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ZIPSER, D. AND R. A. ANDERSEN. The role of the teacher in learning-based models of parietal area 7a. BRAIN RES
BULL 21(3) 505-512, 1988.—The back-propagation learning procedure can be used to train simulated neural networks to
compute arbitrary functions. We have recently shown that when such a network is trained to carry out the transformation
of stimulus location to head-centered coordinates that occurs in parietal area 7a, the response properties of certain units in
the network closely resemble neurons found in area 7a. The back-propagation procedure requires the use of a teacher. Here
we examine the effect of using different kinds of teachers. As long as the teacher represents information about stimulus
location in head-centered coordinates, the trained network contains units of the kind found in area 7a. Differences in
teacher format only effect the quantitative distribution of the different unit types. When the teacher does not represent
stimulus location explicitly, the network does not contain units of the required kind.

Parietal area 7a Back propagation Neural models

ONE of the main theoretical problems facing neurobiology is
to explain how the brain carries out computations. For
example, to determine such a simple thing as the head-
centered location of a seen object, information about its
position on the retina must be extracted from the retinal
images and then combined with information about the direc-
tion in which the eyes are pointing. In the past theorists have
often tried to develop specific neural networks to cary out
each computation like this. Unfortunately, even a single
computation can be implemented by an unlimited number of
different networks, and even with specifically designed net-
works it has been exceedingly difficult to account for the
actual neural firing patterns observed experimentally.

We have recently described a new approach to the prob-
lem of specifying how neural networks in the brain carry out
computation (16). Our approach is based on the use of a
neural network training procedure, called *‘back propaga-
tion,”” which can train simple model networks to compute a
wide range of functions (12). Training a computer-simulated
model of a neural network using back propagation requires
knowledge of the correct output to associate with each input
to the network, but it is not necessary to specifically tailor
the network to do the computation because the learning
process will discover an implementation. The source of the
correct output values to use for training is called the
“teacher.”” The back-propagation procedure configures the
network to implement the computation by adjusting the
strengths of synapses connecting neural-like units in the
network. The importance of the back-propagation procedure

is that it provides a way to make these changes in networks
having more than one layer. This means that the networks
used can have internal or ‘“hidden’ units that are free to take
on the response properties that best accomplish the com-
putation being learned. Our motivation for using back
propagation was that for many problems learned by these
networks, the hidden units often show a general resemblance
to cortical neurons in their response properties, particularly
in the way they tend to act as feature detectors.

The target of our original modeling effort was area 7a of
the monkey parietal cortex. Area 7a together with 7b, MST,
and LIP comprise the posterior half of the posterior parietal
cortex (2-4, 7, 10, 11, 14). Lesions to the posterior parietal
cortex in monkeys and humans produce profound spatial
deficits in both motor behavior and perception (1, 5, 6, 9).
Based on single-unit recording data and lesion studies, Ander-
sen and others (3,6) proposed that parietal area 7a per-
formed a spatial transformation from observation-based to
head-centered coordinates by combining retinal-based and
eye-position information. About 55% of the neurons in area
7a respond to both the retinal location of a visual stimulus
and the position of the eyes, but are virtually insensitive to
qualities of the stimulus such as size, color, shape, or inten-
sity. By combining eye and retinal positions these 7a neurons
can code the spatial location of external objects. However,
these neurons do not give a constant response to spatially
fixed stimuli. Their firing rates change as a function of both
eye positions and retinal location of the stimulus. This means
that if head-centered spatial location is represented by these
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neurons, it must be encoded in the changing patterns of their
firing rates.

Our original back-propagation modeling studies demon-
strated that a simple network can be trained to compute the
transformation hypothesized to occur in area 7a and, more
significantly, that the hidden units in this network have re-
sponse properties that mirror those in area 7a (16). In par-
ticular, the hidden units in the model network changed their
output activities with eye position and stimulus retinal loca-
tion in very much the same way as neurons in area 7a. Be-
cause of the similarity between the model hidden units and
the neurons in area 7a, this result also shows how the neurons
in area 7a can encode head-centered spatial location in a way
that can be decoded by other neurons.

