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11.3 Advances in Cognitive Neural Prosthesis 

The motor-based approach, although predominantly used, is certainly not the only way 
of using brain data for neuroprosthetic applications. Shenoy et al. (2003) argue that neural 
activity present before or even without natural arm movement provides an important source 
of control signals. In nonhuman primates, these types of neural signals can be found, 
among other areas, in parietal reach region (PRR) of the posterior parietal cortex (PPC). 
PPC is an area located at an early stage in the sensory-motor pathway (Andersen et al. 
(1997)), and is involved in transforming sensory inputs into plans for actions, so-called 
"sensory-motor integration." In particular, PRR was shown to exhibit directional selectivity 
with respect to planned reaching movements (Snyder et al. (1997)). Moreover, these 
plans are encoded in visual coordinates (also called retinal or eye-centered coordinates) 
relative to the current direction of gaze (Batista et al. (1999)), thus providing extrinsic 
spatial information and underscoring the cognitive nature of these signals. We refer to this 
approach to neural prostheses as "cognitive-based." The human homologue of PRR has 
recently been identified in functional-magnetic-resonance imaging experiments (Connolly 
et al. (2003)). 

11.3.1 Cognitive-Based Brain-Machine Interfaces 

The cognitive-based approach to neural prostheses does not require the execution of arm 
movements; its true potential lies in assisting paralyzed individuals who are unable to 
reach but who are capable of making reaching plans. It has been shown through a series of 
experiments (Musallam et al. (2004)) that monkeys easily learn to control the location of a 
computer cursor by merely thinking about movements. Briefly, the monkeys were shown a 
transient visual cue (target) at different screen locations over multiple trials. After the target 
disappeared, the monkeys were required to plan a reach movement to the target location 
without making any arm or eye movements. This stage of the experiment is referred to as 
the "delay" or "memory period." The action potentials (spike trains) of individual neurons 
from PRR were collected during the memory period and were decoded in real time to 
predict the target location. If the correct location was decoded, a feedback was provided to 
the animals by illuminating the target location and the animals were rewarded. The trials 
were aborted if the animals made eye or arm movements during the memory period. This 
ensured that only cognitive and not motor-related signals were used for decoding, thus 
underscoring the potential of the cognitive-based approach for severely paralyzed patients. 

With vision being the main sensory modality of the posterior parietal cortex (Blatt et al. 
(1990); Johnson et al. (1996)), PRR is likely to continue receiving appropriate error signals 
after paralysis. In the absence of proprioceptive and somatosensory feedback (typically lost 
due to paralysis), visual error signals become essential in motor learning. Musallam et al. 
(2004) have shown that the performance of a PRR-operated prosthesis improved over the 
course of several weeks. Presumably, the visual feedback allowed the monkeys to learn 
how to compensate for decoding errors. 
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After reaching goals are decoded, trajectories can be computed from low-level trajectory 

instructions managed by smart output devices, such as robots, computers, or vehicles, 
using supervisory control systems (Sheridan (1992)). For example, given the Cartesian 
coordinates of an intended object for grasping, a robotic motion planner can determine 
the detailed joint trajectories that will transport a prosthetic hand to the desired location 
(Andersen et al. (2004a)). Sensors embedded in the mechanical arm can ensure that the 
commanded trajectories are followed and obstacles are avoided, thereby replacing, at least 
to some degree, the role of proprioceptive and somatosensory feedback. 

11.3.2 Local Field Potentials 

LFPs represent the composite extracellular potential from perhaps hundreds or thousands 
of neurons around the electrode tip. In general, LFPs are less sensitive to relative movement 
of recording electrodes and tissues; therefore, LFP recordings can be maintained for longer 
periods of time than single cell recordings (Andersen et al. (2004b)). However, LFPs 
have not been widely used in BMIs, perhaps because of the assumption that they do not 
correlate with movements or movement intentions as well as single cell activity. Recent 
experiments in monkey PPC, in particular the lateral intraparietal (LIP) area and PRR, have 
demonstrated that valuable information related to the animal's intentions can be uncovered 
from LFPs. For example, it has been shown that the direction of planned saccades in 
macaques can be decoded based on LFPs recorded from area LIP (Pesaran et al. (2002)). 
Moreover, the performances of decoders based on spike trains and LFPs were found to 
be comparable. Interestingly, the decoding of behavioral state (planning vs. execution of 
saccades) was more accurate with LFPs than with spike trains. Similar studies have been 
conducted in PRR. It was found that the decoding of the direction of planned reaches was 
only slightly inferior with LFPs than with spike trains (Scherberger et al. (2005)). As with 
LIP studies, it has also been shown that LFPs in this area provide better behavioral state 
(planning vs. execution of reaching) decoding than do spike trains. 

