Mcllwain (1988), in his study
of cat primary visual cortex, found change in amplitude
effects to be more common than change in direction.

A retinal coordinate coding of eye movements is a rel-
ative coding in that it indicates only the direction and
amplitude of 2 movement necessary to foveate a target.
However, at some point in the oculomotor system the
eye movement must be coded in absolute position of the
eye in the orbit. As Westheimer (1973) and Nakayama
(1975) have pointed out, the oculomotor system must in-
evitably be position-based because it obeys Listing’s Law
{see Nakayama 1975): the eye’s orientation for a given
gaze position can be described by a rotation around an
axis lying in the frontal plane passing through the eye’s
center of rotation. In other words, two dimensions spec-
ify the eye’s position completely. This limitation on eye
movements is not imposed by the muscles, since the six
extraocular muscles allow the eye three degrees of free-
dom to rotate. In an awake animal, however, the eye
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Figure 1. (a) A schematic diagram of predicted saccades
resulting from stimulation of a brain area representing
space in head-centered coordinates. The lighter axes
represent eye position in head-centered coordinates. In
some of the animal experiments in which the head is
fixed, these axes also define the coordinates of the tan-
gent screen on which points of light are projected for
fixation prior to electrical stimulation. The arrows show
the predicted amplitude and direction of saccades for dif-
ferent initial eye positions. (b) A similar schematic dia-
gram as in (a), but for predicted saccades resulting from
stimulation of a brain area representing space in retinal
coordinates. Parts (c—e) illustrate actual recording data re-
sulting from stimulation of the supplementary eye fields
of macaque monkeys (Schlag and Schiag-Rey 1987). These
results are typical of those found in many other areas of
monkey and cat brain and are reviewed in the text. Stimu-
lation produces fixed-vector saccades like those predicted
by stimulation of a retinal coordinate representation (c),
but also produce converging (d) and amplitude change (€}
saccades. The converging saccades rarely reverse direc-
tion and the single points represent positions in which
stimulation produced no movement at all. The change
in amplitude saccades had smaller amplitude eye move-
ments for eye positions in the direction of the saccade.
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moves with only two degrees of freedom. The exact path
of the eye to a given position does not affect its orienta-
tion, or the neural activity to the six extraocular muscles,
once it is in that final position. If eye movements were
specified in a relative code, such as retinotopically, then
changes in orientation along a path would accumulate.
For the same final eye position reached by two differ-
ent series of movements, the orientation of the eye and
the pattern of firing rates to the extraocular muscles often
will be different in the relative coding scheme. Therefore,
the brain must be coding eye movements as a final or-
bital position, that is, in head-centered coordinates. Mays
and Sparks (1980) showed that stimulation of the supe-
rior colliculus during an intended eye movement, which
momentarily drives the eye in a different direction, does
not affect the final fixed position of the saccade. These
results likewise indicate that the brain is coding the final
position of the eye in the orbit and is not using a relative
movement code.

Coding in head-centered coordinates requires combin-
ing eye position and retinal position information. These
signals are combined in a complex fashion in area 7a of
the posterior parietal cortex in macaques (Andersen et al.
1985; Andersen & Zipser 1988). Head-centered position
is only partially represented in the activity of single cells;
rather, computational studies have shown that the spatial
location can be coded in the population response (Zipser
& Andersen 1988). An important feature of encoding
was discovered in these physiological experiments in the
parietal lobe: if retinal position was held constant at a lo-
cation in the visual receptive field of a neuron, the total
activity of most area-7a neurons varied linearly as a func-
tion of horizontal and vertical eye position. This linear
behavior of the combined response of the eye position
and visual signals at different eye positions occurred even
though the interactions between the two signals was of-
ten complex and nonlinear. The activity of these “gain
fields” in the monkey could be modeled by a plane in
most cases. The visual receptive fields of these neurons
were found to be very large and complex. In a compan-
ion set of theoretical studies, the hidden units of a neural
network simulation trained to combine retinal and eye
position inputs and map to locations in head-centered
coordinates showed responses much like those recorded
from area-7a neurons (Andersen & Zipser 1988; Zipser &
Andersen 1988). The hidden units showed similar planar
gain fields, receptive fields, and nonlinear interactions of
eye and retinal position.