Back propagation is an error-correcting procedure that
requires a teacher to supply the correct answer on each train-
ing trial. An understanding of the role played by this teacher
is important for two reasons. First, the properties of the
hidden units depend on the nature of the teacher, so a study
of the effects of using different kinds of teachers can tell us
what features the teacher must have to produce units like
those found in area 7a. Second, an understanding of the
teacher requirements may prove useful in designing experi-
ments to determine whether the brain uses some learning
procedure analogous to back propagation to program its
computations, as opposed, for example, to genetic determi-
nation or an adaptive mechanism that needs no teacher. In
this paper we investigate the effects of both different teacher
formats and different information on the area 7a model. It is
shown that when the teacher contains head-centered loca-
tion information in a variety of different formats the net-
works resemble 7a quite closely. When a teacher is used that
does not contain explicit head-centered location information,
but uses one of the same formats, the networks generated
differ completely from what is observed in area 7a. This is so
even though the information provided by this teacher is con-
sistent with the required hidden unit response pattern, and a
format is used that works when given head-centered infor-
mation. Before describing what was done and its possible
significance, it is necessary to take a closer look at the details
of the area 7a model and the role of the teacher in the back-
propagation paradigm.

THE BACK-PROPAGATION MODEL OF AREA 7a IN MORE DETAIL

In this section we review in some detail the relevant as-
pects of our previously reported results (16). Area 7a is hy-
pothesized to take part in the computation of the transfor-
mation of stimulus location from observation-based to
body-centered coordinates. The computer-simulated net-
work we trained to model this computation was not designed
to resemble the complex anatomy and physiology of a typical
cortical area such as 7a. Rather, it was the simplest kind of
network we felt could be trained to carry out the required
coordinate transformation. The network used has only three
layers of neuron-like units. These layers consist of an input
layer, whose whole function is to hold the input values con-
stant during each training cycle, a hidden layer, and an out-
put layer. The units in the hidden and output layers are very
simple models of neurons. These simple model neurons use
average firing rates, not individual spikes, to represent their
input and output values. The output of a neuron is computed
as the synaptic strength weighted sum of the input activities
passed through an S-shaped function that limits the outputs
to the range 0 to 1 (12).
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FIG. 1. The relationship between experimental data from area 7a

and input to the model network. (A) The receptive field of a neuron
in area 7a that responds only to visual stimulation and not to changes
in eye position. The receptive field was measured and plotted as
detailed in the caption to Fig. 3. The receptive field shown is 80
degrees in diameter with a single, almost Gaussian peak at the center
of the retina. Fields like this were assumed to reflect the retinal
stimulation input to area 7a, and were used as a basis for designing
the input to the model network, as described in (C) below. (B) This
is a graph of the response of 30 eye-position neurons in area 7a.
These neurons changed their activity as a nearly linear function of
eye position, but showed no effect of visual stimulation. The major-
ity of such neurons fall into one of four classes: those that increase
their activity with eye movement either to the right, to the left, up,
or down. Neurons from all four classes are plotted in (B) as if they
were all of the class that increase activity with eye movement to the
right. Note that the slopes and intercepts of the responses differ
greatly between neurons. (C) The visual stimulus to the model was
formatted using 64 units. Each of these units has a Gaussian recep-
tive field of the type seen in (A). The centers of these fields are
uniformly distributed on a grid as shown. The response of this array
to a point visual stimulus of the kind used is indicated by the relative
darkening of the units. (D) The eye position input to the model con-
sists of 32 units divided into four groups of 8. Each group represents
neurons in one of the observed classes. The slopes and intercepts for
each unit’s response was chosen at random, but in the figure the
units have been drawn in order of increasing response for their re-
spective direction specificities.

The process of training the network consists of repeatedly
giving it inputs representing the retinal location of a stimulus
and the current eye position, and training it to produce the
associated head-centered location of the stimulus on its out-
put units. The teacher provides correct values of the output
unit representation of head-centered location. Learning re-
quires a large number of training cycles. The longer the train-
ing goes on, the more accurate the output becomes. We typi-
cally continued training until the error with which the output
indicated stimulus location was about equal to the distance
between screen points that project to neighboring retinal
units. That is, we stopped training before hyperacuity set in.
This required about 1000 training cycles. Further training
produced more accurate outputs, but did not make the re-
sponse properties of the hidden units more like area 7a.