While the decoding of a target position or a hand trajectory provides information on 
where to reach, the decoding of a behavioral state provides the information on when to 
reach. In current experiments, the time of reach is controlled with experimental protocol by 
supplying a "go signal." Practical neural prostheses cannot rely on external cues to initiate 
the movement; instead this information should be decoded from the brain, and future BMIs 
are likely to incorporate the behavioral state information. Therefore, it is expected that 
LFPs will play a more prominent role in the design of future neuroprosthetic devices. 

11.3.3 Alternative Cognitive Control Signals 

The potential benefits of a cognitive-based approach to neural prosthesis were demon- 
strated first through offline analysis (Shenoy et al. (2003)) and subsequently through closed 
loop (online) experiments (Musallam et al. (2004)). Motivated by previous findings of re- 
ward prediction based on neural activity in various brain areas (Platt and Glimcher (1999); 
Schultz (2004)), Musallam et al. (2004) have demonstrated that similar cognitive variables 
can be inferred from the activitv in the macaoues' PRR. In ~articular. thev have found 
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significant differences in cell activity depending on whether a preferred or nonpreferred 
reward was expected at the end of a trial. The experiments included various preferred ver- 
sus nonpreferred reward paradigms such as citrus juice versus water, large amount versus 
small amount of reward, and high probability versus low probability of reward. On each 
day, the animal learned to associate one cue with the expectation of preferred reward and 
another cue with nonpreferred reward. The cues were randomly interleaved on a trial-by- 
trial basis. This study demonstrated that the performance of brain-operated cursor control 
increases under preferred reward conditions, and that both the reach goals and the reward 
type can be simultaneously decoded in real time. 

The ability to decode expected values from brain data is potentially useful for future 
BMIs. The information regarding subjects' preferences, motivation level, and mood could 
be easily communicated to others in a manner similar to expressing these variables using 
body language. It is also conceivable that other types of cognitive variables, such as the 
patient's emotional state, could be inferred by recording activity from appropriate brain 
areas. 

11.3.4 Neurophysiologic Recording Advances 

One of the major challenges in the development of practical BMIs is to acquire meaningful 
data from many recording channels over a long period of time. This task is especially 
challenging if the spike trains of single neurons are used, since typically only a fraction 
of the electrodes in an implanted electrode array will record signals from well-isolated 
individual cells (Andersen et al. (2004b)). It is also hard to maintain the activity of isolated 
units in the face of inherent tissue and/or array drifts. Reactive gliosis (lhmer et al. (1999)) 
and inadequate biocompatibility of the electrode's surface material (Edell et al. (1992)) 
may also contribute to the loss of an implant's function over time. 

Fixed-geometry implants, routinely used for chronic recordings in BMIs, are not well 
suited for addressing the above issues. Motivated by these shortcomings, part of our re- 
search effort has been directed toward the development of autonomously movable elec- 
trodes that are capable of finding and maintaining optimal recording positions. Based on 
recorded signals and a suitably defined signal quality metric, an algorithm has been devel- 
oped that decides when and where to move the recording electrode (Nenadic and Burdick 
(2006)). It should be emphasized that the developed control algorithm and associated signal 
processing steps (Nenadic and Burdick (2005)) are fully unsupervised, that is, free of any 
human involvement, and as such are suitable for future BMIs. Successful applications of 
the autonomously movable electrode algorithm using a meso-scale electrode testbed have 
recently been reported in Cham et al. (2005) and Branchaud et al. (2005). 

