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Abstract

We give an overview of recent advances in cognitive-based neural prostheses, and point
out the major differences with respect to commonly used motor-based brain-machine inter-
faces. While encouraging results in neuroprosthetic research have demonstrated the proof
of concept, the development of practical neural prostheses is still in the phase of infancy.
To address complex issues arising in the development of practical neural prostheses we
review several related studies ranging from the identification of new cognitive variables to
the development of novel signal processing tools.

In the second part of this chapter, we discuss an information-theoretic approach to
the extraction of low-dimensional features from high-dimensional neural data. We argue
that this approach may be better suited for certain neuroprosthetic applications than the
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traditionally used features. An extensive analysis of electrical recordings from the human
brain demonstrates that processing data in this manner yields more informative features
than off-the-shelf techniques such as linear discriminant analysis. Finally, we show that
the feature extraction is not only a useful dimensionality reduction technique, but also that
the recognition of neural data may improve in the feature domain.

11.2 Introduction

The prospect of assisting disabled individuals by using neural activity from the brain to
control prosthetic devices has been a field of intense research activity in recent years.
The nature of neuroprosthetic research is highly interdisciplinary, with the brain-machine
interfaces (BMIs) playing the central role. Although the development of BMIs can be
viewed largely as a technological solution for a specific practical application, it also
represents a valuable resource for studying brain mechanisms and testing new hypotheses
about brain function.

Up to date, the majority of neuroprosthetic research studies have focused on deriving
hand trajectories by recording their neural correlates, primarily, but not exclusively, from
the motor cortex (Wessberg et al. (2000); Serruya et al. (2002); Taylor et al. (2002); Car-
mena et al. (2003); Mussa-Ivaldi and Miller (2003)). The trajectory information contained
in the action potentials of individual neurons is decoded and the information is used to drive
a robotic manipulator or a cursor on a computer screen. We refer to this neuroprosthetic
approach as “motor-based.” Additionally, progress has been made in interfacing electroen-
cephalographic (EEG) signals and assistive devices for communication and control (Wol-
paw et al. (2002)). These noninvasive techniques are commonly termed brain-computer
interfaces (BCIs) (Wolpaw and McFarland (2004); Pfurtscheller et al. (2003c)).

While remarkable success in the development of BMIs has been achieved over the
past decade, practical neural prostheses are not yet feasible. Building a fully operational
neuroprosthetic system presents many challenges ranging from long-term stability of
recording implants to development of efficient neural signal processing algorithms. Since
the full scope of prosthetic applications is still unknown and it is unlikely that a single
BMI will be optimal for all plausible scenarios, it is important to introduce new ideas
about the types of signals that can be used. It is also important to address the many
technological challenges that are currently impeding the progress toward operational neural
prostheses. To this end, the neuroprosthetic research effort of our group spans several
related directions including cognitive-based BMlIs, decoding from local field potentials
(LFPs), identification of alternative cognitive control signals, electrophysiologic recording
advances, and development of new decoding algorithms.

In section 11.3, we give a brief overview of these research efforts. More details can
be found in the relevant literature cited. In section 11.4, we discuss novel information-
theoretic tools for extraction of useful features from high-dimensional neural data. Ex-
perimental results with electrically recorded signals from the human brain are presented
in section 11.5, and the advantages of our technique over traditional ones are discussed.
Concluding remarks are given in section 11.6.
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The motor-based approach, athough predominantly used, is certainly not the only way
of using brain datafor neuroprosthetic applications. Shenoy et al. (2003) argue that neural
activity present beforeor even without natural & mmovement provides an important source
of control signals. In nonhuman primates, these types of neura signals can be found,
among other areas, in parietal reach region (PRR) of the posterior parietal cortex (PPC).
PPC is an area located a an early stage in the sensory-motor pathway (Andersen et a.
(1997)), and is involved in transforming sensory inputs into plans for actions, so-called
" sensory-motorintegration.” In particular, PRR was shown to exhibit directional selectivity
with respect to planned reaching movements (Snyder et a. (1997)). Moreover, these
plans are encoded in visual coordinates (also called retina or eye-centered coordinates)
relative to the current direction of gaze (Batistaet a. (1999)), thus providing extrinsic
spatial information and underscoring the cognitive nature of these signals. We refer to this
approach to neura prostheses as "' cognitive-based.” The human homologue of PRR has
recently been identifiedin functional -magneti c-resonancd maging experiments (Connolly
et al. (2003)).

