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Brain–machine interfaces are being developed to assist

paralyzed patients by enabling them to operate machines

with recordings of their own neural activity. Recent studies

show that motor parameters, such as hand trajectory, and

cognitive parameters, such as the goal and predicted value of

an action, can be decoded from the recorded activity to

provide control signals. Neural prosthetics that use

simultaneously a variety of cognitive and motor signals can

maximize the ability of patients to communicate and interact

with the outside world. Although most studies have recorded

electroencephalograms or spike activity, recent research

shows that local field potentials (LFPs) offer a promising

additional signal. The decode performances of LFPs and

spike signals are comparable and, because LFP recordings

are more long lasting, they might help to increase the lifetime

of the prosthetics.
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Introduction
Brain–machine interfaces, which connect brain tissue to

machines, have many applications in medicine. These

interfaces are bidirectional: they can ‘write-in’ signals to

the brain, typically through electrical stimulation, or

‘readout’ signals by recording neural activity. Examples

of great successes with ‘write-in’ devices have been

cochlear prosthetics [1,2] for deaf patients and deep-brain

stimulation [3] for Parkinson’s disease patients.

Recently, there has been considerable progress in design-

ing ‘readout’ prosthetics to assist paralyzed patients.
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Because patients can often still think about moving the

goal is to record these movement intentions, interpret

them and use them for the control of external devices.

Researchers have demonstrated that monkeys can control

the trajectory of cursors on a computer screen without the

animals making any movements [4,5��,6]. Signals related

to desired grip force have also been decoded and used to

control the size of a cursor [5��]. One-dimensional cursor

movements have been accomplished using spike activity

recorded from a paralyzed human [7]. These recordings

have been made largely, but not exclusively, from the

motor cortex, a part of the brain that normally encodes

parameters of limb movements.

These experiments raise the natural question of what

other signals can be decoded from the brain and used for

neural prosthetic applications. Two high-level cognitive

signals have recently been shown to be viable for pros-

thetic control [8��]. These brain signals specify the goal of

an intended movement and the value of the reward the

subject expects to receive for successfully completing a

task. The goal signals can be used to operate external

devices such as a computer, robot or vehicle and the

expected value signal can be used continuously to moni-

tor a patient’s preferences, motivation and mood. Because

expected value signals are important for forming deci-

sions, they might also be used to augment decodes of the

decisions of patients. Moreover, these results suggest that

a large number of high-level cognitive signals, from

emotions to speech, can be decoded from different parts

of the brain to increase the ability of paralyzed patients to

communicate and interact with the outside world.

A second new direction concerns the nature of the elec-

trical signals recorded from the brain for prosthetic appli-

cations. Until now, the electroencephalogram (EEG) [9]

or recorded action potentials from single neurons have

been used [10�]. A third type of signal, the local field

potential (LFP), is now showing considerable promise

[11,12�,13]. Although the precise source of LFP activity is

not well understood, this signal is predominantly gener-

ated by excitatory synaptic potentials in the vicinity of the

electrode tip [14,15]. It has several advantages, similar to

EEG, it is easy to record and robust over time, and similar

to single-cell recordings, it provides highly specific

information.

Goal
One major pathway for visually guided movements

begins in the visual cortex and proceeds to the posterior

parietal cortex [16] and then to motor areas in the frontal

lobe [17]. Within the posterior parietal cortex, there is an
Current Opinion in Neurobiology 2004, 14:1–7
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anatomical specialization for function. The lateral intra-

parietal (LIP) area is specialized for saccadic eye move-

ments [18], the parietal reach region (PRR) for reach [19]

and the anterior intraparietal area for grasp [20].

Activity in PRR indicates the goal of a reach in visual

(eye) coordinates [21]. Thus, it codes reach plans in a

high-level, cognitive fashion. For example, PRR neural

activity codes the intention to reach to an object at a

particular location in space, whereas motor cortex codes

the direction to move the hand. The apparent homolog of

PRR has been determined in humans using functional

magnetic resonance imaging [22,23]. One of the frontal-

lobe projection targets of PRR, the dorsal premotor cortex

(PMd), also appears to contain a subset of cells that code

reaches in this more cognitive form [24–26,27��].