The successful implementation of .autonomously movable electrodes in BMIs will be 
beneficial for several reasons. For example, electrodes can be moved to target specific neu- 
ral populations that are likely to be missed during implantation surgery. Optimal recording 
quality could be maintained and the effects of cell migration can be compensated for by 
moving the electrodes. Finally, movable electrodes could break through encapsulation and 
seek out new neurons, which is likely to improve the longevity of recording. 
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Clearly, the integration of movable electrodes with BMIs hinges upon the development 
of appropriate micro-electro-mechanical systems (MEMS) technology. Research efforts to 
develop MEMS devices for movable electrodes are under way (Pang et al. (2005a,b)). 

11.3.5 Novel Decoding Algorithms 

In mathematical terms, the goal of decoding algorithms is to build a map between neural 
patterns and corresponding motor behavior or cognitive processes. Because of the ran- 
domness inherent in the neuro-motor systems, the appropriate model of this map is proba- 
bilistic. In practical terms, decoding for cognitive-based BMIs entails the selection of the 
intended reach target from a discrete set of possible targets. Consequently, the decoder is 
designed as a classifier, where observed neural data is used for classifier training. 

Recent advances in electrophysiologic recordings have enabled scientists to gather 
increasingly large volumes of data over relatively short time spans. While neural data 
ultimately is important for decoding, not all data samples cany useful information for the 
task at hand. Ideally, relevant data samples should be combined into meaningful features, 
while irrelevant data should be discarded as noise. For example, representing a finely 
sampled time segment of neural data with a (low-dimensional) vector of firing rates, can 
be viewed as an heuristic way of extracting features from the data. Another example is 
the use of the spectral power of EEG signals in various frequency bands, for example, p- 
band or P-band (McFarland et al. (1997a); Pfurtscheller et al. (1997)), for neuroprosthetic 
applications such as BCIs. 

In the next section, we cast the extraction of neural features within an information- 
theoretic framework and we show that this approach may be better suited for certain 
applications than the traditionally used heuristic features. 

11.4 Feature Extraction 

Feature extraction is a common tool in the analysis of multivariate statistical data. vp i -  
cally, a low-dimensional representation of data is sought so that features have some desired 
properties. An obvious benefit of this dimensionality reduction is that data becomes com- 
putationally more manageable. More importantly, since the number of experimental trials 
is typically much smaller than the dimension of data (so-called small-sample-size problem 
(Fukunaga (1990))), the statistical parameters of data can be estimated more accurately 
using the low-dimensional representation. 

Two major applications of feature extraction are representation and classification. Fea- 
ture extraction for representation aims at finding a low-dimensional approximation of data, 
subject to certain criteria. These criteria assume that data are sampled from a common 
probability distribution, and so these methods are often referred to as blind or unsupervised. 
Principal component analysis (PCA) (Jolliffe (1986)) and independent component analysis 
(ICA) (Jutten and Herault (1991)) are the best-known representatives of these techniques. 
In feature extraction for classification, on the other hand, each data point's class member- 
chin i s  knnwn and thns the methnd is rnnsidered i l n e ~ i c e d  1.nw-dimencinnal fenhires 
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are found that maximally preserve class differences measured by suitably defined criteria. 
Linear discriminant analysis (LDA) (Duda et al. (2001)) is the best known representative 
of these techniques. Once the features are extracted, a classifier of choice can be designed 
in the feature domain. l 

A common heuristic approach to feature extraction is to rank individual (scalar) fea- 
tures according to some class separability criterion. For example, informative neural fea- 
tures are those that exhibit stimulus-related tuning, that is, they take significantly different 
values when conditioned upon different stimuli. The feature vector is then constructed 
by concatenating the several most informative features. While seemingly reasonable, this 
strategy is completely ignorant of the joint statistical properties of the features and may 
produce highly suboptimal feature vectors. More elaborate algorithms exist for the selec- 
tion of scalar features (Kittler (1978)), but they are combinatorially complex (Cover and 
Campenhout (1977)) and their practical applicability is limited. 