Recently we have discovered an area in the lateral
bank of the intraparietal sulcus, the lateral intraparietal
area (LIP), which appears to play a role in the process-
ing of saccadic eye movements (Andersen et al. 1985;
Andersen 1987, 1989). This area lies adjacent to area 7a
in the posterior parietal cortex, but unlike area 7a has
strong connections to the superior colliculus and frontal
eye fields. Eighty-five percent of the cells in this area
have saccade-related responses and 59% of the saccade-
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related responses are presaccadic (Barash, Bracewell, Fo-
gassi, Gnadt & Andersen 1989, personal communication).
Many of the cells that respond to saccades here also
respond to visual stimuli. Eye position activity is also
prominent in this area as well, and the saccade and visual
responses interact in ways similar to those seen in area
7a (Andersen et al. 1988; Andersen & Gnadt in press).
Thus, the same algorithm that operates in area 7a may
operate in area LIP to convert retinal visual signals to de-
sired location of the eyes in head-centered coordinates.
Interestingly, stimulation of area LIP produces saccades
that modify their direction and amplitude characteristics
as a function of initial eye position (Shibutani et al. 1984).
As seen with stimulation to other brain regions, these
eye movements do not produce a reversal in direction
as would be predicted by head-centered representation
schemes.

The neural network model used in our previous studies
provides a good correspondence to the actual recording
data not only from area 7a but also from area LIP. The ef-
fects of eye position on the visual and saccade responses
of area LIP neurons are predicted by the area 7a neu-
ral network model (Andersen et al. 1988, 1989). Would
simulated microstimulation of a trained network also pre-
dict the results of the studies of brain microstimulation
at different eye positions cited above? The experiments
described in this article have been designed to answer
this question. Microstimulation can be simulated in the
model by adding directly to the activation of a hidden
unit in the network and examining changes in the result-
ing output. The initial output of the model] is the desired
location of the eyes in head-centered coordinates, while
the change in output following stimulation can be con-
sidered the evoked “saccade.” We find that the model,
using a linear (monotonic) frequency of firing code at the
output, produces the same three types of saccades found
as a result of stimulation of the various eye-movement
areas of the brain, that is, fixed vector, converging, and
amplitude-change saccades. In contrast, using a gaussian
format for coding the head-centered location at the out-
put produced much more complicated patterns of move-
ment. By examining in detail the network using the lin-
ear output format, we can explore why the network, and
perhaps the brain, produces these three saccade patterns
as a result of stimulation.

Method

The neural network simulations were trained using back-
propagation learning (Rumelhart et al. 1986). Each net-
work has three layers: one containing the input it was
given, one hidden layer for internal representations, and
one producing the output to which it is trained. The
activation of each input unit is multiplied by a weight
representing the strength of the connection between that
unit and each hidden unit and the resulting values are
added to the inputs of the hidden units. All inputs are
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connected to all hidden-layer units, which in turn are
connected to all output units. There are no connections
within a layer or back to previous layers. Each unit in
the hidden layer takes the sum of its weighted inputs,
together with a bias which can be fixed in advance or
trained like the weights, and puts out 2 number between
0 and 1 representing a function of its inputs equal to
[1/1 + ¢~ (net input+bias)] - A tora] input of zero would pro-
duce an output of 0.5 from a unit with bias 0; numbers
less than —7 or greater than 7 become vanishingly close
to 0 and 1 respectively. These output values are then
passed on to the next level, that is, multiplied by their
corresponding weights to be added to the input of each
unit in the output layer, which then computes its output
in the same way. The resulting output pattern of the
output layer is subtracted from the desired output dur-
ing training to produce an error vector, which is used to
correct the weights by the backpropagation procedure
(Rumelhart et al. 1986).