Recent experiments recording simultaneously from an

ensemble of neurons have demonstrated that the goals of

a reach can be decoded in brain control experiments from

monkey PRR and PMd [8��]. This recorded activity is

interpreted with a computer algorithm and used to posi-

tion a cursor on a computer screen without the animals

making any reach movements. This form of prosthetic

can operate very quickly; goals can be decoded with

relatively good accuracy in just 100 ms. This approach

also requires relatively few neurons [8��,28]. Figure 1

(left-hand panel) shows the cumulative success using

eight target locations and the activity of 16 PMd neurons.

The right-hand panel of Figure 1 shows an offline ana-

lysis, using the same data, where different numbers of

cells are used. Not surprisingly, the more cells recorded,

the better the decode but good performance is achieved
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even with a small number of cells. Although the cells in

PRR code goals in retinal coordinates, early data suggest

that eye movements do not adversely affect the decodes

[8��]. This could be the result of a combination of factors:

PRR activity compensates for eye movements [29], PRR

neurons carry eye position information [30] and eye–hand

coordination is highly stereotyped [31].

Expected value
Several brain areas represent the expected value of

reward [32��,33,34]. This activity is thought to be a

central element for decision making; we choose the

course of action that we expect will have the best out-

come. Recent experiments have shown that expected

value signals for fluid preference (Figure 2a,b), probabil-

ity of reward (Figure 2c) and magnitude of reward

(Figure 2d) can be determined from the activity of

PRR neurons [8��]. The animals were informed at the

beginning of each trial whether to expect a preferred (e.g.

orange juice) or nonpreferred (e.g. water) reward. When

the more valued reward was expected, the neurons had

improved spatial tuning. As a result, the online decodes

for goals improved when the monkeys expected a pre-

ferred reward (Figure 2e). Moreover, offline decodes

showed that both the target location and the expected

reward could be simultaneously decoded. These results

show that more than one cognitive variable can be read

out from the same population of neurons at the same

time. Whether these signals code expected value per se or

motivation that is a consequence of expected value, is an

interesting question for future research [35]. However,

from a prosthetics perspective, either signal will be very

useful.
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Expected value. (a) Response of a neuron during brain control trials, when the type of reward the monkeys expected to receive after completion

of a successful trial was varied; orange juice (black) versus water (red) and (b) its tuning curve. Monkeys were instructed to form reach intention

to a previously cued location. The direction of the intended reaches that elicited the responses is included in the subparts of the figure.

Rasters are aligned to the onset of the memory period. Vertical lines superimposed on the figures enclose the 900 ms memory segment used to

calculate the tuning curves. (c,d) Tuning curves calculated from the firing rates of two additional cells while the (c) probability and (d) magnitude of

reward was varied. (e) Brain control results from one session during preferred (black) and nonpreferred (red) reward conditions. The dashed line

represents chance. Decode performance for the two reward conditions is indicated on the plot. Reproduced with permission from [8��].

www.sciencedirect.com Current Opinion in Neurobiology 2004, 14:1–7



4 Motor systems
Local field potentials
A second new direction concerns the electrical signals

that are recorded. Prosthetic applications have tradition-

ally used EEGs [9], which are brain waves recorded from

the scalp, and single-cell activity recorded with micro-

electrodes [10]. The advantage of the EEG signal is that it

is robust over time and is recorded noninvasively. A

disadvantage is that it comprises signals summed over

centimeters of brain and thus has limited specificity.

Microelectrode recordings have spectacular specificity,

recording the activity of one or a small number of neurons.

However, this technique is invasive, requiring the inser-

tion of the microelectrodes into the cortex. Another draw-

back of this technique is that the recorded signal degrades

with time, in part owing to the formation of scar tissue

around the electrode tips [36]. Nonetheless, advances in

electrode design are showing promising results in extend-

ing single-cell recording time [37–39].

The EEG and single-cell recordings sum activity over

areas of very different scale: centimeters for the EEG and

microns for cell recording. The LFP lies between these

two scales of sampled activity. This signal comprises the

activity of hundreds or thousands of cells around an

electrode tip inserted into the cortex or placed on the

cortical surface. Thus, like single-cell recordings, it is

invasive; however, it degrades less over time because the

‘listening sphere’ for LFPs is large, and as a result is less

affected by local scarring. It was generally believed that,

like EEGs, the LFP signal lacks specificity because it is a

sum of the activity of many neurons. However, recent

research has indicated that, using signal-processing
Figure 3
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methods, a good deal of information can be decoded from

LFPs, and thus these signals can be used to augment the

usable lifetimes of microelectrode implants.