Another popular strategy for analyzing spatiotemporal neural signals is to separate the 
processing in the spatial and temporal domain. Data are first processed spatially, typically 
by applying off-the-shelf tools such as the Laplacian filter (McFarland et al. (1997a); 
Wolpaw and McFarland (2004)), followed by temporal processing, such as autoregressive 
frequency analysis (Wolpaw and McFarland (2004); Pfurtscheller et al. (1997)). However, 
the assumption of space-time separability is not justified and may be responsible for 
suboptimal performance. In addition, while spectral power features have clear physical 
interpretation, there is no reason to assume that they are optimal features for decoding. 
Rizzuto et al. (2005) have recently demonstrated that decoding accuracy with spectral 
power features could be up to 20 percent lower than a straightforward time domain 
decoding. 

In the next two subsections, we introduce a novel information-theoretic criterion for fea- 
ture extraction conveniently called "information-theoretic discriminant analysis" (ITDA). 
We show that informative features can be extracted from data in a linear fashion, that is, 
through a matrix manipulation.2 For spatiotemporal signals, the feature extraction matrix 
plays the role of a spatiotemporal filter and does not require an assumption about the sep- 
arability of time and space. Moreover, the features are extracted using their joint statistical 
properties, thereby avoiding heuristic feature selection strategies and computationally ex- 
pensive search algorithms. 

11.4.1 Linear Supervised Feature Extraction 

In general, linear feature extraction is a two-step procedure: (1) an objective function 
is defined and (2) a full-rank feature extraction matrix is found that maximizes such an 
objective. More formally, let R E Rn be a random data vector with the class-conditional 
probability density function (PDF) fRln(r I wi) ,  where the class random variable (RV) 
0 = { w l ,  w2, . . . , w,) is drawn from a discrete distribution with the probability P(wi)  
P(C2 = wi), Vi = 1, 2, . . . , c. For example, R could be a matrix of EEG data from an 
array of electrodes sampled in time and written in a vector form. The class variable could 
be the location of a visual target, or some cognitive task such as imagination of left and 
right hand movements (Pfurtscheller et al. (1997)). The features F E Rm are extracted as 
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Figure 11.1 (Left) Two Gaussian class-conditional PDFs with P(w1) = P ( w ~ ) ,  represented by 
3-Mahalanobis distance contours. The straight lines indicate optimal 1D subspace according to 
different feature extraction methods: PCA, ICA, LDA, ITDA and approximate Chernoff criterion 
(Loog and Duin (2004)) ACC. (Right) The PDFs of optimal 1D features extracted with ITDA and 
LDA. 

F = T  R, where T  E W m Xn  is a full-rank feature extraction matrix found by maximizing a 
suitably chosen class separability objective function J ( T ) .  

Many objective functions have been used for supervised feature extraction purposes. In 
its most common form, LDA, also known as the Fisher criterion (Fisher (1936)) or canon- 
ical variate analysis, maximizes the generalized Rayleigh quotient (Duda et al. (2001)). 
Under fairly restrictive assumptions, it can be shown that LDA is an optimal3 feature ex- 
traction method. In practice, however, these assumptions are known to be violated, and 
so the method suffers from suboptimal performance. A simple example where LDA fails 
completely is illustrated in figure 1 1 .l. Another deficiency of LDA is that the dimension of 
the extracted subspace is at most c - 1, where c is the number of classes. This constraint 
may severely limit the practical applicability of LDA features, especially when the number 
of classes is relatively small. 

Kumar and Andreou (1998) have developed a maximum-likelihood feature extraction 
method and showed that these features are better suited for speech recognition than the 
classical LDA features. Saon and Padmanabhan (2000) used both Kullback-Leibler (KL) 
and Bhattacharyya distance as an objective function. However, both of these metrics are 
defined pairwise, and their extension to multicategory cases is often heuristic. Loog and 
Duin (2004) have developed an approximation of the Chernoff distance, although their 
method seems to fail in some cases (see figure 1 1.1). 