11.3.1  Cognitive-Based Brain-M achinel nterfaces

The cognitive-based approach to neura prosthesesdoes not require the execution of arm
movements; its true potentia lies in assisting paralyzed individuals who are unable to
reach but who are capableof making reaching plans. It has been shown through a series of
experiments (Musallam et al. (2004)) that monkeyseasily learn to control the location of a
computer cursor by merely thinking about movements. Briefly, the monkeys were shown a
transient visua cue (target) at different screen locationsover multipletrials. After thetarget
disappeared, the monkeys were required to plan a reach movement to the target location
without making any ar mor eye movements. This stage of the experimentis referred to as
the" delay" or ""memory period." The action potentials (spike trains) of individua neurons
from PRR were collected during the memory period and were decoded in rea time to
predict the target location. If the correct location was decoded, afeedback was provided to
the animals by illuminating the target location and the animals were rewarded. The trias
were aborted if the animals made eye or arm movementsduring the memory period. This
ensured that only cognitive and not motor-related signals were used for decoding, thus
underscoring the potential of the cognitive-based approach for severely paralyzed patients.

With vision being the main sensory modality of the posterior parietal cortex (Blatt et al.
(1990); Johnson et al. (1996)), PRR islikely to continuereceiving appropriateerror signals
after paralysis.In theabsenceof proprioceptiveand somatosensoryfeedback (typically lost
dueto paralysis), visual error signals becomeessential in motor learning. Musalam et al.
(2004) have shown that the performance of a PRR-operated prosthesisimproved over the
course of several weeks. Presumably, the visual feedback alowed the monkeys to learn
how to compensatefor decoding errors.
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After reaching goal sare decoded, trajectories can be computed from low-level trgectory
instructions managed by smart output devices, such as robots, computers, or vehides
using supervisory control systems (Sheridan (1992)). For example, given the Catesan
coordinates of an intended object for grasping, a robotic motion planner can determine
the detailed joint trajectories that will transport a prosthetic hand to the desired location
(Andersen et d. (2004a)). Sensors embedded in the mechanical ar mcan ensure that the
commanded trajectories are followed and obstacles are avoided, thereby replacing, at leest
to some degree, therole of proprioceptive and somatosensory feedback.

11.3.2 Local Field Potentials

LFPs represent the composite extracel lular potential from perhaps hundreds or thousands
of neurons around theelectrodetip. In general, L FPsareless sensitive to rel ative movement
of recording electrodes and tissues; therefore, L FP recordings can be maintained for longer
periods of time than single cell recordings (Andersen et a. (2004b)). However, LFHS
have not been widely used in BMIs, perhaps because of the assumption that they do
correlate with movements or movement intentions as well as single cell activity. Recent
experimentsin monkey PPC, in particular thelateral intraparietal (L1P) areaand PRR, have
demonstrated that valuable information related to the animal's intentions can be uncovered
from LFPs. For example, it has been shown that the direction of planned saccadesin
macagues can be decoded based on LFPs recorded from area LI P (Pesaran et al. (2002)).
Moreover, the performances of decoders based on spike trains and LFPs were found to
be comparable. Interestingly, the decoding of behavioral state (planning vs. execution o
saccades) was more accurate with LFPs than with spike trains. Similar studies have bean
conducted in PRR. It wasfound that the decoding of the direction of planned reaches wes
only slightly inferior with LFPs than with spike trains (Scherberger et al. (2005)). Aswith
LIP studies, it has also been shown that LFPs in this area provide better behavioral state
(planning vs. execution of reaching) decoding than do spike trains.

While the decoding of a target position or a hand trajectory provides information on
where to reach, the decoding of a behavioral state provides the information on when to
reach. In current experiments, the timeof reach is controlled with experimental protocol by
supplying a*gosignd." Practical neural prostheses cannot rely on external cuesto initiate
the movement; instead this information should be decoded from the brain, and future BMIs
are likely to incorporate the behavioral state information. Therefore, it is expected thet
LFPs will play a more prominent rolein the design of future neuroprosthetic devices.

11.3.3 Alternative Cognitive Control Signals

The potential benefits of a cognitive-based approach to neural prosthesis were demon-
strated first through offlineanalysis (Shenoy et a. (2003)) and subsequently through closed
loop (online) experiments (Musallam et a. (2004)). Motivated by previous findings of re-
ward prediction based on neural activity in various brain areas (Platt and Glimcher (1999);
Schultz (2004)), Musallam et al. (2004) have demonstrated that similar cognitive variables
can be inferred from the activitv in the macaoues PRR. In particular. thev have found
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significant differencesin cell activity depending on whether a preferred or nonpreferred
reward was expected at theend of atria. The experimentsincluded various preferred ver-
sus nonpreferred reward paradigms such as citrusjuice versus water, large amount versus
small amount of reward, and high probability versus low probability of reward. On each
day, the animal learned to associateone cue with the expectation of preferred reward and
another cue with nonpreferred reward. The cues were randomly interleaved on a trial-by-
trial basis. This study demonstrated that the performance of brain-operated cursor control
increases under preferred reward conditions, and that both the reach goalsand the reward
type can be smultaneously decoded in red time.