LFP recordings from LIP, a region in the posterior

parietal cortex involved with planning eye movements,

carry information about both the direction of a planned

saccade and whether the monkey is in the state of

planning or executing a saccade [11]. The direction

information was carried by differences in the power

in a higher frequency band (30–100 Hz) and the state

of the animal in the lower frequency band (0–20 Hz).

Spikes were recorded at the same sites as the LFPs. A

comparison of single-trial decodes at individual recording

sites showed that both LFPs and spikes could determine

the direction of planned saccades in the preferred and

nonpreferred directions, and with the same success rate

(Figure 3a). Interestingly, the transition from planning to

executing a saccade could be simply decoded with LFPs

but not with spikes (Figure 3b). The direction tuning in

the higher frequencies (gamma band) might result from

the columnar organization for eye movement direction in

LIP [40].

PRR also carries information in the LFPs about the

direction of planned reaches and five behavioral states,

including baseline, planning a saccade, planning a reach,

executing a saccade and executing a reach [41]. Direction

decodes for eight directions were achieved for both spikes

and LFPs, with spike decodes performing slightly better.

States were decoded with spikes and LFPs, and in this

case LFPs were superior. Decodes for the direction of
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reach movements from LFPs have also been made from

the motor cortex of monkeys [12�] and humans [13,42].

Conclusions
A goal of neural prosthetic research is to design a system

that can decode several control signals. Among the control

signals that have been demonstrated so far are motor

parameters of desired trajectory [4,5��,6] and grip force

[5��,43] and high-level cognitive variables of goals and

expected value [8��]. Similar approaches could in princi-

ple be extended to speech, emotions and, in fact, any

number of cognitive variables.

Although it would be ideal to decode a large number of

cognitive signals, it is not yet clear which cortical areas, or

how many areas, need to be implanted to achieve this

goal. The same signals often exist in more than one area;

for example, goal signals can be extracted from the PRR

and PMd [8��], and movement trajectories from motor,

premotor and the parietal cortex [5��,44]. However, some

areas appear to be better than others for a particular

function [5��,27��]. More than one signal can be decoded

simultaneously from an area; examples are goal and

expected value from the PRR [8��] and trajectory and

grip force from the motor cortex [5��]. The animals also

learn to improve their performance in brain control tasks

over a period of weeks [5��,6,8��,45]. This plasticity

suggests that a cortical area can be trained to perform

more than one function.

The above considerations suggest that not many areas are

needed. However, neural network simulations indicate

that the more tasks a single network is trained on, the

more poorly it performs, especially if the tasks are com-

putationally, fundamentally different [46]. Such an obser-

vation would argue for sampling several areas — ideally

those that are naturally designed for processing the

desired cognitive variables. Another potential advantage

of a multi-area approach is to increase the number of

channels for communication. For example, a subject

could use a cursor and letter board to spell out words.

However, electrodes within speech areas would in prin-

ciple enable the direct decoding of speech without the

need for a cumbersome letter board. Likewise, the

patient could use the cursor to answer questions about

emotional state, something that healthy subjects continu-

ously convey by body language and voice inflections.

Again, a direct readout from emotion centers would

provide for continuous communication of emotional state.

Moreover, in both of these examples the motor cortex

would then be freed to perform other tasks concurrently.

Thus, it would be desirable to use more than one cortical

area to increase the ability of patients to communicate and

manipulate the outside world.

LFPs can extend the lifetime of implants. They can

provide almost as much information as spikes for some
www.sciencedirect.com
parameters, and are even better for others [11,12�]. Using

LFPs in the posterior parietal cortex produces a better

decode performance for action planning and execution

states. Similar improvement might be found for decoding

attentional state because attention-driven changes in

LFPs have been observed with negligible changes in

spike rate [47].