While no attempt was made to model the physical struc-
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FIG. 2. Back-propagation network used to model area 7a. The input,
hidden, and output layers are described in the text and in Fig. 1. The
input to the network consists of retinal-position and eye-position
information. The output activation of the hidden and output layer
units is given by the logistic:

output activation = 1/(1 + ™),

where net=weighted sum of inputs -+bias. The arrows indicate the
direction of activity propagation. The w’s are the weights changed
by learning. The network was simulated on a Symbolics 3600 LISP
machine using the P3 parallel system simulator (17).

ture of area 7a, we did try to model the format of its afferent
information using experimental data. The area 7a neurons
relevant to the model’s input are the eye-position neurons,
responding to eye position only, and the visual neurons, re-
sponding to visual stimulation only. These neurons
presumably represent the eye-position and retinal location
information used by area 7a as input, so we modeled the
network’s input on their properties. The properties of the
visual and eye-position neurons and how they were used to
represent the input to the model network are shown in Fig. 1.
Most of the eye-position neurons in area 7a responded mono-
tonically to either the horizontal or vertical position of the
eyes in the orbit. This was modeled by using 32 units with
eye-position response parameters selected from the experi-
mentally observed range. The visual neurons in area 7a have
large, peaked retinal receptive fields with the peak centers
distributed over the whole retina. The retinal location input
was modeled using 64 units with receptive fields shaped like
the simplest, most symmetrical found experimentally. The
peaks of these receptive fields were distributed evenly over
the modeled retinal space. Every unit in the input layer is
connected to each of the hidden units, which were connected
to all of the output units. Between 9 and 36 hidden units were
used. The synaptic weights are initially set to small random
values. The whole model network is diagrammed in Fig. 2.

A cycle of training consists of picking an eye position and
retinal location at random and converting them to the format
used for input to the network. This input activity pattern is
then propagated through the network, first to the hidden units
and then to the output units. The resulting cutput unit activ-
ity pattern is subtracted from the correct pattern, that is, the
teacher pattern. The resulting difference, or ““error,”’ is used
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to modify the synaptic weights of the output and hidden units
as proscribed by the back-propagation procedure. Note that
the teacher pattern and the output units have matching for-
mats. At the beginning of training, the values of the output
units and the teacher pattern do not match closely, whereas
after the network has been successfully trained to do a com-
putation they are nearly equal.

In our original modeling efforts we used two different
teacher formats, each representing spatial location in a
head-centered frame. One format represented spatial loca-
tion as the eye position at which the stimulus would be
foviated. In this case the output layer and corresponding
teacher pattern consisted of 32 eye-position units with prop-
erties like those of the eye-position inputs to the model. The
other format represented head-centered spatial location as
the retinal location of the stimulus when looking straight
ahead. In this case the output layer and teacher pattern con-
sisted of 64 units arranged in the same way as the retinal
input to the network. Note that although the format of the
output layer corresponded to part of the input layer in each of
these cases, the actual values appearing on the input and
output layers were completely different. In particular, the
input layer values represent location in an observation-based
reference frame, whereas the output layer values represent
location in a head-centered frame.

These two different teacher formats were used to train the
model in separate training sessions. With both of these
teacher formats, the network learned to compute the trans-
formation from observation-based to head-centered coordi-
nates postulated to occur in area 7a. The really interesting
aspect of these training simulations is that the network
learned to do this computation in a way analogous to area 7a.
This can be seen by comparing the hidden units’ response
patterns to the firing rates of the neurons in area 7a that
respond to both a visual stimulus and eye position. The ex-
perimental data available for comparison with the model
consist of measurements of retinal receptive fields at fixed
eye positions and the effects of different eye positions with
fixed stimulus retinal location. Both of these measurements
have been compared to the model to determine the degree of
similarity.

The comparison of experimental and model receptive
fields is shown in Fig. 3. The experimental data on which this
comparison is based was collected several years before the
model was developed, and no new data has been obtained
since. In these comparisons normalized firing rates are com-
pared to normalized hidden unit activity. The comparison is
difficult because there is such a wide variety of large com-
plex fields. The only feature of the receptive fields that could
be quantitatively compared between model and experiment
was the eccentricity of the location of the peak activity.
However, using a smoothing algorithm to visualize the overall
shape of the receptive fields allows a- more revealing
semiquantitative comparison to be made. In Fig. 3 the fields
are arranged in columns of the same eccentricity of the high-
est peak, and in rows with fields of about the same complex-
ity of peak structure. Complexity of peak structure is based
on an estimate of the number of major and minor peaks. At
the present time this is the best method of comparison we
have. The small number of available experimental fields hin-
ders the development of meaningful statistical comparisons.
The top row in Fig. 3a and 3b has the fields with one major
peak and no significant minor ones. The center row has fields
with a clear major peak and at most a few minor peaks. The
bottom row has all the rest. While this measure of peak
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FIG. 4. (A) The spatial gain fields of nine neurons from area 7a (16). The diameter of the darkened inner circle, representing the visually evoked
gain fields, is calculated by subtracting the background activity recorded for 500 msec before the stimulus onset from the total activity during
the stimulus. The outer circle diameter, representing the total response gain fields, corresponds to the total activity during the stimulus. The
annulus diameter corresponds to the background activity that is due to an eye position signal alone, recorded during the 500 msec prior to the
stimulus presentation. (B) Hidden unit spatial gain fields generated by the model network. Fields a—f were generated using the monotonic

format output; the rest used the Gaussian format output.