Mutual information is a natural measure of class separability. For a continuous RV R 
and a discrete RV 0 ,  the mutual information, denoted by p I ( R ;  R), is defined as 
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where H(R) A - fR(r) 10g(fR(r)) clr is Shannon's entropy. Generally, higher mutual in- 
formation implies better class separability and smaller probability of rnisclassification. In 
particular, it was shown in Hellman and Raviv (1970) that ER 5 112 [H(R) - pI(R; a)] ,  
where H(R) is the entropy of 0 and ER is the Bayes error. On the other hand, the prac- 
tical applicability of the mutual information is limited by its computational complexity, 
also known as the curse of dimensionality, which for multivariate data requires numeri- 
cal integrations in high-dimensional spaces. Principe et al. (2000) explored the alternative 
definitions of entropy (Renyi (1961)), which, when coupled with Parzen window density 
estimation, led to a computationally feasible mutual information alternative that was appli- 
cable to multivariate data. Motivated by these findings, Torkkola developed an information- 
theoretic feature extraction algorithm (Torkkola (2003)), although his method is computa- 
tionally demanding and seems to be limited by the curse of dimensionality. Next, we intro- 
duce a feature extraction objective function that is based on the mutual information, yet is 
easily computable. 

11.4.2 Information-Theoretic Objective Function 

Throughout the rest of the article we assume, that the class-conditional densities are 
Gaussian, that is, R I wi N N(mi, Xi), with positive definite covariance matrices. The 
entropy of a Gaussian random variable is easily computed as 

where I C I denotes for the determinant of the matrix C. To complete the calculations 
required by (1 1.1), we need to evaluate the entropy of the mixture PDF fR(r) 
zi fRln( r  I wi) P(wi). It is easy to establish that R -- (m, X), where 

C C 

m = mip(wi) and P = [Lc + (mi - m) (mi - m)T] P(wi). (1 1.2) 
i= 1 i=l 

Note that unless the class-conditional PDFs are completely overlapped, the RV R is non- 
Gaussian. However, we propose a metric similar to (1 1.1) by replacing H(R) with the 
entropy of a Gaussian RV with the same covariance matrix X: 

where Hg(R) is the Gaussian entropy. Throughout the rest of the article, we refer to this 
metric as a p-metric. 

We will explain briefly why the p-metric is a valid class separability objective. For a 
thorough mathematical exposition, the reader is referred to Nenadic (in press). If the class- 
conditional PDFs are fully overlapped, that is, ml = . - . = mc and PI = . . . = Xc, it 
follows from (1 1.2) and (1 1.3) that p(R; R) = 0. Also note that in this case R N N(m,  X), 
thus p(R; R) = p I (R ;  0). On the other hand, if the class-conditional PDFs are different, R 
deviates from the Gaussian RV, so the p-metric p(R; 0) can be viewed as a biased version 
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of pI(R; R), where p(R; R) 2 pI(R; 0 )  2: 0 because for a fixed covariance matrix, 
Gaussian distribution maximizes the entropy [H,(R) 2 H(R)]. As the classes are more 
separated, the deviation of R from a Gaussian RV increases, and the p-metric gets bigger. 
It turns out that this bias is precisely the negentropy defined as H(R) A H,(R) - H(R), 
which has been used as an objective function for ICA applications (see Hyviirinen (1999) 
for survey). Therefore, ITDA can be viewed as a supervised version of ICA. Figure 11.1 
confirms that ICA produces essentially the same result as our method (note the symmetry 
of the example), although the two methods are fundamentally different (unsupervised vs. 
supervised). Figure 11.1 also shows the p-metric in the original space and subspaces 
extracted by ITDA and LDA. 

The p-metric has some interesting properties, many of which are reminiscent of the 
Bayes error E R  and the mutual information (1 1.1). We give a brief overview of these 
properties next. For a detailed discussion, refer to Nenadic (in press). First, if the class- 
conditional covariances are equal, the p-metric takes the form of the generalized Rayleigh 
quotient; therefore, under these so-called homoscedastic conditions, ITDA reduces to the 
classical LDA method. Second, for a two-class case with overlapping class-conditional 
means and equal class probabilities (e.g., figure 11.1), the p-metric reduces to the well 
known Bhattacharyya distance. Like many other discriminant metrics, the ymetric is 
independent of the choice of a coordinate system for data representation. Moreover, the 
search for the full-rank feature extraction matrix T can be restricted to the subspace of 
orthonormal projection matrices without compromising the objective function. Finally, the 
p-metric of any subspace of the original data space is bounded above by the p-metric of 
the original space. These properties guarantee that the following optimization problem is 
well posed. Given the response samples R E Rn and the dimension of the feature space m, 
we find an orthonormal matrix T E RmXn such that the p-metric p(F; 0 )  is maximized 