Why do decodes using LFPs sometimes outperform those

using spikes? One possibility is that LFPs represent an

average of activity of many neurons, and as such are less

noisy. This is likely to be the case when the recording

electrode is within a cortical column formed by cells with

similar response properties. Another possibility is that

LFPs and spikes might carry somewhat different infor-

mation. For example, recorded spiking activity is biased

toward the activity of larger cells, which are more likely to

have connections with other brain areas, whereas LFPs

are generated by local synaptic activity [14,15]. There-

fore, spikes might largely represent the outputs of an area

and LFPs might largely reflect the inputs to an area and

local processing within an area.

Thus, two categories of signals seem ripe for future

progress in the development of neural prosthetics. Signals

conveying different cognitive functions are a rich source

of multiple channels for communication. It will be parti-

cularly important to see what cognitive signals can be

conveyed by human paralyzed patients using cortical

prosthetics. LFPs have the potential to prolong the life-

time of electrode implants and, in some cases, particularly

those related to cognitive states, they can improve the

decode performance. In other cases, they can provide a

second source of signal, which, when combined with

spikes, can achieve more robust decodes.

Acknowledgements
We thank K Pejsa, L Martel, V Shcherbatyuk and T Yao for the support
that has made this work possible, and H Scherberger, B Corneil,
B Greger, J Burdick, I Fineman, D Meeker, D Rizzuto, G Mulliken,
R Battacharyya H Glidden, M Nelson and K Bernheim for stimulating
discussion. We thank the National Eye Institute, the Defense
Advanced Research Projects Agency, the James G. Boswell
Foundation, the Office of Naval Research, the Sloan-Swartz Center
for Theoretical Neurobiology at Caltech, the Christopher Reeve
Paralysis Foundation and the Burroughs–Welcome Fund for their
generous support.

References and recommended reading
Papers of particular interest, published within the annual period of
review, have been highlighted as:

� of special interest
�� of outstanding interest

1. Loeb GE: Cochlear prosthetics. Annu Rev Neurosci 1990,
13:357-371.

2. Merzenich MM: Coding of sound in a cochlear prosthesis:
some theoretical and practical considerations. Ann N Y
Acad Sci 1983, 405:502-508.

3. Follett KA: The surgical treatment of Parkinson’s disease.
Annu Rev Med 2000, 51:135-147.
Current Opinion in Neurobiology 2004, 14:1–7



6 Motor systems
4. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR,
Donoghue JP: Instant neural control of a movement signal.
Nature 2002, 416:141-142.

5.
��

Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM,
Dimitrov D, Patil PG, Henriquez CS, Nicolelis MA: Learning to
control a brain–machine interface for reaching and grasping
by primates. PLoS Biol 2003, 1:E42.

This study provided the first demonstration of simultaneous decoding of
grasp and trajectory. Using a joystick, monkeys implanted with multi-
electrode arrays were trained to move a small dot toward a target on a
computer screen. Once the target was reached, monkeys were expected
to squeeze the lever to adjust the size of the dot to match the size of the
target. The authors then removed the lever and the monkeys were still
able to perform the task using brain control with considerable success.

6. Taylor DM, Tillery SI, Schwartz AB: Direct cortical control of 3D
neuroprosthetic devices. Science 2002, 296:1829-1832.

7. Kennedy PR, Bakay RA: Restoration of neural output from a
paralyzed patient by a direct brain connection. Neuroreport
1998, 9:1707-1711.

8.
��

Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA:
Cognitive control signals for neural prosthetics. Science 2004,
305:258-262.

This study provided the first demonstration of the feasibility of utilizing
high-level cognitive signals from the parietal and premotor cortex for
driving a neural prosthetic. Using neural activity during the brain control
trials, the investigators were able to decode the intended goals of three
monkeys. The investigators were also able to decode the expected value
of the reward and showed that increasing the reward can improve the
decoding of the goals.

9. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G,
Vaughan TM: Brain–computer interfaces for communication
and control. Clin Neurophysiol 2002, 113:767-791.

10.
�

Mussa-Ivaldi FA, Miller LE: Brain–machine interfaces:
computational demands and clinical needs meet basic
neuroscience. Trends Neurosci 2003, 26:329-334.