complexity is only semiquantitative, it does simplify the
comparison of model and experimental fields. Although only
12 fields from model and experiment are compared, they
represent all the complexity-eccentricity types observed. All
field types observed in the model were also found in area 7a.
The reverse is not true. Fields with an eccentricity of 10 de-
grees and a single peak are observed in area 7a but are very
rarely seen in the model. Note also that three of the fields in
the bottom row of Fig. 3b come from the model before it has
been trained. The data in Fig. 3 make it quite clear that there
is considerable similarity between the shapes of the retinal
receptive fields of model and experiment.

The pattern of variation in visual response as a function of
eye position, when the retinal location of the visual stimulus
is kept fixed, is called the ‘‘spatial gain field.”” Spatial gain
fields were measured by having the monkey fixate nine dif-
ferent positions on a frontal screen. At each of these fixation
points the response was first measured in the absence of
visual stimulation. Then the response was measured with a
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visual stimulus flashed at a screen position chosen to keep its
retinal location the same for all eye positions. Measurements
at these nine eye positions constitute the spatial gain field
data for each area 7a neuron tested (2). The firing rate of
most area 7a neurons changed in a systematic way as a func-
tion of the eye position in both the presence and absence of
visual stimulation. Since the intensity and retinal location of
the visual stimulus is the same at each eye position it might
be expected that the effect of visual stimulation could be
computed by just adding a constant representing the effect of
the visual stimulus to the eye position alone response. This is
not what is observed. Rather, the contribution of visual
stimulation to the total response is also seen in the model’s
hidden units.

To facilitate the comparison of experiment and model we
have visualized these nonlinear interactions by using the
concentric circle pattern described in Fig. 4. The outer diame-
ter of each circle is proportional to the normalized activity of
a unit in the presence of visual stimulation. The width of the

FIG. 3. (a) Experimentally determined retinal receptive fields (2,16). The data for drawing each of these receptive field plots comes from
measurements of the firing rate of a single area 7a neuron at 17 different retinal locations. These locations were at the center and at 10, 20, 30,
and 40 degrees out. A neighborhood smoothing procedure was used to create the plots shown here. The receptive fields are arranged in rows
with the eccentricity of the field maxima increasing to the right, and in columns with the complexity of the fields increasing downward. All the
fields in row A have single peaks; those in B a major peak and a few distinguishable minor peaks. The fields in C are the most complex. The
data has been normalized so the highest peak in each field is the same height. (b) Hidden unit retinal receptive fields generated by the
back-propogation model. These plots were generated in the same way as those of Fig. 2a except that the data came from computer simulations
of the mode] network. All the fields, except for the three on the left in row C, are from units that have received 1,000 learning trials. The
remaining three are from untrained units and represent fields that result from the initial random assignment of synaptic weights.
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annulus is proportional to the activity in the absence of a
visual stimulus. The dark inner disk is the difference be-
tween these and represents the apparent affect of visual
stimulation. Figure 4 shows nine spatial gain fields from area
7a compared to nine fields from the model’s hidden units.
Each field consists of an array of nine circle patterns with
each circle placed at a position corresponding to the location
of the fixation at which it was measured. As can be seen by
examination of Fig. 4, the spatial gain fields of both model
and experiment show a wide variety of complex patterns.

Many of the spatial gain fields could be fitted to planes
appropriately tilted in the horizontal and vertical directions.
All the total gain fields (outer circles) of the model’s hidden
units were approximately planar. This compares with 809
for the area 7a neurons. About 55% of the visually evoked
gain fields observed experimentally (inner dark disks) were
also planar. The fraction of planar visually evoked hidden
unit gain fields depended on which teacher format was used.
With the monotonic eye-position teacher format, 78% of the
visual response gain fields were planar or at least monotonic.
With the Gaussian retinal teacher format, only 36% fall in
this class. For both model and experiment there was also a
class of visually evoked gain fields (inner dark disks) that
were radically nonmonotonic (see Fig. 4, fields g, h, and i).