T* = arg max {p(F; R) : F = T R) subject to T T ~  = I .  (1 1.4) 
TERmXn 

Based on our discussion in section 11.4.2, it follows that such a transformation would find 
an m-dimensional subspace, where the class separability is maximal. Interestingly, both the 
gradient dp(F; R)/dT and the Hessian d2p(F; R ) / ~ T ~  can be found analytically (Nenadic. 
(in press)), so the problem (1 1.4) is amenable to Newton's optimization method. 

11.5 Experimental Results 

In this section, we compare the performances of LDA and ITDA on a dataset adopted 
Rizzuto et al. (2005). The data represents intracranial encephalographic (iEEG) recon 
from the human brain during a standard memory reach task (see figure 11.2). It shou 
noted that iEEG signals are essentially local field potentials (see section 11.3.2). AL me 

start of each trial, a fixation stimulus is presented in the middle of a touchscreen and the 
participant initiates the trial by placing his right hand on the stimulus. After a short fixation 
period, a target is flashed on the screen, followed by a memory period. After the memory 
period, the fixation stimulus is extinguished, which signals the participant to reach to the 
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Fixation on Target on Traget ofF Fintion off 

Fixation Target Memory Reach 

Figure 11.2 The timeline of experimental protocol. 

memorized location (formerly indicated by the target). The duration of fixation, target, and 
memory periods varied uniformly between 1 and 1.3 s. The subject had 8 electrodes im- 
planted into each of the following target brain areas: orbital frontal cortex (OF), amygdala 
(A), hippocampus (H), anterior cingulate cortex (AC), supplementary motor cortex (SM), 
and parietal cortex (P). The total number of electrodes in both hemispheres was 96. The 
targets were presented at 6 different locations: 0°, 60°, 120°, 180°, 240°, 300'; these lo- 
cations respectively correspond to right, top right, top left, left, bottom left, and bottom 
right position with respect to the fixation stimulus. The number of trials per stimulus var- 
ied between 69 and 82, yielding a total of 438 trials. The electrode signals were amplified, 
sampled at 200 Hz and bandpass filtered. Only a few electrodes over a few brain areas 
showed stimulus-related tuning according to the location of the target. The goal of our 
analysis is to decode the target location and the behavioral state based on the brain data. 
Such a method could be used to decode a person's motor intentions in real time, support- 
ing neuroprosthetic applications. All decoding results are based on a linear, quadratic, and 
support vector machine (SVM) classifier (Collobert and Bengio (2001)) with a Gaussian 
kernel. 

11.5.1 Decoding the Target Position 

To decode the target position, we focused on a subset of data involving only two target 
positions: left and right. While it is possible to decode all six target positions, the results 
are rather poor, partly because certain directions were consistently confused. The decoding 
was performed during the target, memory and reach periods (see figure 1 1.2). All decoding 
results are based on selected subsegments of data within 1 s of the stimulus that marks the 
beginning of the period. figure. 11.3 shows that only a couple of electrodes in both left and 
right parietal cortex exhibit directional tuning, mostly around 200 ms after the onset of the 
target stimulus. In addition, there is some tuning in the SM and OF regions. Similar plots 
(not shown) are used for the decoding during memory and reach periods. 