The authors provide a review of the current status and techniques used to
build a brain–machine interface. They also review attempts to induce
controlled plastic changes in the brain, and stress the importance of
feedback and plasticity for the successful construction of a brain–
computer interface.

11. Pesaran B, Pezaris J, Sahani M, Mitra PM, Andersen RA:
Temporal structure in neuronal activity during working
memory in macaque parietal cortex. Nat Neurosci 2002,
5:805-811.

12.
�

Mehring C, Rickert J, Vaadia E, Cardosa de Oliveira S, Aertsen A,
Rotter S: Inference of hand movements from local field
potentials in monkey motor cortex. Nat Neurosci 2003,
6:1253-1254.

The authors provide additional evidence (see Pesaran [11]) for the
usefulness of LFPs for neural prosthetic applications. They show that
hand movement position and velocity can be decoded from the motor
cortex using LFPs with similar accuracy to spikes. However, the best
decode result was obtained by combining LFPs with spikes.

13. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW:
A brain–computer interface using electrocorticographic
signals in humans. J Neural Eng 2004, 1:63.

14. Mitzdorf U: Current source-density method and application in
cat cerebral cortex: investigation of evoked potentials and
EEG phenomena. Physiol Rev 1985, 65:37-100.

15. Logothetis NK: The neural basis of the blood-oxygen-level-
dependent functional magnetic resonance imaging signal.
Philos Trans R Soc Lond B Biol Sci 2002, 357:1003-1037.

16. Blatt G, Andersen RA, Stoner G: Visual receptive field
organization and cortico-cortical connections of area LIP in
the macaque. J Comp Neurol 1990, 299:421-445.

17. Johnson PB, Ferraina S, Bianchi L, Caminiti R: Cortical networks
for visual reaching: physiological and anatomical organization
of frontal and parietal lobe arm regions. Cereb Cortex 1996,
6:102-119.

18. Gnadt JW, Andersen RA: Memory related motor planning
activity in posterior parietal cortex of macaque. Exp Brain Res
1988, 70:216-220.
Current Opinion in Neurobiology 2004, 14:1–7
19. Snyder LH, Batista AP, Andersen RA: Coding of intention in the
posterior parietal cortex. Nature 1997, 386:167-170.

20. Sakata H, Taira M, Murata A, Mine S: Neural mechanisms of
visual guidance of hand action in the parietal cortex of the
monkey. Cereb Cortex 1995, 5:429-438.

21. Batista AP, Buneo CA, Snyder LH, Andersen RA: Reach plans in
eye-centered coordinates. Science 1999, 285:257-260.

22. Connolly JD, Andersen RA, Goodale MA: FMRI evidence for a
‘parietal reach region’ in the human brain. Exp Brain Res 2003,
153:140-145.

23. Medendorp WP, Goltz HC, Vilis T, Crawford JD: Gaze-centered
updating of visual space in human parietal cortex.
J Neurosci 2003, 23:6209-6214.

24. Crammond DJ, Kalaska JF: Modulation of preparatory neuronal
activity in dorsal premotor cortex due to stimulus-response
compatibility. J Neurophysiol 1994, 71:1281-1284.

25. Boussaoud D, Bremmer F: Gaze effects in the cerebral cortex:
reference frames for space coding and action. Exp Brain Res
1999, 128:170-180.

26. Kakei S, Hoffman DS, Strick PL: Sensorimotor transformations
in cortical motor areas. Neurosci Res 2003, 46:1-10.

27.
��

Hatsopoulos N, Joshi J, O’Leary JG: Decoding continuous and
discrete motor behaviors using motor and premotor cortical
ensembles. J Neurophysiol 2004, 92:1165-1174.

This study compared decodes using activity from simultaneous record-
ings in the primary motor cortex (M1) and PMd. A functional difference
was found between the two areas, with M1 predicting continuous move-
ment trajectories more effectively than the PMd, and PMd predicting
discrete movement goals more effectively than M1. This distinction
supports a hierarchical view of motor control which will be useful for
designing a brain–machine interface using activity from multiple cortical
areas.

28. Shenoy KV, Meeker D, Cao SY, Kureshi SA, Pesaran B, Buneo CA,
Batista AP, Mitra PP, Burdick JW, Andersen RA: Neural
prosthetic control signals from plan activity. Neuroreport 2003,
14:591-596.