The ability to decode expected vaues from brain data is potentially useful for future
BMIs. Theinformation regarding subjects preferences, motivation level, and mood could
be easily communicated to othersin a manner similar to expressing these variables using
body language. It is also conceivable that other types of cognitive variables, such as the
patient's emotiona state, could be inferred by recording activity from appropriate brain
areas.

11.34 Neurophysiologic Recor ding Advances

One of the mgjor challengesin the development of practical BMIsisto acquire meaningful
data from many recording channels over a long period of time. This task is especially
challenging if the spike trains of single neurons are used, since typically only afraction
of the electrodesin an implanted electrode array will record signals from well-isolated
individual cells (Andersenet a. (2004b)). It isalso hard to maintain the activity of isolated
unitsin theface of inherent tissue and/or array drifts. Reactive gliosis (Turner et a. (1999))
and inadequate biocompatibility of the electrode's surface materia (Edell et al. (1992))
may also contributeto the lossof an implant's function over time.

Fixed-geometry implants, routinely used for chronic recordingsin BMIs, are not well
suited for addressing the above issues. Motivated by these shortcomings, part of our re-
search effort has been directed toward the development of autonomously movable elec-
trodes that are capable of finding and maintaining optimal recording positions. Based on
recorded signalsand a suitably defined signal quality metric, an algorithm has been devel -
oped that decides when and where to move the recording el ectrode (Nenadic and Burdick
(2006)). It should be emphasi zed that the devel oped control al gorithmand associatedsignal
processing steps (Nenadic and Burdick (2005)) are fully unsupervised, that is, free of any
human involvement, and as such are suitable for future BMIs. Successful applications of
the autonomously movable electrode agorithm using a meso-scal eelectrode testbed have
recently been reported in Cham et al. (2005) and Branchaud et a. (2005).

The successful implementation of .autonomously movable electrodesin BMIs will be
beneficial for several reasons. For example, electrodescan be moved to target specific neu-
ral populationsthat arelikely to be missed duringimplantationsurgery. Optimal recording
quality could be maintained and the effectsof cell migration can be compensated for by
moving the electrodes. Finally, movableel ectrodescould break through encapsulationand
seek out new neurons, which islikely to improvethe longevity of recording.
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Clearly, the integration of movable electrodes with BMIs hinges upon the devel opment
of appropriate micro-electro-mechanical systems (MEMS) technology. Research effortsto
develop MEMSS devices for movable electrodes are under way (Pang et al. (2005a,b)).

11.35 Nove Decoding Algorithms

In mathematical terms, the goal of decoding algorithmsis to build a map between neurd
patterns and corresponding motor behavior or cognitive processes. Because of the rax
domness inherent in the neuro-motor systems, the appropriate model of this map is proba
bilistic. In practical terms, decoding for cognitive-based BMIs entails the selection of the
intended reach target from a discrete set of possible targets. Conseguently, the decoder is
designed as a classifier, where observed neural datais used for classifier training.

Recent advances in electrophysiologic recordings have enabled scientists to gaher
increasingly large volumes of data over relatively short time spans. While neura daa
ultimately isimportant for decoding, not all data samples carry useful information for the
task at hand. Ideally, relevant data samples should be combined into meaningful festures,
while irrelevant data should be discarded as noise. For example, representing a findy
sampled time segment of neura data with a (low-dimensional) vector of firing rates, can
be viewed as an heuristic way of extracting features from the data. Another example is
the use of the spectral power of EEG signalsin various frequency bands, for example, p-
band or 3-band (McFarland et al. (1997a); Pfurtscheller et al. (1997)), for neuroprosthetic
applications such as BCls.

In the next section, we cast the extraction of neura features within an information-
theoretic framework and we show that this approach may be better suited for certan
applicationsthan the traditionally used heuristic features.

114 FeatureExtraction

Feature extraction is a common tool in the analysis of multivariate statistical data. Typi-
cally, alow-dimensional representation of dataissought so that features have some desired
properties. An obvious benefit of this dimensionality reduction is that data becomes com-
putationally more manageable. More importantly, since the number of experimental trias
istypically much smaller than the dimension of data (so-called small-sample-size problem
(Fukunaga (1990))), the statistical parameters of data can be estimated more accurately
using the low-dimensional representation.