Two different formats were used for the head-centered
output position, but all networks had the same retinal and
eye position inputs. The retinal input was represented by
an 8 X 8 (64-unit) array. Each retinal input unit’s acti-
vation represents the value of a gaussian function at the
point where the “light” falls on the “retina”; the input units
were considered to be a grid of points separated by ten
degrees of visual angle, and their gaussian functions had
a 1/e spread of fifteen degrees. The possible values for
each input ranged from 0 to 1. The other 32 input units
represented the position of the eyes. These units’ acti-
vations were monotonic functions of eye position similar
to those seen from neurons found to code eye position
in the parietal cortex. Because each unit represents posi-
tion, mostly in the same range, this is a highly redundant
distributed coding. Each network contained 12 hidden
units.

The first network’s output was a set of monotonic func-
tions of either horizontal or vertical position of the visual
stimulus in head-centered coordinates. These units were
identical to the eye-position input units but coding the
location of the visual stimulus with respect to the head.
The second network’s output layer was an array of gaus-
sians identical in format to the retinal input but coding
location in head-centered coordinates rather than retinal
coordinates. Both were trained by backpropagation to
give the correct outputs representing the eye-position-
independent, head-centered location of the visual stimu-
lus represented by the “retinal” stimulus seen at the given
eye position. Training consisted of presenting patterns of
randomly chosen eye and retinal input positions several
hundred times until the average output error was reduced
to less than ten degree§ of visual angle (i.e., less than the
space between the retinal input units) for all input pat-
terns. The neural network outputs were more accurate
closer to the straight ahead location (in head-centered
coordinates) than at more peripheral angles, and aver-
age error over locations out to 40 degrees ranged from
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roughly 5 to 15 percent in the networks described here.
Longer training has been found to reduce error to in-
creasingly smaller amounts without any appreciable dif-
ferences in the general parameters of the network (Zipser
& Andersen 1988).

The microstimulation experiment involved moving the
“eye” to several different eye positions, stimulating the
network by saturating the activation of one or more of
the hidden units, and recording the resulting change in
eye position as the stimulation-induced “saccade.” The
“eye” was moved to each new initial eye position by ap-
plying an eye-position signal at the input with no retinal
input signal present, and the location represented by the
output was considered to be the eye position prior to
stimulation. In the networks with monotonic output for-
mats, the output eye position represented by each of the
thirty-two monotonic units was calculated, and the results
(16 vertical and 16 horizontal) were averaged to give one
horizontal coordinate and one vertical coordinate of the
output position. For the gaussian output, the position
was calculated as a weighted average of the retinal loca-
tions of the four units with the highest activations. With
no retinal input, the monotonic output networks gener-
ally gave an output position very close to the input eye
position. The gaussian output networks gave slightly less
similar input and output eye positions when no retinal
position was applied at the input.

Stimulating a hidden unit consisted of increasing its
activation after an eye position input pattern had been

- propagated forward through the network, and recomput-

ing the output. Since each unit’s activation is constrained
to values from 0 to 1, simply adding a fixed amount to
the output could result in a value exceeding 1 and there-
fore would not be appropriate. Instead, the input to the
hidden unit was increased and resulted in the new total
output being close to 1. The result was multiplied by
the appropriate weights and added to the inputs of the
output-layer units in the usual way.