Comparison of the gain fields of model and experiment
using both the shape of the total and visually evoked fields
and the details of the circular patterns that make up each
field reveal the high degree of similarity. In particular, the
general form of the nonlinear combination of eye-position
and visual stimulation responses are similar in the model and
area 7a. In the model this nonlinear interaction is a conse-
quence of the S-shaped input-output function used to model
the neural units. The source of this nonlinearity in the brain
is unknown. As in the case of retinal receptive fields, a more
quantitative comparison is frustrated by the wide variety of
fields observed experimentally. However, the fact that
every kind of hidden unit retinal receptive field and spatial
gain field can be matched quite closely to one found experi-
mentally supports the conjecture that area 7a and the model
network are computing the same function in analogous ways.
These results do not justify the conclusion that back
propagation plays any role in training the computation
occurring in area 7a, but they do raise the possibility that
some form of learning is involved.

NEW TEACHER FORMATS

When using the back-propagation modeling paradigm, the
nature of the teacher is a critical factor in determining which
computation is learned. Recall that the teacher provides the
correct output values for each input. The teacher must there-
fore provide the same number of values as there are output
units. In the case of our area 7a model, the teacher provided
information that represented the location of a visual stimulus
in head-centered coordinates. There are many possible for-
mats for this representation. Perhaps the simplest is to use
just two values, one representing the horizontal and the
other representing the vertical position of the stimulus on the
frontal screen. Since we are concerned with monkeys with
fixed head positions, this is a way to represent head-cerntered
location. In our original model we used two different teacher
formats, an eye-position and a retinal format, to represent
head-centered location. Recall the distinction between
teacher format and the information represented by the
teacher. Although we have mentioned several different
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TABLE 1
DATA FROM DIFFERENT TEACHER FORMATS

% at Each Eccentricity

Teacher

Format 0 10 20 30 40 Mono./Trreg,
7a 0 19 25 16 40 1.22
Linear 0 8 8 8 46 11.5
Squashed 0 6 12 36 46 15.7
Squared 2 6 8 30 54 11.5

Eye 0 6 20 20 54 3.55
Retina 8 2 12 12 42 0.56
Mixed 4 6 16 28 46 1.27
Untrained 2 20 18 12 36 N/A

The teacher formats are discussed in the text. 7a refers to the
distribution found in monkey cortex. Monotonic/irregular is the ratio
of monotonic to irregular visually evoked eye-position gain fields,
that is, the inner circles of Fig. 4.

teacher formats, they have all represented the same infor-
mation.

In our previous studies we used two different formats to
represent head-centered stimulus location (16). While all the
gain fields produced by both formats were of types found in
7a, neither format produced the exact quantitative distribu-
tion of types found in 7a. To further analyze the effect of
teacher format on the kinds of hidden units generated, we
have used an additional four teacher formats that represent
stimulus location in a head-centered frame. The simplest of
these formats contains a small number of output units that
vary their activity linearly with the horizontal or vertical
position of the stimulus on the frontal screen. The activity of
these units is 0.0 at one extreme of possible stimulus location
and 1.0 at the other extreme. Two additional simple formats
used consist of units that vary monotonically but nonlinearly
with stimulus position. One varies as the square of position
while the other varies as an S-shaped function of position. A
logistic function of the same type used to compute the output
of the units in the back-propagation network was used. The
most complex new output format was a combination of the
retinal and eye-position formats used in the original model.
In this case the network was trained to produce both of these
complex output representations of stimulus location simul-
taneously.

All these new versions of the teacher format could train the
transformation carried out by area 7a. Examination of the
retinal fields of the hidden units generated showed that all
the previously observed receptive field types were present
for all versions of the model. The frequency distribution of the
various receptive field eccentricities varies in magnitude but
not in shape between the different versions (see Table 1).
While all are similar to the experimentally observed distri-
bution in area 7a, they have somewhat less of the lower
eccentricity fields. An examination of the lower eccentricity
experimental receptive fields shows them to be mostly of the
most complex type, row C in Fig. 2. This complex type is
rare among trained model receptive fields, but is common in
the model receptive fields before training, presumably be-
cause the initial weights for the model are chosen at random.

All six versions of the teacher also produced eye-position
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gain fields of types found in area 7a (see Table 1), but there
was a considerable spread in the ratio of types. The most
realistic ratio was generated by the mixed format. This was
to be expected since the gain field type distribution is skewed
too far one way for the monotonic format and far the other
way for the Gaussian format that make up this complex type.
The conclusion from these simulation studies is that as long
as the network is explicitly taught the location of the
stimulus, the hidden units generated are all types actually
found in area 7a. Differences in the teacher format affect
only the distribution of the various type.