Two major applications of feature extraction are representation and classification. Fea
ture extraction for representation aims at finding alow-dimensional approximation of data,
subject to certain criteria. These criteria assume that data are sampled from a common
probability distribution, and so these methods are often referred to as blind or unsupervised.
Principal component analysis (PCA) (Jolliffe (1986)) and independent component analysis
(ICA) (Jutten and Herault (1991)) are the best-known representatives of these techniques.
In feature extraction for classification, on the other hand, each data point's class member-

chin 1¢e knnwn and thnc the method 1c concidered eninerviced T ow-dimencinonal featnrec
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arefound that maximally preserve class differencesmeasured by suitably defined criteria.
Linear discriminantanalysis(LDA) (Dudaet al. (2001)) i s the best known representative
of these techniques. Once the features are extracted, aclassifier of choice can be designed
in the featuredomain. !

A common heuristic approach to feature extraction is to rank individual (scalar) fea-
tures according to some class separability criterion. For example, informative neura fea-
tures are those that exhibit stimulus-related tuning, that is, they take significantly different
values when conditioned upon different stimuli. The feature vector is then constructed
by concatenating the several most informative features. While seemingly reasonable, this
dtrategy is completely ignorant of the joint statistical properties of the features and may
produce highly suboptimal feature vectors. More elaborate algorithmsexist for the selec-
tion of scalar features (Kittler (1978)), but they are combinatorially complex (Cover and
Campenhout (1977)) and their practical applicability islimited.

Another popular strategy for analyzing spatiotemporal neura signalsis to separate the
processing in the spatial and temporal domain. Data arefirst processed spatially, typicaly
by applying off-the-shelf tools such as the Laplacian filter (McFarland et a. (1997a);
Wolpaw and McFarland (2004)), followed by tempora processing, such as autoregressive
frequency anaysis (Wolpaw and McFarland (2004); Pfurtschelleret al. (1997)). However,
the assumption of space-time separability is not justified and may be responsible for
suboptimal performance. In addition, while spectral power features have clear physical
interpretation, there is no reason to assume that they are optimal features for decoding.
Rizzuto et al. (2005) have recently demonstrated that decoding accuracy with spectral
power features could be up to 20 percent lower than a straightforward time domain
decoding.

In the next two subsections, we introduce anovel information-theoreticcriterionfor fea-
ture extraction conveniently called **information-theoretic discriminant analysis” (ITDA).
We show that informative features can be extracted from data in alinear fashion, that is,
through a matrix manipulation.? For spatiotemporal signals, the feature extraction matrix
playstherole of a spatiotemporal filter and does not require an assumption about the sep-
arability of time and space. Moreover, the featuresare extracted using their joint statistical
properties, thereby avoiding heuristicfeature selection strategiesand computationally ex-
pensivesearch algorithms.

11.4.1 Linear Supervised FeatureExtraction

In general, linear feature extraction is a two-step procedure: (1) an objective function
is defined and (2) a full-rank feature extraction matrix is found that maximizes such an
objective. Moreformally, let R € R™ be a random data vector with the class-conditional
probability density function (PDF) frja(r|w:), where the class random variable (RV)
Q= {wi, ws, ... , w.} isdrawn from adiscretedistributionwith the probability P(w;) =
P(Q =w;),Vi=1,2,...,c For example, R could be a matrix of EEG data from an
array of electrodessampled in time and written in a vector form. The class variable could
be the location of a visua target, or some cognitive task such asimagination of left and
right hand movements(Pfurtscheller et al. (1997)). The features F € R™ are extracted as
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Figure11.1 (Left) Two Gaussian class-conditional PDFs with P(w1) = P(ws), represented by
3-Mahalanobis distance contours. The straight lines indicate optimal 1D subspace according
different feature extraction methods. PCA, ICA, LDA, ITDA and approximate Chernoff criterion
(Loog and Duin (2004)) ACC. (Right) The PDFs of optima 1D features extracted with ITDA ad
LDA.

F=TR, where T € W™ jsafull-rank feature extraction matrix found by maximizing a
suitably chosen class separability objective function J(T).

Many objective functions have been used for supervised feature extraction purposes. In
its most common form, LDA, also known as the Fisher criterion (Fisher (1936)) or canon-
ical variate analysis, maximizes the generalized Rayleigh quotient (Duda et al. (2001)).
Under fairly restrictive assumptions, it can be shown that LDA is an opti mal3 feature ex-
traction method. In practice, however, these assumptions are known to be violated, and
so the method suffers from suboptimal performance. A simple example where LDA fails
completelyisillustrated in figure 11.1. Another deficiency of LDA isthat the dimension of
the extracted subspace is at most ¢ — 1, where c is the number of classes. This constraint
may severely limit the practical applicability of LDA features, especially when the number
of classesisrelatively small.