In order to study how stimulation-induced changes in
output varied with eye positions, a set of input patterns
was made (with no retinal input) for eye positions at reg-
ularly spaced points on a 6 x 6 grid separated by 10 deg.
Each hidden unit was stimulated for each of these po-
sitions, and the change in output position was regarded
as a saccade vector. This method simulates the earlier
animal experiments in which the animal changes his di-
rection of gaze and stimulation is delivered to different
eye movement centers,

Results

The Monotonic Format Network

In the networks with the monotonic output format, the
saccades were mostly parallel. Of a total of sixty hidden
units from five simulations trained to monotonic output
(see Table 1), seven produced no appreciable saccades
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Table 1

PERCENTAGES OF HIDDEN UNITS BY CATEGORY
Linear Output Gaussian Output
Category (total 60 units) (total 24 units)
Fixed vector (e.g., Figure 2) 7 % 0
Amplitude change (Figures 3 and 7b) 82 % 38 %
Complex (such as Figures 7a and 8a) 0 42 %
Little or no movement (Figure 8b) 12 % 21 %
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Figure 2. Fixed-vector saccades from a monotonic-output
network. The large spots of each saccade represent the
initial eye position and the smaller spot the final position
of the output calculated after saturating the activity of a
single hidden unit. The simulated eye movements are of
nearly equal amplitude and direction regardless of initial
eye position. The plot is in head-centered coordinates
with 10 deg per division,

at all and four gave identical saccades from all eye po-
sitions (as in Figure 2). The remaining 49 converged
toward one side of the simulated oculomotor range (Fig-
ure 3). These saccades were mostly parallel, but their
length varied with starting position. The direction varied
slightly as well, especially toward the edges of the vi-
sual field, but not nearly as much as the magnitude. The
shortest saccades were those that started closest to the
edge they pointed toward, so that the overall effect is of
converging on one side (see Figure 3).

The slight variations in direction often added to the
converging effect in the monotonic-output networks, so
that all saccade vectors flowed toward one corner (e.g.,
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Figure 3b). This slight change in direction was caused
by the use of separate output units for horizontal and
vertical position. When the output units for one direc-
tion were near saturation, so that saccades could not go
much farther in that direction, they could still move in
the other dimension. This asymmeitrical saturation ef-
fect appeared to be the source of most, probably all, ef-
fects on saccade direction for stimulation of single units
in the monotonic output networks. This directional con-
vergence at extreme positions was caused at the output
layer. Other convergence effects, in particular that of the
saccades being shorter when they started closer to the
direction they were going, were caused at the level of
hidden units.

Sometimes a much higher degree of convergence is
created by stimulating two hidden units at once. This
result would be equivalent to that seen when a current is
delivered to an electrode simultaneously activating two
neurons (or two small populations of neurons) with dif-
ferent direction and amplitude tuning properties. Fig-
ure 4 is an example of such a convergence. In this case,
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Figure 3. Two examples of saccades produced by stimu-
lating single hidden units of a monotonic network that do
not show fixed-vector behavior. (a) Example of stimula-
tion that produced amplitude change with progressively
decreasing amplitudes for initial eye positions in the di-
rection of the eye movement. Note the similarity between
this network result and the amplitude change results from
brain stimulation studies (Figure 1e). (b) Example where
the amplitude decreases in the direction of the eye move-
ment and there is a small degree of direction change. Note
that the convergence for this hidden unit stimulation is
markedly less than the degree of convergence that often
occurs with brain stimulation (Figure 1d).
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Figure 4. Eye movements recorded when two hidden
units of a monotonic-output network are stimulated si-
multaneously. Note the much higher degree of conver-
gence than that typically recorded with single hidden-unit
stimulations (Figure 3b) and the greater similarity to the
convergence behavior that is often recorded with brain
stimulation. (b) Eye movements recorded when each of
the two hidden units is stimulated alone. Note that the re-
sult of simultaneous stimulation, illustrated in part (a), is
more or less the vector addition of the two saccade fields
that result from stimulation of the individual units.

the convergence is caused by saturation of the hidden
units rather than the output units. In most cases, how-
ever, the pattern of saccades produced by probing two
units at once looks similar to that produced by one unit,
because most of the hidden units"did not reach satura-
tion in positions where the output units would not be
saturated as well.