29. Batista AP, Andersen RA: The parietal reach region codes the
next planned movement in a sequential reach task.
J Neurophysiol 2001, 85:539-544.

30. Cohen YE, Batista AP, Andersen RA: Comparison of neural
activity preceding reaches to auditory and visual stimuli in the
parietal reach region. Neuroreport 2002, 13:891-894.

31. Carey DP: Eye–hand coordination: eye to hand or hand to eye?
Curr Biol 2000, 10:R416-R419.

32.
��

Schultz W: Neural coding of basic reward terms of animal
learning theory, game theory, microeconomics and
behavioural ecology. Curr Opin Neurobiol 2004, 14:139-147.

This review is a survey of the cortical and subcortical brain structures
whose neurons represent reward-related information. The author pro-
poses that dopaminergic neurons in subcortical structures detect
rewards and pass this information on to cortical structures, such as
the prefrontal and possibly parietal cortex, to guide decision making.
Ideas about the coding of reward are placed in a wider psychological and
economic context.

33. Platt ML, Glimcher PW: Neural correlates of decision variables
in parietal cortex. Nature 1999, 400:233-238.

34. Sugrue LP, Corrado GS, Newsome WT: Matching behavior and
the representation of value in the parietal cortex. Science 2004,
304:1782-1787.

35. Roesch MR, Olson CR: Neuronal activity related to reward value
and motivation in primate frontal cortex. Science 2004,
304:307-310.

36. Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M,
Craighead HG, Turner JN, Shain W: Brain responses to
micro-machined silicon devices. Brain Res 2003, 983:23-35.

37. Vetter RJ, Williams JC, Hetke JF, Nunamaker EA, Kipke DR:
Chronic neural recording using silicon-substrate
microelectrode arrays implanted in cerebral cortex. IEEE Trans
Biomed Eng 2004, 51:896-904.
www.sciencedirect.com



Selecting the signals for a brain–machine interface Andersen, Musallam and Pesaran 7
38. Kennedy PR: The cone electrode: a long-term electrode that
records from neurites grown onto its recording surface.
J Neurosci Methods 1989, 29:181-193.

39. Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD,
Wise SP: Chronic, multisite, multielectrode recordings in
macaque monkeys. Proc Natl Acad Sci USA 2003,
100:11041-11046.

40. Pezaris JS, Sahani M, Andersen RA: Extracellular recording from
multiple neighboring cells: response properties in parietal
cortex. In Computational Neuroscience: Trends in Research.
Edited by Bower JM. New York: Plenum Press; 1998.

41. Scherberger H, Buneo CA, Jarvis M, Andersen RA: Local field
potential tuning in the macaque posterior parietal cortex
during arm-reaching movements. Soc Neurosci Abstr 2003.
279.16.

42. Kennedy P, Andreasen D, Ehirim P, King B, Kirby T, Mao H,
Moore M: Using human extra-cortical local field potentials to
control a switch. J Neural Eng 2004, 1:72-77.
www.sciencedirect.com
43. Patil PG, Carmena JM, Nicolelis MA, Turner DA: Ensemble
recordings of human subcortical neurons as a source of
motor control signals for a brain–machine interface.
Neurosurgery 2004, 55:27-35; discussion 35-38.

44. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M,
Chapin JK, Kim J, Biggs J, Srinivasan MA, Nicolelis MAL:
Real-time prediction of hand trajectory by ensembles
of cortical neurons in primates. Nature 2000,
408:361-365.

45. Fetz EE: Operant conditioning of cortical unit activity.
Science 1969, 163:955-958.

46. Kosslyn SM, Chabris CF, Marsolek CJ, Koenig O: Categorical
versus coordinate spatial relations: computational analyses
and computer simulations. J Exp Psychol Hum
Percept Perform 1992, 18:562-577.

47. Fries P, Reynolds JH, Rorie AE, Desimone R: Modulation of
oscillatory neuronal synchronization by selective visual
attention. Science 2001, 291:1560-1563.
Current Opinion in Neurobiology 2004, 14:1–7


	Selecting the signals for a brain-machine interface
	Introduction
	Goal
	Expected value
	Local field potentials
	Conclusions
	Acknowledgements
	References and recommended reading