Kumar and Andreou (1998) have developed a maximum-likelihood feature extraction
method and showed that these features are better suited for speech recognition than the
classical LDA features. Saon and Padmanabhan (2000) used both Kullback-Leibler (KL)
and Bhattacharyya distance as an objective function. However, both of these metrics are
defined pairwise, and their extension to multicategory cases is often heuristic. Loog and
Duin (2004) have developed an approximation of the Chernoff distance, although their
method seems to fail in some cases (seefigure 11.1).

Mutual information is a natural measure of class separability. For a continuous RV R
and adiscrete RV 2, the mutual information, denoted by uI(R; R), isdefined as

WIR:D) & HR) ~ HR|D) = HR) - S HR|w) Pw) (L)

=1
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where H(R) £ — [ fr(r) log(fr(r)) dr is Shannon's entropy. Generally, higher mutual in-
formation |mpI|0£ better class separability and smaller probability of rnisclassification. In
particular, it was shown in Hellman and Raviv (1970) that eg < 1/2 [H(2) — pI(R; )],
where H(Q?) is the entropy of Q and g is the Bayes error. On the other hand, the prac-
tical applicability of the mutual information is limited by its computational complexity,
also known as the curse of dimensionality, which for multivariate data requires numeri-
cal integrationsin high-dimensional spaces. Principe et a. (2000) explored the alternative
definitions of entropy (Renyi (1961)), which, when coupled with Parzen window density
estimation,led to acomputationally feasiblemutua information alternative that was appli-
cableto multivariatedata. Motivated by thesefindings, Torkkoladevel oped an information-
theoretic featureextraction algorithm (Torkkola (2003)), although his method is computa-
tionally demanding and seems to be limited by the curse of dimensionality. Next, weintro-
duce afeature extraction objectivefunction that is based on the mutual information, yet is
easily computable.

11.4.2 Information-TheoreticObjective Function

Throughout the rest of the article we assume, that the class-conditional densities are
Gaussian, that is, R|w; ~ AN(m;, X;), with positive definite covariance matrices. The
entropy of aGaussian random variableis easily computed as

H(R|w:) = 3 log((2me)"[S)

where | | denotes for the determinant of the matrix =. To complete the calculations
required by (11.1), we need to evaluate the entropy of the mixture PDF fr(r) £
> fria(r|wi) P(w;). Itiseasy to establish that R ~ (m, X), where

m=) mPw) ad = 2; (= F (ms = m)oms —m)'| PQwi).  (112)
=1 1=

Note that unless the class-conditional PDFs are completely overlapped, the RV R is non-
Gaussian. However, we propose a metric similar to (11.1) by replacing H(R) with the
entropy of a Gaussian RV with the same covariance matrix X:

u(R; Q) 2 ZH R|wi)P

log(|X]) Zlog |%;:])P(wi)| (11.3)

where Hy(R) is the Gaussian entropy. Throughout the rest of the article, we refer to this
metric asa p-metric.

We will explain briefly why the p-metric is a valid class separability objective. For a
thorough mathematical exposition, the reader isreferred to Nenadic (in press). If theclass-
conditiona PDFs arefully overlapped, that is,m; = .-. = meand 3; = ... = &, it
followsfrom (11.2) and (11.3) that 2(R; R) = 0. Also notethat in thiscase R ~ A (m, X},
thus (R; R) = pI(R; O) .On the other hand, if theclass-conditional PDFs are different, R
deviatesfrom the Gaussian RV, so the p-metric u(R; 2) can be viewed as a biased version
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of uI(R;Q), where u(R;R) > upI(R;0) > 0 because for a fixed covariance metrix,
Gaussian distribution maximizes the entropy [Hy(R) > H(R)]. As the classes are more
separated, the deviation of R from a Gaussian RV increases, and the p-metric gets higoe:.
It turns out that this bias is precisely the negentropy defined as H(R) = Hy(R) — H(R),
which has been used as an objective function for ICA applications (see Hyvérinen (1999)
for survey). Therefore, ITDA can be viewed as a supervised version of ICA. Figure 111
confirms that ICA produces essentially the same result as our method (note the symmety |
of the example), although the two methods are fundamentally different (unsupervisedvs. |
supervised). Figure 11.1 also shows the p-metric in the origina space and subgeces
extracted by ITDA and LDA.