For smoothing purposes and to further reduce the dimensionality of the problem, the 
electrode signals were binned using a 30 to 70 ms window. The performance (% error) of 
the classifier in the feature domain was evaluated through a leave-one-out cross-validation; 
the results are summarized in table 11.1. Note that the chance error is 50 percent for 
this particular task. For a given classifier, the performance of the better feature extraction 
method is shown in boldface, and the asterisk denotes the best performance per classifica- 
tion task. Except for a few cases (mostly with the quadratic classifier), the performance of 
the ITDA method is superior to that of LDA, regardless of the choice of classifier. More 



Recognition of Neural Data with an Information-Theoretic Objective 

LOF 
1p' - 

LA - 

RA 

RAC 

R.M - * - 
M F i  

RP 
- "W 

250 H)O 750 lo00 
Time (ms) 

Figure 11.3 The distribution of the p-metric over individual electrodes during the target peric 
The results are for two-class recognition task, and are based on 162 trials (82 left and 80 righ 
Different brain areas are: orbital frontal (OF), amygdala (A), hippocampus (H), anterior cinguh 
(AC), supplementary motor (SM), and parietal (P), with the prefixes L and R denoting the left a 
right hemisphere. 

importantly, ITDA provides the lowest error rates in all but one case (target, SM), whe 
the two methods are tied for the best performance. We note that all the error rates are si 
nificantly smaller (p < 0.001) than the chance error, including those during the memo 

:re 

g- 
ry 

period, which was not demonstrated previously (Rizzuto et al. (2005)). Also note that, in 
general, the SVM classifier is better combined with both ITDA and LDA features than are 
the linear and quadratic classifiers. 

11.5.2 Decoding the Behavioral State 

As discussed in section 11.3.2, for fully autonomous neuroprosthetic applications it is not 
only important to know where to reach, but also when to reach. Therefore, the goal is to 
decode what experimental state (fixation, target, memory, reach) the subject is experienc- 
ing, based on the brain data. To this end, we pooled the data for all six directions, with 
438 trials per state, for a total of 1,752 trials. As with the target decoding, all the decoding 
results are based on selected subsegments of data within 1 s of the stimulus that marks 
the beginning of the period. Figure 11.4 shows that only a subset of electrodes exhibits 
state tuning (mostly the electrodes in the SM area during the second part of the trial state 
period). In addition, there is some tuning in the AC, H, and P areas. The data were further 
smoothed by applying a 40 to 50 ms window. The performance (% error) of the classifier 
in the feature space was evaluated through a stratified twenty-fold cross-validation (Kohavi 
(1995)), and the results are summarized in table 11.2. 
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Table 11.1 The average decoding errors and their standard deviations during the target, memory 
and reach periods. The columns represent the brain area, the number of electrodes Ne ,  the period 
(ms) used for decoding, the bin size (ms), the size of the data space (n), the type of the classifier 
(Llinear, Q-quadratic, S-SVM). The size of the optimal subspace (m) is given in the parentheses. 
Note that LDA is constrained to m = 1. 

reach 

Area Ne Time Bin n 

OF 4 160-510 70 20 

SM, 3 620-680 30 6 

P,A 

Class. LDA (m) ITDA (m) 

L 6.17 f 0.24 (1) 4.94' f 0.22 (1) 
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Figure 11.4 The distribution of the p-metric over individual electrodes. The results are for four- 
class recognition task based on 1,752 trials (438 trials per state). 

Table 11.2 The average behavioral state decoding errors and their standard deviations with pooled 
data (6 directions, 4 trial states). Note that LDA is constrained to m 5 3. 

Area N, Time Bin n 

SM 4 500-1000 50 40 

SM 3 120400 40 21 

SM, 4 250-500 50 20 

AC,H 

P 4 200-350 50 12 

Class. 

L 

Q 
S 

L 

Q 
S 

L 

Q 
S 

L 

Q 

LDA (m) 

24.70 f0.04 (3) 

24.82 f 0.04 (3) 

24.76 f0.04 (3) 

35.36 f0.06 (3) 

36.25 f0.05 (3) 

35.42 2~0.06 (3) 

29.23 3I0.06 (3) 

28.99 310.06 (3) 

28.93 *0.06 (3) 

48.69 f 0.06 (3) 

48.99 f 0.07 (3) 

ITDA (m) 

24.17 f0.04 (4) 

24.58 f 0.04 (5) 

23.99' f 0.04 (4) 

35.06 f0.05 (9) 

31.31* f0.05 (12) 

31.43 f 0.06 (14) 

28.75 f0.06 (3) 

27.74* f 0.06 (5) 

27.74* f 0.06 (5) 

47.86 f 0.05 (10) 

50.89 f0.05 (10) 
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Note that the chance error is 75 percent for this particular task. Except for one case, 
the classification accuracy with ITDA features is superior to LDA features, regardless of 
the classifier choice. Additionally, the best single performance always is achieved with 
the ITDA method. Note that the best decoding results are obtained from the SM area in 
the interval [500-10001 ms. Interestingly, we were able to decode the trial states from the 
parietal area, although the accuracy was considerably lower (just above 50 percent). 