Examination of the properties of the hidden units re-
veals the eye-position effects upon the saccade behavior.
In Figure 5a, the visual receptive field of such a hidden
unit is plotted with each circle representing its response
to a visual stimulus at that location, with darker shad-
ing representing higher activity. The seventeen sample
points correspond to the seventeen receptive field loca-
tions sampled in recording experiments in area 7a (An-
dersen et al. 1985; Andersen & Zipser 1988) and are dis-
tributed across an area 80 degrees in diameter. Note that
the receptive field is large with greatest sensitivity for lo-
cations down and left. Figure 5c shows that the best
saccade direction was also down and to the left. This
similarity in best directions for the motor (saccade) and
receptive fields was generally found for all hidden units
in the monotonic format network (see Figure 6b). This
similarity in best directions of the motor and receptive
fields also has been found in recording experiments in
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area LIP (Barash et al. in press) and the superior collicu-
lus (see Schiller 1984 for review).

Figure 5b shows the gain field of this unit. The di-
ameter of the inner dark circle is proportional to the re-
sponse evoked by the visual stimulus at the most respon-
sive retinotopic location in the visual field tested at nine
different eye positions. The eye positions are separated
by 20° with the center position at straight ahead. The
outer circle’s diameter is proportional to the total activity
and thus the annulus is proportional to the eye-position
signal. It can be seen in Figure 5b that the eye-position
signal for fixating down and left nearly saturates the out-
put of the hidden unit while fixation up and right pro-
duces only a minimal response. Note that the gain field
is planar; that is, the activity can be fit by a plane with
the positive gradient directed down and to the left —
the same best direction as the motor and visual receptive
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Figure 5. Receptive field, gain field, and saccade field of a
single hidden unit trained to a monotonic output. (a) The
response to the visual input was tested at 17 positions
within an 80-deg diameter area with the eye-position sig-
nal always kept at straight-ahead fixation (0,0). Each sam-
ple location’s response is represented by a shaded circle
with the darker shading representing a more vigorous re-
sponse. This method was chosen because it mimics the
methods used to map visual receptive fields of area 7a
neurons in previous physiological experiments (Ander-
sen et al. 1985, Andersen & Zipser 1988). (b) The gain
field was mapped by presenting a visual stimulus at the
same retinal location, in the most responsive area of the
receptive field, at nine different eye positions. Each set
of circles represents the response at a particular eye posi-
tion; eye positions were spaced by 20 deg in a 3 X 3 array
with the central eye position at location (0,0). This proto-
col mimics the one used to map gain fields in the animal
recording experiments (Andersen et al. 1985; Andersen &
Zipser 1988). The inner, dark circle of each set has a di-
ameter proportional to the activity generated by the visual
input and the annulus diameter is proportional to the eye
position contribution to activity. (c) The saccade field for
this unit was generated in the same way as in the previous
figures (Figures 2, 3, and 4). Note that the receptive field,
gain field, and saccade response all have approximately
the same best direction.
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Figure 6. (a) Plot comparing the direction of the gain
fields and receptive fields for all of hidden units. The
best direction of the gain field was determined by the gra-
dient of the planar gain field and was calculated as the
inverse tangent of the ratio of the vertical and horizontal
slopes. The receptive-field best direction was the direc-
tion of the vector calculated by averaging the set of vec-
tors defined by the location of the visual target from the
fixation point and weighted by the firing rate. (b) Plot
comparing the best directions of the receptive fields and
saccade responses. The saccade best direction was the av-
erage of all saccades produced at different eye positions.
The two plots indicate that, as a rule, the receptive, sac-
cade, and gain fields all had similar best directions for
hidden units of the monotonic-output model.

fields. All gain fields in the model exhibited this planar
behavior, as do most gain fields recorded from cells in
areas 7a and LIP (Andersen et al. 1985, 1988). The simi-
larity of best directions for the gain fields and the motor
and receptive fields was a general finding for all mono-
tonic format trained hidden units (Figure 6b).