The p-metric has some interesting properties, many of which are reminiscent of the
Bayes error eg and the mutual information (11.1). We give a brief overview o these
properties next. For a detailed discussion, refer to Nenadic (in press). Firgt, if the class-
conditional covariances are equal, the p-metric takes theform of the generalized Raylagh
quotient; therefore, under these so-called homoscedastic conditions, ITDA reducesto the |
classica LDA method. Second, for a two-class case with overlapping class-conditiona
means and equal class probabilities (e.g., figure 11.1), the p-metric reduces to the wdl
known Bhattacharyya distance. Like many other discriminant metrics, the p-metric is
independent of the choice of a coordinate system for data representation. Moreover, the ‘
search for the full-rank feature extraction matrix T can be restricted to the subspace of |
orthonormal projection matrices without compromising the objectivefunction. Findly, te
p-metric of any subspace of the original data space is bounded above by the p-metric of
the original space. These properties guarantee that the following optimization problemis
well posed. Given the response samples R € R™ and the dimension of the feature spacem,
we find an orthonormal matrix T € R™*™ such that the p—metric (F; 0) is maximized

T = arngé%n{u(F; Q) : F=TR} subjectto TT' =1. (114

Based on our discussion in section 11.4.2, it follows that such a transformation would find
an m-dimensional subspace, where the class separability ismaximal. Interestingly, both the
gradient 8u(F; Q) /8T and the Hessian 62 u(F; Q) /0T? can befound analytically (Nenadic
(in press)), so the problem (11.4) is amenable to Newton's optimization method.

115 Experimental Results

In thissection, we compare the performances of LDA and ITDA on adataset adopted from
Rizzutoet al. (2005). The data represents intracranial encephal ographic (EEG) recordings
from the human brain during a standard memory reach task (seefigure 11.2). It should be
noted that iEEG signals are essentially local field potentials (see section 11.3.2). At the
start of each trial, a fixation stimulusis presented in the middle of a touchscreen and the
participant initiatesthe trial by placing hisright hand on the stimulus. After a short fixation
period, a target is flashed on the screen, followed by a memory period. After the memory
period, the fixation stimulusis extinguished, which signals the participant to reach to the
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Figurell2 Thetimeline of experimenta protocal.

memorized location (formerlyindicated by the target). The duration of fixation, target, and
memory periods varied uniformly between 1 and 1.3 s. The subject had 8 electrodesim-
planted into each of the following target brain areas: orbital frontal cortex (OF), amygdaa
(A), hippocampus (H), anterior cingulatecortex (AC), supplementary motor cortex (SM),
and parietal cortex (P). The total number of electrodesin both hemispheres was 96. The
targets were presented at 6 different locations: 0°, 60°, 120°, 180°, 240°, 300°; theselo-
cations respectively correspond to right, top right, top left, left, bottom left, and bottom
right position with respect to the fixation stimulus. The number of trials per stimulusvar-
ied between 69 and 82, yieding atotal of 438 trials. The electrodesignalswere amplified,
sampled at 200 Hz and bandpass filtered. Only a few electrodes over a few brain areas
showed stimulus-related tuning according to the location of the target. The goal of our
analysis is to decode the target location and the behaviora state based on the brain data.
Such a method could be used to decode a person's motor intentionsin real time, support-
ing neuroprosthetic applications. All decoding results are based on alinear, quadratic, and
support vector machine (SVM) classifier (Collobert and Bengio (2001)) with a Gaussian
kernel.

1151 Decodingthe Target Postion

To decode the target position, we focused on a subset of datainvolving only two target
positions: left and right. While it is possible to decode al six target positions, the results
arerather poor, partly because certaindirectionswere consistently confused. The decoding
was performed during the target, memory and reach periods (seefigure11.2). All decoding
results are based on selected subsegments of datawithin 1 sof the stimulusthat marksthe
beginning of the period. figure. 11.3 showsthat only acouple of electrodesin both left and
right parietal cortex exhibit directional tuning, mostly around 200 ms after the onset of the
target stimulus. In addition, thereis some tuning in the SM and OF regions. Similar plots
(not shown) are used for the decoding during memory and reach periods.

For smoothing purposes and to further reduce the dimensionality of the problem, the
electrodesignals were binned using a 30 to 70 ms window. The performance (% error) of
theclassifier in thefeaturedomain waseva uated through a leave-one-out cross-validation;
the results are summarized in table 11.1. Note that the chance error is 50 percent for
this particular task. For a given classifier, the performance of the better feature extraction
method is shown in boldface, and the asterisk denotesthe best performance per classifica-
tion task. Except for afew cases (mostly with the quadratic classifier), the performance of
the ITDA method is superior to that of LDA, regardless of the choice of classifier. More
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Figure1l3 Thedigribution of the u-metric over individua eectrodes during the target period.
The results are for two-class recognition task, and are based on 162 trids (82 left and 80 right).
Different brain areas are: orbita frontal (OF), amygdda(A), hippocampus (H), anterior cingulate
(AC), supplementary motor (SM), and parieta (P), with the prefixes L and R denoting the left and
right hemisphere.

importantly, ITDA provides the lowest error ratesin all but one case (target, SM), where
the two methods are tied for the best performance. We note that all the error rates are 5g-
nificantly smaller (p < 0.001) than the chance error, including those during the memory
period, which was not demonstrated previously (Rizzuto et a. (2005)). Also note that, in
general, the SVM classifier is better combined with both ITDA and LDA features than ae
the linear and quadratic classifiers.