11.5.3 Discussion 

Based on the analyzed data, we conclude that the classification with ITDA features is 
more accurate than the classification with LDA features, with an improvement as high as 5 
percent. In rare cases where LDA provides better performance, the quadratic classifier was 
used. This could mean that LDA features fit the quadratic classifier assumptions (Gaussian 
classes, different covariance matrices) better than do ITDA features. Nevertheless, ITDA 
features are in general better coupled to the quadratic classifier than are LDA features. The 
advantages are even more apparent when ITDA is used in conjunction with the linear and 
SVM classifier. Similar behavior was observed when ITDA was tested on a variety of data 
sets from the UCI machine learning repository (Hettich et al. (1998)). Details can be found 
in Nenadic (in press). 

In all cases, the best performance is achieved in a subspace of considerably lower di- 
mension than the dimension of the original data space, n. Therefore, not only is the clas- 
sification easier to implement in the feature space, but the overall classification accuracy 
is improved. While theoretical analysis shows that dimensionality reduction cannot im- 
prove classification accuracy (Duda et al. (2001)), the exact opposite effect is often seen in 
dealing with finitely sampled data. 

Like many other second-order techniques, for example, LDA or ACC, ITDA assumes 
that the class-conditional data distribution is Gaussian. Although this assumption is likely 
to be violated in practice, it seems that the ITDA method performs reasonably well. For 
example, the performance in the original space with the SVM classifier is Gaussian- 
assumption free, yet it is inferior to the SVM classifier performance in the ITDA feature 
space. Likewise, it was found in Nenadic (in press) that unless data is coarsely discretized 
and the Gaussian assumption is severely violated, the performance of ITDA does not 
critically depend on the Gaussian assumption. 

We have reviewed recent advances in cognitive-based neural prosthesis. The major differ- 
ences between the cognitive-based and the more common motor-based approach to BMIs 
have been discussed. To maximize information encoded by neurons, better understanding 
of multiple brain areas and the types of signals the brain uses are needed. Part of our re- 
search effort is to identify sources of information potentially useful for neuroprosthetic 
applications. Other research efforts are focused on technological issues such as the stabil- 
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ity of recording, the development of unsupervised signal analysis tools, or the design of 
complex decoding algorithms. 

The decoding of neural signals in cognitive-based BMIs reduces to the problem of 
classification. High-dimensional neural data typically contains relatively low-dimensional 
useful signals (features) embedded in noise. To meet computational constraints associated 
with.BMIs, it may be beneficial to implement the classifier in the feature domain. We 
have applied a novel information-theoretic method to uncover useful low-dimensional 
features in neural data. We have demonstrated that this problem can be posed within an 
optimization framework, thereby avoiding unjustified assumptions and heuristic feature 
selection strategies. Experimental results using iEEG signals from the human brain show 
that our method may be better suited for certain applications than are the traditional 
feature extraction tools. The study also demonstrates that iEEG signals may be a valuable 
alternative to spike trains commonly used in neuroprosthetic research. 
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Notes 

E-mail for correspondence: znenadic@uci.edu 

(1) Consistent with engineering literature (Fukunaga (1990)), we consider the feature ex- 
traction as a preprocessing step for classification. Some authors, especially those using 
artificial neural networks, consider feature extraction an integral part of classification. 

(2) Recently, a couple of nonlinear feature extraction methods have been proposed 
(Roweis and Saul (2000); Tenenbaum et al. (2000)) where features reside on a low- 
dimensional manifold embedded in the original data space. However, linear feature 
extraction methods continue to play an important role in many applications, primarily 
due to their computational effectiveness. 

(3) Optimality is in the sense of Bayes. 
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