The properties of the hidden unit gain fields and motor
fields account for the effects of eye position on the sac-
cade responses. Generally the eye-position-related activ-
ity of a unit increased in the direction of the gain field
(see Figure 6b). As the eye-position activity increased,
the unit became more saturated and the stimulation pro-
duced smaller saccades. The similarity in best directions
accounts for the decrease in amplitude generally occur-
ring for eye positions in the direction of the eye move-
ment (compare parts b and ¢ of Figure 5). The con-
verging changes in direction occur when the horizontal
or vertical components of the eye position saturate the
response asymmetrically at the output.

The examination of the hidden-unit responses shows
that they are already producing a partial solution for spa-
tial location in the middle layer. For instance, the unit
in Figure 5 will respond best if a stimulus appears in the
lower-left visual field or if the eyes are pointed down and
to the left; that is, this hidden unit is generally responding
to locations down and left in head-centered coordinates.
As Figure 6a indicates, all of the hidden units show this
similarity in receptive-field and gain-field directions.

It is also interesting to note that the receptive fields
often appear planar in the middle layer (for example,
Figure 5a). The network and the nervous system are pre-
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Figure 7. Saccades from a gaussian-output network that
appear to converge in some parts of the field. (a) The
saccades for this hidden unit converge in the upper-left
corner for some eye positions, but not for others. (b) The
saccades in this example converge along the horizontal
axis when eye positions are located up, but the eye does
not move with stimulation when the eye position is down.

sented with a format problem at the input of combining
eye-position signals, which are largely linear, with visual
receptive fields, which are largely gaussian. One solu-
tion would be to linearize the receptive fields by weight-
ing their convergence at the input to the hidden units
and then add the planar receptive field to a planar eye-
position input sloped in the same direction. Although the
model, and the brain itself, do have features of this solu-
tion, there are two major exceptions; the receptive fields
are often peaked (Zipser & Andersen 1988; Andersen &
Zipser 1988) and, more importantly, the gain fields gen-
erally demonstrate strong nonlinear (often multiplicative)
interactions between the eye position and retinal position
signals. These nonlinearities are due, in the model, to the
nonlinear nature of the sigmoidal logistic function used
to compute the outputs of the units. The similar non-
linear interactions arising from parietal neurons raise the
possibility that they also have a sigmoidal input-output
transfer function.

The Gaussian-Format Network
Unlike the linear output model, the networks trained to
output gaussian arrays showed no consistent patterns of
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‘Figure 8. Gaussian-output networks for saccades that do
not appear to converge.
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saccades (Table 1). A few (4 out of 24) looked extremely
goal-directed, at least if only a portion of possible eye
positions were examined, as in the upper left-hand part
of Figure 7a. From other eye positions, however, the
same unit produced saccades going in an entirely differ-
ent direction. Saccades resulting from stimulating 5 of the
24 units went outward from central areas or lines (e.g.,
Figure 8a); another 5 produced small movements with
no discernable pattern at all (Figure 8b). Nine of the 24
hidden units in these two networks produced saccade
patterns like that shown in Figure 7b, with saccades go-
ing to one side. Even these patterns, which most closely
resembled the patterns produced by the monotonic net-
works, were much less consistent in direction.

The directions of the saccades were nearly constant
in the monotonic networks. Stimulating gaussian-output
networks, by contrast, produced saccades going almost
every direction, but this variation was never consistent
as a function of position or magnitude. The magnitude
of saccades was a very clear and usually linear function
of starting position in the monotonic output networks.
In the case of the gaussian output, position sometimes
seems to have imposed a limit on how far saccades could
go, but there are often small saccades among the longer
ones. The gaussian output format, then, did not predict
the usual stimulation-induced saccade behavior seen in
the brain.