115.2 Decoding the Behavioral State

Asdiscussed in section 11.3.2, for fully autonomous neuroprosthetic applications it is not
only important to know where to reach, but also when to reach. Therefore, the goal isto
decode what experimental state (fixation, target, memory, reach) the subject is experienc-
ing, based on the brain data. To this end, we pooled the data for all six directions, with
438 trialsper state, for atotal of 1,752 trials. Aswith the target decoding, all the decoding
results are based on selected subsegments of data within 1 s of the stimulus that marks
the beginning of the period. Figure 11.4 shows that only a subset of electrodes exhibits
state tuning (mostly the electrodes in the SM area during the second part of the trial state
period). In addition, thereis some tuning in the AC, H, and P areas. The data werefurther
smoothed by applying a 40 to 50 ms window. The performance (% error) of the classifier
in thefeature space was evaluated through a stratified twenty-fold cross-validation (Kohavi
(1995)), and the results are summarized in table 11.2.
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Table11.1 The average decoding errors and their standard deviations during the target, memory
and reach periods. The columns represent the brain area, the number of electrodes N, the period
(ms) used for decoding, the bin size (ms), the size of the data space (n),the type of the classifier
(L-linear, Q-quadratic, S-SVM). The size of the optimal subspace (m) is given in the parentheses.
Notethat LDA isconstrainedtom = 1

| Period |Area Ne Time Bin n |CIass|LDA (m) [ITDA (m)|
target |[OF 4 160-510 70 20| L |6.17 +024 (1)|4.94* £022 (1)
Q [6.17 +024 (1)8.02 +0.27 (1)
S 617 +£025 (1)|4.94* +£022 (1)
P 2 150450 50 12| L |7.41 +026 (1)|6.79* £025 (1)
Q [802 027 ()|741 +026 ()
S |741 +026 (1)(6.79 +£025 (2)
SM 2 100450 70 10| L [1420 +£0.35 (1)(13.58" +£0.34 (3)
Q [1420 +£035 (1)|13.58" +£034 (2)
S |13.58" +£034 (1)|13.58" 034 (3)
SM,P 2 120-520 40 20| L |[5.56 +0.23 (1)|4.32* +020 (1)
Q |[5.56 +0.23 (1)[5.56 +023 (1)
S 494 +022 (1){4.32 £020 (1)
memory |OF 3 240-330 30 6 L 29.63 4046 (1)|28.40" 045 (1)
Q [3025 4046 (1)]|28.40° £045 (2)
S 3148 +£047 (1)[29.01 +046 (1)
P 4 610-730 30 16| L |3395 +048 (1)|32.72 +047 (1)
Q (3333 047 (1)|3580 048 (1)
S (3148 +£047 (1)|29.63" 046 (4)
SM 2 250-370 30 8 L 2963 £045 (1)|29.01 +046 (6)
Q (2963 +£046 (1)|2593 +044 (3)
S (2963 +046 (1)|24.69" +£043 (4)
SM, 3 620680 30 6 L 2840 +045 (1)|26.54* +0.44 (1)
PA Q (2716 +£045 (1)|2840 045 (1)
S [27.16 +045 (1)[26.54* £044 (1)
reach |OF 2 270420 50 6 L 1049 +£031 (1)(9.26 +029 (1)
Q (1049 £031 (1)]|9.88 +030 (1)
S 19.88 +030 (1)|8.64* +028 (1)
OF 4 250-550 50 24| L |6.79 +025 (1)(6.17 +024 (1)
Q (6.79 +025 (1)(6.79 +025 (1)
S |6.17 +024 (1){4.94% £022 (22)
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Figure 114 Thedistribution of the p-metric over individua electrodes. The results are for four-
classrecognition task based on 1,752 trid s (438 trials per state).

Tablell.2 Theaverage behaviora state decoding errorsand their standard deviationswith poded
data (6 directions, 4 trial states). Note that LDA isconstrainedtom < 3.