A Teacher of a Different Kind

A reasonable question to ask is whether a teacher is really
needed to train the network to have the same kinds of units
found in area 7a? Some learning procedures do not need
explicit external teachers to train units that can respond to
significant features in the input patterns. Simple Hebbian
learning, competitive learning, and a form of back propaga-
tion learning called “‘identity mapping’” are in this category
(8, 13, 15). All of these procedures exploit some form of
correlation between the inputs to generate feature detector
units. It seems unlikely that any of these procedures could
give rise to the kind of neurons found in area 7a because the
neurons respond to combinations of uncorrelated inputs,
that is, eye-position and retinal stimulus location. However,
examination of the hidden units in the trained network indi-
cates that, in addition to serving as an intermediate step in a
coordinate transformation, they also encode sufficient in-
formation to allow the original eye position and retinal loca-
tion to be reconstructed. That is, if we first train a network to
do the area 7a transformation, and then fix the hidden unit
weights, it would be possible to train an output layer to re-
generate the input patterns. This would give us a network
that could produce input patterns on its output units after
passing all information through a small number of hidden
units. Networks of this kind are called identity mapping net-
works and have been extensively studied. Their most impor-
tant feature is that the hidden units often learn an efficient
encoding of the input patterns. Back-propagation identity
mapping, in which the input pattern and teacher are the
same, is one of the more powerful of the correlational learn-
ing procedure. If back-propagation identity mapping fails to
generate hidden units of the kind found in area 7a, it seems un-
likely that any other correlation-based approach will succeed.

To test this we trained a network with the back-
propagation identity mapping procedure. This corresponds
to using the same input and output format as used in the
mixed format model described earlier, but now the teacher is
just the input pattern, not a representation of the head-
centered location of the stimulus.

Networks trained by back-propagation identity mapping
produce hidden units that are completely different from
those observed in area 7a and from those produced by using
teachers that represent head-centered location. The units
found with identity mapping do not combine visual and eye
position inputs. Rather they separate these out so that the
vast majority of hidden units were either eye position only or
retinal position only. This was particularly striking because
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the random weight distribution used at the start of training
gave rise to hidden units that combine eye and retinal posi-
tion to some degree. These units had to be actively destroyed
by the identity mapping process. Since we believe that
back-propagation identity mapping is one of the most power-
ful correlation-based learning procedures, it is unlikely that
other procedures based on correlation, such as simple Heb-
bian learning or competitive learning, will generate the kind
of units observed in area 7a.

DISCUSSION

The results described here demonstrate that the back-
propagation model of area 7a is robust with respect to
teacher format so long as the teacher explicitly represents
the location of the stimulus in space. All formats with this
property gave rise to hidden units of types actually seen
among the space-tuned neurons in area 7a. The details of
teacher format did affect the quantitative distribution of unit
types. This result suggests that the back-propagation net-
work is actually simulating the computational algorithm used
by area 7a, but says nothing about the physiological mech-
anisms used to implement this computation. The fact that the
quantitative distribution of unit types is not exactly reproduced
by the network may be a consequence of the simplicity of the
model network compared to the actual neural architecture of
area 7a. Indeed, considering the simplicity of the model net-
work, the degree to which it simulates the properties of 7a
neurons is quite remarkable. A key question, which can only
be answered empirically, is how general is this ability of back
propagation to simulate neuron response properties in other
parts of the brain?

Another important issue raised by this work is the ques-
tion of whether the computation accomplished by area 7a is
learned. Our results do not imply that it is. It could be genet-
ically programmed to use computational procedures analog-
ous to those found by back-propagation learning. If, how-
ever, cortical computations are learned by an error-
correcting procedure analogous to back propagation they
will require teacher signals to be present in the brain. The
failure of identity mapping to simulate the type of neurons
present in 7a is significant in this regard because it suggests
that no correlation-based learning procedure will work. This
raises the question of whether other learning procedures not
requiring some form of teacher or back propagation of error
can be found to account for the properties of 7a neurons. We
know of no such learning procedure at present, but this is an
active area of research and perhaps one will be found. This is
an important issue because back propagation is quite difficult
to implement given our current understanding of neuron
function. It is not, however, impossible to implement back
propagation using plausible neurophysiological concepts as
has been described elsewhere (18).
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