Discussion

The results of this study show that stimulation of a net-
work that contains a distributed representation for con-
verting retinal coordinates to head-centered coordinates
in a linear output format produces similar eye-position-
dependent saccade behavior to that recorded in brain
stimulation experiments. It is interesting to note that stim-
ulation of some of the units produced “fixed vector” be-
havior, a pattern that has normally been considered to be
consistent only with a retinal coordinate representation.
The convergent saccade patterns did not reverse direc-
tion, similar to the experimental data. In fact, stimulation
of single elements never produced movements to a sin-
gle location in head-centered space. Such goal-directed
patterns were not found because the network units spec-
ify location in space in a distributed manner, rather than
explicitly at a single-unit level.

It should be emphasized that our network is not in-
tended to be an exhaustive model for a single brain re-
gion. Rather, it shows one way that groups of neurons
could process coordinate transformations for visually di-
rected saccades. These simulations show how single cells
would behave in such a distributed system, and in fact,
the network predicts planar gain fields, overlap of mo-
tor and sensory fields, and the microstimulation behav-
ior that has been observed in neurophysiological exper-
iments. Since the network is a mathematical abstraction,
it does not necessarily specify a single area of the brain.
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The fact that microstimulation and recording data con-
sistent with this model have been found in several brain
regions suggests that this algorithm for coordinate trans-
formation may be used in several neural systems, or alter-
nately, that a single system involved in coordinate trans-
formation for saccades may be comprised of more than
one brain region. An interesting observation relating to
the latter possibility is that similar receptive fields and
gain fields are found in networks using more than one
layer of hidden units. In order to make it tractable, this
model is limited in scope. For instance, it addresses the
kinematic, but not dynamic, aspects of saccade genera-
tion. Further work will lead to modification and elabo-
ration of the model.

In this study we have been concerned with properties
of the final, trained network rather than with the learning
procedure that generated the network. The backprop-
agation learning technique we used is not biologically
plausible without modification since it requires that infor-
mation travel rapidly backward down axons and across
synapses and it requires specific error signals at every
synapse. Recently we have found that a more biologi-
cally plausible reinforcement learning rule (Barto & Jor-
dan 1987), which does not require backward transmis-
sion and uses a more global error signal, produces similar
results when applied to our network (Mazzoni, Ander-
sen, & Jordan, personal communication). These results
suggest that the same algorithm for coordinate transfor-
mation will develop independent of the exact learning
rule used for training. Supporting this conjecture is our
preliminary mathematical analysis, which suggests that
the algorithm is largely constrained by the architecture
of the network and the problem it solves. Any learning
rule that converges on a solution would therefore gener-
ate the same algorithm, resulting in similar receptive field
properties and microstimulation behavior.

The distributed coding has interesting implications for
the recording data. To date, representation of location
in head-centered space independent of eye position has
never been shown to exist explicitly at a single-cell level
anywhere in the nervous system. Rather, eye-position
signals appear to interact with retinal-position signals

. with the eye-position signal often gating or modifying

the response of the retinal receptive field. These nonlin-
ear interactions of eye- and retinal-position signals in-the
brain are very similar to those produced in the network
middle layers (Zipser & Andersen 1988). The summed
output of the network does code explicitly the locations
in head-centered coordinates. In the monotonic network,
the output representation is a frequency of firing code
for the extraocular muscles. Of course, these signals
are found in motor neurons projecting to the eye mus-
cles. Thus, in this model, the only explicit representation
of head-centered coordinates is the behavior of making
the eye movement to the appropriate location in head-
centered space. The representation »f location in space
is a product of the entire network, and any single element
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of the network contains only a portion of the coded infor-
mation. A similar highly distributed representation may
also be found in the brain and would account for the
fact that individual cells coding head-centered location
independent of eye position have never been found.