Area  N. Time Bin n |Class. |LDA (m)|ITDA (m)

4899 +007 (3)]50.89 £0.05 (10)
49.70 £0.05 (3)[47.68" +0.04 (10)

SM 4 500-1000 50 40| L [2470 +£0.04 (3)[24.17 004 (4)
Q |2482 £004 (3)[2458 +004 (5
S |2476 +0.04 (3)[23.99° x004 (4)
SM 3 120400 40 21| L [3536 %0.06 (3)|3506 +0.05 (9)
Q |3625 £0.05 (3)[31.31° £005 (12)
S [3542 £0.06 (3)[3143 +006 (14)
SM, 4 250-500 50 20| L [29.23 +£0.06 (3)[2875 006 (3)
ACH Q [2899 +0.06 (3)[27.74" +006 (5
S [2893 £0.06 (3)]27.74® 006 (5
P 4 200-350 50 12| L |4869 +0.06 (3)[47.86 005 (10)
Q
S
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Note that the chance error is 75 percent for this particular task. Except for one case,
the classification accuracy with ITDA featuresis superior to LDA features, regardless of
the classifier choice. Additionaly, the best single performance always is achieved with
the ITDA method. Note that the best decoding results are obtained from the SM areain
the interval [500-1000] ms. Interestingly, we were able to decode the trid states from the
parietal area, although the accuracy was considerably lower (just above50 percent).

1153 Discusson

Based on the analyzed data, we conclude that the classification with ITDA featuresis
more accurate than the classificationwith LDA features, with an improvementas high as5
percent. In rare cases where LDA provides better performance, the quadratic classifier was
used. Thiscould mean that LDA featuresfit the quadratic classifier assumptions (Gaussian
classes, different covariance matrices) better than do ITDA features. Nevertheless, ITDA
featuresarein general better coupled to the quadratic classifier than are LDA features. The
advantagesare even more apparent when ITDA is used in conjunction with the linear and
SVM classifier. Similar behavior was observed when ITDA wastested on a variety of data
setsfrom the UCI machinelearning repository (Hettichet a. (1998)). Detailscan befound
in Nenadic (in press).

In al cases, the best performanceis achieved in a subspace of considerably lower di-
mension than the dimension of the original data space, n. Therefore, not only is the clas-
sification easier to implement in the feature space, but the overall classification accuracy
is improved. While theoretical analysis shows that dimensionality reduction cannot im-
proveclassificationaccuracy (Dudaet al. (2001)), the exact oppositeeffect isoften seenin
dealing with finitely sampled data.

Like many other second-order techniques, for example, LDA or ACC, ITDA assumes
that the class-conditional data distribution is Gaussian. Although thisassumptionis likely
to be violated in practice, it seems that the ITDA method performs reasonably well. For
example, the performance in the original space with the SYM classifier is Gaussian-
assumption free, yet it is inferior to the SVM classifier performancein the ITDA feature
space. Likewise, it wasfound in Nenadic (in press) that unlessdatais coarsely discretized
and the Gaussian assumption is severely violated, the performance of ITDA does not
critically depend on the Gaussian assumption.

11.6 Summary

We have reviewed recent advancesin cognitive-based neural prosthesis. The major differ-
ences between the cognitive-basedand the more common motor-based approach to BMIs
have been discussed. To maximize information encoded by neurons, better understanding
of multiple brain areas and the types of signals the brain uses are needed. Part of our re-
search effort is to identify sources of information potentially useful for neuroprosthetic
applications. Other research efforts are focused on technological issues such as the stabil-
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ity of recording, the development of unsupervised signal analysistools, or the design d
complex decoding algorithms.

The decoding of neural signals in cognitive-based BMIs reduces to the problem d
classification. High-dimensional neural datatypically containsrelatively low-dimensiond
useful signal's (features) embedded in noise. To meet computational constraints associated
with. BMIs, it may be beneficia to implement the classifier in the feature domain. W\e
have applied a novel information-theoretic method to uncover useful low-dimensiond
featuresin neural data. We have demonstrated that this problem can be posed within an
optimization framework, thereby avoiding unjustified assumptionsand heuristic festure
selection strategies. Experimental results using iEEG signalsfrom the human brain sow
that our method may be better suited for certain applications than are the traditiond
featureextractiontools. The study aso demonstratesthat iEEG signals may be a vauable
alternative to spiketrainscommonly used in neuroprostheticresearch.
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Notes
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(1) Consistent with engineeringliterature (Fukunaga(1990)), we consider the featureex-
traction asa preprocessing step for classification. Some authors, especially thoseusing
artificial neural networks, consider featureextractionan integral part of classification.

(2) Recently, a couple of nonlinear feature extraction methods have been proposed
(Roweis and Saul (2000); Tenenbaum et a. (2000)) where features reside on a low-
dimensiona manifold embedded in the origina data space. However, linear feature
extraction methods continueto play an important rolein many applications, primarily
dueto their computational effectiveness.

(3) Optimality isin the senseof Bayes.
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