The gaussian output representation may be considered
a representation appropriate for perception of spatial lo-
cation rather than movement to a spatial location. Sen-
sory areas generally code in receptive field formats like
the gaussian format, whereas motor areas code in a fre-
quency of firing format like the linear format. However,
both formats may exist in a single area. For example,
Zipser and Andersen (1988) demonstrated two general
types of gain fields in their network model of area 7a.
Although both the monotonic and gaussian outputs pro-
duced both types of gain field, the gain fields where the
eye position and visual responses covaried were found
largely for the monotonic output, whereas the gaussian
output model produced largely noncovarying gain fields.
Since both types of gain fields are recorded from area 7a
(Andersen et al. 1985; Andersen & Zipser 1988; Zipser
& Andersen 1988), these experiments suggest that both
representations may exist in area 7a.

Generally two types of saccadic patterns have been re-
ported for stimulation of different brain centers. Stimula-
tion of the frontal eye fields and the foveal and parafoveal
representations of the superior colliculus has been re-
ported to produce only fixed vector saccades in the mon-
key (Robinson & Fuchs 1969; Robinson 1972; Schiller
& Stryker 1972). On the other hand, stimulation stud-
ies of the supplementary motor field (Schlag & Schlag-
Rey 1987; Mann et al. 1988), posterior parietal cortex
(Shibutani et al. 1984), cerebellum (Noda et al. 1988),
and peripheral field representation of the superior col-
liculus (Seagraves & Goldberg 1984) in the monkey and
visual striate cortex (Mcllwain 1988), cerebellum (Oht-
suka et al. 1987), and superior colliculus (Roucoux &
Crommelinck 1976; Guitton et al. 1980; Roucoux et al,
1980; Mcllwain 1986) in the cat report eye-position ef-
fects including convergence and amplitude change. An
important question is why some areas of the brain, those
exhibiting “fixed vector” behavior, would code saccades
in retinal coordinates while other areas would code them
in head-centered coordinates. The largely fixed-vector
saccades produced by our model with a head-centered
coordinate system suggest this pattern of saccades does
not necessarily indicate a retinal coordinate representa-
tion.

Interestingly, stimulation of the peripheral field repre-
sentation of the superior colliculus in both the cat and
the monkey produces converging and amplitude-change
saccade patterns. It has been proposed that the more
peripheral locations are coding in head-centered coordi-
nates because at these more peripheral locations the ani-
mals produce combined eye and head movements either
to electrical stimulation or to natural conditions in the en-
vironment (Roucoux & Crommelinck 1976; Guitton et al.
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1980; Roucoux et al. 1980). The eye-movement patterns
produced by stimulation of the foveal and parafoveal rep-
resentations of the superior colliculus do produce some
convergence and amplitude change. However, these
eye-position effects are only seen at more peripheral eye
positions and are usually interpreted as resulting from the
mechanical restraints occurring as the eyes approach the
limits of the oculomotor range. It is assumed that orbital
effects are compensated for at locations in the brainstem
closer to the oculomotor nuclei.

If the superior colliculus is coding in retinal coordi-
nates, why does its stimulation not also invoke the mech-
anisms correcting for orbital position to produce true
fixed-vector movements? One possibility is that the eye-
position corrections are made by a parallel pathway. An-
other interesting possibility is that the colliculus is coding
in head-centered coordinates. Examination of the eye-
movement traces of Robinson (1972) shows very similar
patterns to those evoked by stimulation of single hidden
units. Perhaps the more eye-position-dependent areas of
the brain are using the same code as in the colliculus, but
in a more complex local circuitry. Thus, stimulation of
these areas would evoke eye movements similar to those
produced by simultaneously stimulating two or more hid-
den units in the model, that is, movements that are more
convergent and appear more head-centered.

Stimulation of single units in this neural network model
did not produce classical head-centered movements, be-
cause the model represents spatial locations in a popu-
lation of units rather than explicitly at the level of single
units. In this distributed representation, no single unit
responds directly to head-centered spatial location, al-
though the network output is in absolute head-centered
coordinates. This model, when trained with a monotonic
output, produces patterns of “saccades” resembling those
seen in stimulation studies of several parts of the brain.
Examination of the network suggests some mechanisms
that may be used by the brain for computing positions in
head-centered coordinates.
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